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Abstract
We report a study of high-resolution microwave spectroscopy of nitrogen-vacancy (NV) centers in
diamond crystals at and around zero magnetic field. We observe characteristic splitting and
transition imbalance of the hyperfine transitions, which originate from level anti-crossings (LACs)
in the presence of a transverse effective field. We use pulsed electron spin resonance spectroscopy
to measure the zero-field spectral features of single NV centers for clearly resolving such LACs. To
quantitatively analyze the magnetic resonance behavior of the hyperfine spin transitions in the
presence of the effective field, we present a theoretical model, which describes the transition
strengths under the action of an arbitrarily polarized microwave magnetic field. Our results are of
importance for the optimization of the experimental conditions for the polarization-selective
microwave excitation of spin-1 systems in zero or weak magnetic fields.

1. Introduction

Nitrogen-vacancy (NV) center, a paramagnetic defect in diamond [1], is a highly versatile sensor with
excellent sensitivity to magnetic, electric, and stress fields at room temperature [2–4]. Owing to the
well-established optical initialization and readout methods [5, 6], the ground state spin of the NV center is
amenable to sensing applications [7]. The quantum sensing [8] properties of the NV centers are being
exploited for applications in biology [9, 10], geology [11], material science [12, 13], condensed matter
physics [14], quantum computation, and information processing [15, 16]. Typically, most of the sensing
experiments involving NV centers require simultaneous application of an external bias magnetic field. This
requirement is detrimental to applications including nano-nuclear magnetic resonance (NMR) in weak
magnetic fields [17], structural investigation of molecules [18] and in the experiments performed in
magnetically shielded environments [19]. However, at zero magnetic field, the interaction of the NV center
with the intrinsic effective field [7] comprising the local static electric field and the local
deformation-induced strain field can dominate, resulting in the inaccurate estimation of the external
magnetic field of interest. Therefore, it is crucial to thoroughly understand and characterize the local charge
and stress environment of the NV center in diamonds, as these studies may pave the way for efficient
engineering of the intrinsic properties of the NV defects in diamonds for zero-field sensing applications.
Furthermore, careful understanding of the ground state Hamiltonian in the presence of spin-electric and
spin-strain interactions [4, 7] was instrumental for key advances, including the single NV-based electrometry
[3], zero-field magnetometry [20–22], nanospin-mechanical sensors [4], optically enhanced electric field
sensing [23] and the experimental demonstration of holonomic quantum gates [24].

In this work, we have studied the effects of the intrinsic effective field on the NV hyperfine level structure
by performing high-resolution microwave spectroscopy on single NV centers in a polycrystalline diamond
(PCD) sample. Previous studies involving the NV centers in PCD samples have demonstrated long ground
state electron spin coherence times [25], thereby showing great promise for applications in wide-field
quantum sensing [26] and quantum information processing [27]. By leveraging long-lived ground state spin
coherence, we perform pulsed-optically detected magnetic resonance (p-ODMR) [28] measurements to
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record the hyperfine resolved spin transitions of an NV center experiencing a large intrinsic effective field.
The presence of effective field inside a diamond lattice perturbs the NV hyperfine level structure by mixing
and splitting the |ms =±1⟩ states, which can be observed as a shifting and splitting of the hyperfine
transitions involved. The shifting of the NV’s overall spectrum from the central transition frequency of
∼2.87GHz is attributed to the axial component of the effective field, whereas the splitting of the inner
and/or outer transitions is attributed to the transverse component of the effective field. Recent studies to
precisely characterize the effective fields surrounding NV spins [29–31] revealed the mixing of the central
hyperfine resonances in the zero-field spectrum for a single NV center. In contrast, the mixing of the outer
hyperfine resonances was not observable because of the presence of low effective fields in their diamond
crystals under study. In this work, our studies show that the presence of large intrinsic effective fields in PCD
samples leads to the mixing of the NV’s outer hyperfine transitions at zero magnetic field which, to the best
of our knowledge, has not been observed experimentally until now. We also perform NV-based spectroscopic
characterization of the local effective field environment in the PCD sample. Our studies conclude that the
zero-field spectral features of the single NV centers in PCD sample are dominated by the effect of local strain
fields rather than by the effect of local charges. Finally, we introduce a theoretical model of the magnetic
dipole transitions that provides an improved understanding of the polarization response [30] of the
hyperfine spin transitions at zero magnetic field.

2. Theory

NV centers in diamond can exist in three charge states: neutral NV0, positively charged NV+, and negatively
charged NV− states with different optical and spin properties [7, 32]. NV−, hereafter referred to as NV for
brevity, is a paramagnetic S= 1 defect with two unpaired electrons in its ground and excited state. In the
ground state, thems = 0 and degeneratems =±1 spin sublevels are split by D= 2.87GHz, which is the fine
structure splitting originating from the dipolar spin–spin interaction [33]. A bias (or an external) magnetic
field further splits the degeneratems =±1 states due to the Zeeman interaction. The magnitude of the
separation between the two states is proportional to the component of the applied magnetic field along the
NV direction, and hence can be used for sensing small dc magnetic fields. However, when no external bias
magnetic field is applied, the electric field originating from charge impurities and the strain field arising
from local lattice deformations couples the otherwise degeneratems =±1 states, leading to the mixing and
splitting of thems =±1 states. These two local intrinsic fields are collectively named as the effective field (Π)
because they both arise from electronic interactions [29] that contribute to the variation of the spatial
distribution of the electron density around the NV center. Moreover, the NV ground state spin is also
coupled via the hyperfine interaction to the nuclear spin bath composed of the native nitrogen nuclear 14N
spin and naturally occurring nuclear 13C spin impurities. In this study, we use an NV center coupled to its
intrinsic 14N spin to probe its local environment and demonstrate that the high-resolution, low-power
optically detected electron spin resonance (ESR) spectroscopy can extract information about the spatial
dependence of the axial and the transverse components of the effective field.

The ground state spin Hamiltonian Ĥ of the NV center in the presence of the intrinsic effective field and
the axial hyperfine field can be expressed as [34]:

Ĥ= DŜ2z +AHFŜz Îz +Π∥Ŝ
2
z +Πx

(
Ŝ2x − Ŝ2y

)
+Πy

(
ŜxŜy + ŜyŜx

)
(1)

where D= 2.87GHz is the zero-field splitting parameter, AHF =−2.14MHz is the axial hyperfine coupling
parameter, Î= (̂Ix, Îy, Îz) is the dimensionless nuclear spin-1 vector operator of the host 14N spin,
Ŝ= (Ŝx, Ŝy, Ŝz) is the dimensionless NV electronic spin-1 vector operator andΠ= (Πx,Πy,Π∥) is the
effective field vector expressed in the NV coordinate frame (xyz) where z denotes the NV axis and x lies in
one of the symmetry planes as shown in figure 1(a). The axial and non-axial components of the effective field
are represented as Π∥ = d∥Ez +Mz and Πx,y = d⊥Ex,y +Mx,y where E= (Ex,Ey,Ez) is the electric field vector
and d∥ = 0.35Hz cmV−1 and d⊥ = 17Hz cmV−1 are the axial and transverse electric field susceptibilities,
respectively [3]. Here,Mz andMx,y are the spin-strain interaction parameters that further depend on the
spin-strain susceptibilities and, unlike electric field susceptibilities, are of comparable magnitude (refer to [4]
for more details).

Since the effective field introduces a coupling between thems =±1 spin states with the same hyperfine
projection, the Hamiltonian in the equation (1) can also be rewritten as:

ĤmI = (D+Π∥)Î+Πxσ̂
mI
x +Πyσ̂

mI
y +mIAHFσ̂

mI
z (2)

where Î denotes the identity operator and σ̂mI
x , σ̂mI

y and σ̂mI
z denote the Pauli operators in the subspace

{|ms,mI⟩}= {|+ 1,mI⟩; | − 1,mI⟩} [34]. Here,ms = 0,±1 andmI = 0,±1 are the eigenvalues of the Ŝz and
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Figure 1. (a) Coordinate system of the negatively charged NV center in diamond, where the z-axis is parallel to the NV axis. The
blue sphere and the light gray sphere represents the NV center. The green vector represents the intrinsic effective field acting at the
NV site. The red vector represents the microwave (MW) magnetic field used to manipulate the NV spin. The blue vector
represents the external magnetic field. (b) Energy-level diagram for the NV center in diamond, showing the shifts and splittings of
the energy levels of the electron-nuclear spin system due to the effective field interaction term in the Hamiltonian. The energy
levels are plotted in three different parameter regimes: (i)Π⊥ =Π∥ = 0, (ii) |AHF| ≫Π⊥,Π∥ and (iii) |AHF| ⩽Π⊥,Π∥. (c) The
MW antenna in a cross-wire configuration is used to drive the NV centers. This configuration enabled us to drive hyperfine
resolved transitions of NV centers with two different orientations of the MWmagnetic field relative to the NV quantization axis.

Îz operators, respectively. Solving Hamiltonian (2) gives the eigenenergies of the hyperfine states in the
presence of the intrinsic effective field as:

E−,0 = D+Π∥ −Π⊥, (3a)

E+,0 = D+Π∥ +Π⊥, (3b)

E−,+1 = D+Π∥ −
√
Π2

⊥ + |AHF|2, (3c)

E+,+1 = D+Π∥ +

√
Π2

⊥ + |AHF|2, (3d)

E−,−1 = D+Π∥ −
√
Π2

⊥ + |AHF|2, (3e)

E+,−1 = D+Π∥ +

√
Π2

⊥ + |AHF|2, (3f )

where Π⊥ =
√
Π2

x +Π2
y and Π∥ =Π∥ are the transverse and parallel effective field amplitudes, respectively.

The associated hyperfine eigenstates can be written in the uncoupled basis |ms,mI⟩= |ms⟩⊗ |mI⟩ as follows:

|−,0⟩= |−⟩0 ⊗ |0⟩= 1√
2

(
|+ 1⟩− eiϕΠ | − 1⟩

)
⊗ |0⟩, (4a)

|+,0⟩= |+⟩0 ⊗ |0⟩= 1√
2

(
|+ 1⟩+ eiϕΠ | − 1⟩

)
⊗ |0⟩, (4b)
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|−,+1⟩= |−⟩+1 ⊗ |+ 1⟩=
(
sin

θΠ
2
|+ 1⟩− eiϕΠ cos

θΠ
2
| − 1⟩

)
⊗ |+ 1⟩, (4c)

|+,+1⟩= |+⟩+1 ⊗ |+ 1⟩=
(
cos

θΠ
2
|+ 1⟩+ eiϕΠ sin

θΠ
2
| − 1⟩

)
⊗ |+ 1⟩, (4d)

|−,−1⟩= |−⟩−1 ⊗ |− 1⟩=
(
cos

θΠ
2
|+ 1⟩− eiϕΠ sin

θΠ
2
| − 1⟩

)
⊗ |− 1⟩, (4e)

|+,−1⟩= |+⟩−1 ⊗ |− 1⟩=
(
sin

θΠ
2
|+ 1⟩+ eiϕΠ cos

θΠ
2
| − 1⟩

)
⊗ |− 1⟩, (4f )

where θΠ and ϕΠ are the angles which satisfy the relations:

cosθΠ =
−|AHF|√

Π2
⊥ + |AHF|2

, (5a)

cosϕΠ =
Πx

Π⊥
. (5b)

We note that the hyperfine eigenstates labeled with |0⟩mI = |0,mI⟩ remain three-fold degenerate as their
eigenenergies are not altered by the presence of the intrinsic effective fields. We can make the following
conclusions regarding the nature of the mixed states and the theoretically expected ODMR spectra for
samples experiencing different magnitudes of transverse effective field:

• Case 1: Π⊥ ≪ |AHF|
When the hyperfine coupling between the NV spin and the 14N nucleus is much larger than the transverse
component of the effective field, the states |ms =±1,mI = 0⟩ couple to form two new eigenstates with a
splitting of 2Π⊥. In contrast, the mixing of the states | − 1,+1⟩ & |+ 1,+1⟩ and | − 1,−1⟩ & |+ 1,−1⟩
due to the effective field is suppressed by the hyperfine coupling parameter AHF. Hence, the outer transition
frequencies are not affected by the effective field, i.e. the hyperfine projections with the samemI are simply
split by 2|AHF| as it is for the case of the Hamiltonian without the effective field (refer figure 1(b)).

• Case 2: Π⊥ ≳ |AHF|
If the transverse component of the effective field is comparable to the hyperfine splitting, the states
| − 1,+1⟩ & |+ 1,+1⟩ and | − 1,−1⟩ & |+ 1,−1⟩ also couple to form two new eigenstates with a split-
ting of 2

√
Π2

⊥ + |AHF|2. Relations defined in equations (4c)–(4f ) show that the mixing between the states
depends not only on the azimuthal angle ϕΠ of the transverse effective field, but also on the angle θΠ which
quantifies the relative strengths of hyperfine interaction and transverse effective field.

3. Experiments

3.1. Description of the experimental setup
We used a home-built confocal microscopy setup to optically address the single NV centers in diamond at
room temperature. A 532 nm green laser was used to excite the diamond through a high numerical-aperture
(NA) oil immersion microscope objective (Olympus, 100× NA= 1.40). The red fluorescence emitted by the
single NV centers is collected by the same objective lens and then focused through a pinhole of 50 microns
diameter before being detected by a single photon counting module. A signal generator (Keysight N5171B) is
used as a source for generating MW fields and the MW fields are amplified with the help of an MW amplifier
(Mini-Circuits, ZHL-16 W-43-S+). The MW fields were applied to the NV centers through two 25µm thick
copper wires arranged in a cross-configuration as shown in figure 1(c), bridged across the diamond surface
[35].

In order to perform experiments in the zero magnetic field regime, the cancellation of the stray magnetic
field acting along the NV defect axis was performed with the help of a neodymium (NdFeB) permanent
magnet placed on a xyz-stage close to the diamond sample. To understand the influence of the magnetic field
on the NV hyperfine level structure, it is illustrative to resolve the weak field (B< 1G) from the magnet into
components parallel and perpendicular to the NV symmetry axis. The ESR frequencies of the NV spin
around zero magnetic field are much more susceptible to the axial magnetic fields than the transverse
magnetic fields [36] (see appendix F for more information). As a result, the parallel component is strong
enough to couple to the NV spin, while the perpendicular component is not strong enough to yield a
significant second order shift of the NV spin energies. Hence, the permanent magnet can be aligned to a
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desired orientation such that it is magnetic field nearly cancels the stray magnetic field acting along the NV
axis. At the same time, the transition energies of individual NV centers will be minimally affected by the
magnetic fields transverse to the NV axis. For every NV center investigated in this work, we applied this
method to obtain a series of hyperfine spectra and the spectra were fitted to estimate the value of the residual
axial magnetic field.

3.2. High-resolution spectroscopy
We investigated single NV spins in a type-IIa PCD sample and type-Ib single crystal diamond sample to
compare our experimental measurements with theoretical calculations. The discussed features regarding the
coupling of the hyperfine states due to the effective field are present in the magnetic spectra of the single NV
spins in these samples. We used the ODMR technique to study the ground-state electron spin transitions and
to resolve the anti-crossings between the hyperfine levels, which arise from the interaction of the electron
spin with the effective fields that are intrinsic to the diamond lattice. High resolution ODMR spectra [28]
were obtained by sweeping the linearly polarized microwave frequency across the hyperfine spin sublevel
transitions of the NV center (refer to appendix H for more detail). We performed a systematic study of
several single NV defects coupled to the effective field and measured coupling strengths as small as 500 kHz.
For resolving such a weak effective field interaction, the power broadening of the ESR linewidth was
suppressed by the application of a long resonant microwave π-pulse to the NV defect in the dark conditions.
When the π-pulse duration is on the order of the inhomogeneous dephasing time T∗

2 , the ESR linewidth
(Γ∗

2 ∝ T∗−1
2 ) is on the order of a few hundreds of kHz. ODMR spectra were fitted with an appropriate

number of Gaussian functions to obtain the ESR transition frequencies. Subsequently, we used the extracted
frequency values to determine the Hamiltonian parameters Π⊥ and Π∥ from the eigenvalue equations (3c)
by applying the least square method.

3.2.1. Zero-field spectroscopy
Figure 2(a) shows our high-resolution spectroscopy study of the effective field for a single NV center at zero
magnetic field in a PCD sample, in which the spectrum is expected to be dominated by the effect of local
strain [26]. Four distinct features are seen in the ODMR spectrum, corresponding to two two-fold
degenerate outer hyperfine transitions and two inner non-degenerate hyperfine transitions. As discussed in
section 2, the two central resonances correspond tomI = 0 states with a separation of 2Π⊥ and the outer
resonances correspond tomI =±1 states with a separation 2

√
Π2

⊥ + |AHF|2 owing to the presence of a large
transverse effective field in the diamond sample. Moreover, the splittings of the hyperfine states are
accompanied by a common-mode shift of all nuclear spin projections due to the presence of an axial effective
field Π∥. The spectra obtained are in very good agreement with our theoretical calculations, where the outer
transitions are also mixed due to the presence of a large effective field (i.e. Π⊥ > |AHF|). The transverse
effective field and the axial effective field extracted from the data shown in figure 2(a) are Π⊥ = 4.20MHz
and Π∥ = 4.32MHz, respectively.

We also performed similar measurements on a single NV defect in an untreated type-Ib diamond, and
the recorded ODMR spectra are shown in figure 2(b). By analyzing the experimental data, we find
Π⊥ = 500 kHz and Π∥ = 50 kHz. Hence, we note that that only the pair of inner transitions is significantly
affected by the interaction of the NV spin with the effective field, as they are more susceptible to transverse
effective fields than the outer transitions. Unlike the case of a strained type-IIa PCD sample, the observed
zero-field spectral features of a single NV center in a type Ib sample are attributed to the local electric field
[29] generated by the charge environment of the diamond lattice.

The transition strengths observed in the high-resolution ODMR spectra depend on the overlap between
the polarization of the applied microwave magnetic field and the magnetic dipole moment of the hyperfine
spin transitions (see appendix C). The normalized transition strengths of the inner and outer transitions for
a linearly polarized microwave field are given by:

W±,0 =
1

2
[1± cos(2ϕmw −ϕΠ)] , (6a)

W−,±1 =
1

2
[1− sinθΠ cos(2ϕmw −ϕΠ)] , (6b)

W+,±1 =
1

2
[1+ sinθΠ cos(2ϕmw −ϕΠ)] , (6c)

whereW−,0 andW+,0 are the normalized transition strengths corresponding to the transitions
|0,0⟩ → |−,0⟩ and, |0,0⟩ → |+,0⟩ respectively. Similarly,W−,+1,W+,+1,W−,−1 andW+,−1 are the
normalized transition strengths corresponding to the transitions |0,+1⟩ → |−,+1⟩, |0,+1⟩ → |+,+1⟩,
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Figure 2. High-resolution ODMR spectra of a single NV centers in PCD and type Ib diamond samples. Data points represent
around 0.8million repetitions of the ESR pulse sequence for figure (a), around 2.2million repetitions for figure (b) and around
2.5million repetitions for figure(c). In a single repetition of the pulse sequence, typically, 0.052 photons are collected for each
frequency point (refer to appendix H for more details). The characteristic standard error of the fluorescence measurement is
around 0.4% for all the plots. (a) High-resolution ODMR spectrum of a single NV center experiencing a large strain in the PCD
sample. The spectrum shows a large shifting and splitting of both the inner and the outer transitions. The transverse effective field
induces a splitting of 2Π⊥ ≈ 8.38 MHz, while the axial effective field induces a common-mode shift ofΠ∥ ≈ 4.32 MHz in the
hyperfine energy levels. The observed values of the imbalance for the outer and inner hyperfine resonances are Iouter ≈ 37.4%
and Iinner ≈ 50.8% respectively. (b) High-resolution ODMR spectrum of a single NV center in a type Ib diamond sample. The
central line is shifted byΠ∥ ≈ 50 kHz and is further split by 2Π⊥ ≈ 500 kHz with a transition imbalance of Iinner ≈ –19.8%. For
type Ib samples, the presence of the electric fields originating from charge impurities leads to a splitting and imbalance of the

inner hyperfine resonances. For the outer transitions, the additional splitting (2
√

Π2
⊥ + |AHF|2 − 2|AHF|) and transition

imbalance (∝ sinθΠ) induced by the electric field is hardly discernible because |AHF| ≈ 10Π⊥. The negligible mixing of the outer
states also means that the outer transitions exhibit a purely circularly polarized response. (c) Dark-state ODMR spectroscopy of a
single NV center in a PCD sample. The green arrow shows the expected position of the perfect dark state, which does not interact
with the microwave magnetic field. Here, the overall spectrum experiences a common-mode shift ofΠ∥ ≈−1.85 MHz and the
central transition is expected to be split by 2Π⊥ ≈ 3.3 MHz.

|0,−1⟩ → |−,−1⟩ and |0,−1⟩ → |+,−1⟩ respectively. Here, ϕmw and ϕΠ are the azimuthal angles in the
xy-plane (see figure 1(a)), and θΠ satisfies the relation (5a). Since the outer transitions are degenerate, the
normalized transition strengths for the outer transitions add together, resulting in twice the ODMR
fluorescence contrast compared to a single transition. The transition imbalances [29, 30] of the inner and the
outer hyperfine resonances are given by:

Iinner = cos(2ϕmw −ϕΠ), (7a)

Iouter = sinθΠ cos(2ϕmw −ϕΠ). (7b)

This explains the measured difference in the relative strength of the two inner transitions and the two
outer transitions, which is clearly seen in the data shown in the figure 2(a), where all the four resolvable
transitions show different transition strengths. In contrast, for the data presented in figure 2(b), the
transition imbalance is observed only for the central transitions and not for the two outer transitions.

According to the equations (6), the transition strengths of the inner and outer hyperfine spin transitions
under driving by a linearly polarized MWmagnetic field oscillate as a function of the relative azimuthal
angles ϕΠ and ϕmw. Hence, by characterizing the effective fields of several single NV centers, we found an NV
center for which the normalized coupling strength between the |0,0⟩ and |−,0⟩ states is∼1 resulting in the
formation of a perfectly bright state and a perfectly dark state. The ODMR spectroscopy data shown in the
figure 2(c) [37] corresponds to one such NV center for which the linearly polarized microwave field does not
interact with the transition magnetic dipole moment between the states |0,0⟩ and |+,0⟩. Hence, the effective
field mixes the original | ± 1,0⟩ states into perfectly bright and dark states |B⟩= |−,0⟩ and |D⟩= |+,0⟩
states respectively and the transitions |0,0⟩ → |B⟩ and |0,0⟩ → |D⟩ show the familiar linearly polarized
response. In contrast, for the outer transitions under the same experimental conditions, the transition
strengths are observed to be non-zero, which is ultimately linked to the elliptically polarized response [30] of
the transitions |0,±1⟩ → |±,±1⟩. We note that the fully bright and dark states can still be observed for the
outer transitions via excitation with an elliptically polarized microwave field of suitably chosen ellipticity (see
figure C1 of appendix C).

3.3. Relation between Rabi frequencies and transition strengths
We performed Rabi oscillation experiments at zero magnetic field to determine the transition dipole
moment for each of the four hyperfine transitions under the same experimental conditions, i.e. with the
same MW and laser power, to compare the driving strengths of the involved ODMR transitions. By
selectively driving each of the hyperfine resolved transitions with low microwave power, we measured the
Rabi oscillations of all the four resonances of the ODMR spectrum shown in the inset of the figure 3. We
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Figure 3. Rabi oscillation experiments performed to determine the transition strengths for each of the four hyperfine resonances
of the pulsed ODMR spectrum presented in the inset of the figure. The Rabi frequencies of the four different transitions estimated
from the experimental data satisfy the relationΩ2

1 +Ω2
4 =Ω2

2 +Ω2
3 to a good approximation, where the Rabi frequenciesΩ1 and

Ω4 correspond to the two outer transitions and the Rabi frequenciesΩ2 andΩ3 correspond to the two inner transitions. The
characteristic standard error of the fluorescence measurement is around 0.02% for all the plots.

observed long-living coherent Rabi oscillations for the NV spins hosted in a highly strained PCD sample. The
presence of large strain decouples the transitions from magnetic field fluctuations, thereby decreasing the
rate of the Rabi oscillations decay time [38, 39]. The relation between the Rabi frequencies of the four
different hyperfine transitions is given by the equation (refer to appendix C for more information):

Ω2
1 +Ω2

4 =Ω2
2 +Ω2

3 (8)

where Ω1, Ω2, Ω3, and Ω4 are the respective Rabi frequencies of the hyperfine resonances 1, 2, 3 and 4 as
marked in the inset of the figure 3. The experimental values for Ω1, Ω2, Ω3, and Ω4 satisfy the theoretical
relation (8) within 4% error. Note that although the degeneracy of the outer transitions results in a
summation of the transition strengths formI =±1 hyperfine projections as observed in the p-ODMR
spectra, the measured Rabi frequencies Ω1 and Ω4 of the hyperfine spin transitions should not be affected by
the degeneracy.

3.4. Spectroscopy around zero magnetic field
The Hamiltonian in equation (2) gets modified in the presence of an axial magnetic field and its matrix
representation becomes:

HmI =

[
(D+Π∥)+mIAHF + γBz Π⊥e−iϕΠ

Π⊥eiϕΠ (D+Π∥)−mIAHF − γBz

]
. (9)

When there is no perturbation (i.e. Π⊥ = 0), the off-diagonal matrix elements of the above Hamiltonian
vanish and the eigenvalues of the resulting Hamiltonian will be E±,mI = (D+Π∥)± (mIAHF + γBz), where
mI ∈ {−1,0,+1}. This results in a linear Zeeman splitting between the states |+ 1,mI⟩ and | − 1,mI⟩. The
simulated transition frequencies for this case are shown by gray dashed lines in figure 4(a), where the levels
cross at axial magnetic fields given by Bz =mI|AHF|/γ in the absence of perturbation. However, when the
Hamiltonian possesses non-diagonal matrix elements, i.e. for the case Π⊥ ̸= 0, the energies of the two
perturbed levels are given by E±,mI = (D+Π∥)±

√
(mIAHF + γBz)2 +Π2

⊥. In other words, the perturbation
mixes and splits the states | ± 1,mI⟩, and the level repulsion or anti-crossing is observed with the minimum
separation between the perturbed energy levels being 2Π⊥. Colored plots in figure 4(a) shows the simulated
transition frequencies in the presence of the coupling 2Π⊥. The colored arrows illustrate the values of the
axial magnetic field Bz =mI|AHF|/γ at which the level anti-crossings (LACs) are observed between the states
| ± 1,mI⟩.

In the following, we discuss the spectroscopy experiments performed around zero magnetic field. The
p-ODMR spectra were recorded as a function of the decreasing axial magnetic field on the same NV center,
whose zero field spectra was presented in figure 2(a). This procedure not only served the purpose of zeroing
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Figure 4. (a) Simulation plots of six possible transition frequencies from |0⟩mI to |±⟩mI as a function of axial magnetic field for an
NV center, with the effective field parameters beingΠ⊥ = 4.19MHz andΠ∥ = 4.32MHz. The gray dashed lines correspond to
the transition frequencies in the absence of a transverse effective field, i.e. atΠ⊥ = 0MHz andΠ∥ = 4.32MHz. The colored
arrows show the values of the axial magnetic field Bz = mI|AHF|/γ wheremI ∈ {−1,0,+1} at which the level anti-crossings
(LACs) occur between the states |ms =−1,mI = 0,±1⟩ and |ms =+1,mI = 0,±1⟩ due to the interaction with the transverse
effective field. (b) Experimental ODMR spectra for selected values of axial magnetic field Bz . (c) High-resolution spectrum of a
single NV center in a PCD sample near the LAC γBz ≈ |AHF| (purple spectrum shown in figure 4(b)), showing the mixing and
splitting of themI =+1 transitions induced by the interaction with the effective field. The measurement was repeated around
1.5million times to improve the signal-to-noise ratio (SNR). The characteristic standard error of the fluorescence measurement is
around 0.4%.

the axial component of the magnetic field, but also enabled us to perform high-resolution ODMR
measurements in the vicinity of the transition crossings and anti-crossings. Figure 4(b) shows the
experimental p-ODMR spectra acquired for various values of the axial magnetic field Bz. The anti-crossings
at Bz = 0 and Bz = |AHF|/γ can be visualized in the spectra shown in blue (first from bottom, which is the
same data shown in figure 2(a)) and purple (fifth from bottom) respectively. The p-ODMR spectrum
acquired at Bz ≈ |AHF|/γ is presented in more detail in figure 4(c) and the spectrum shows a clear mixing
and splitting of the states | ± 1,+1⟩.

3.5. Characterization of the PCD
Having established our high-resolution spectroscopy technique to measure both the parallel and
perpendicular components of the effective field of a single NV spin, we now apply this method to
characterize the effective field environment surrounding NV spins in different regions of the diamond
sample. The observations are as follows:

• The data of figure (5) shows the effective field environment experienced by a selection of single NV cen-
ters over a distance of 10µm from the grain boundary, which is the highly fluorescent region (marked in
figures 5(b) and 6(b)) formed at the interface of two crystal grains in the PCD sample. The splitting 2Π⊥
and the shifting Π∥ for the individual NV centers are of comparable magnitude. Hence, we conclude that
the effective field in a PCD sample is dominated by the strain field rather than by the electric field [29].

• The stark variation in the effective field values Π⊥ and Π∥ experienced by different NVs located near the
grain boundary suggest that there is a strong gradient of the strain field in this region. Strain gradients in a
PCD sample was first shown by Trusheim and Englund [26] using wide-field microscopy technique.

8
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Figure 5. (a) Statistical investigation of the intrinsic effective fields of a selection of single NVs near the grain boundary in a PCD
sample. The statistical average value ofΠ⊥ is 1.35MHz and that ofΠ∥ is 2.16MHz, which are of the same order of magnitude.
These observations indicate that the strain field is the dominant source of the effective field near the grain boundary. (b) 14µm×
18µm confocal scan of the PCD sample showing some of the examined NVs close to the grain boundary.

Figure 6. (a) CW ODMR spectra of NV1 and NV2, showing the negative and positive shifting of the overall spectrum by
≈5.31MHz and≈3.29MHz respectively from 2.87GHz. (b) 23µm× 23µm confocal scan of the PCD sample showing the
highly fluorescent grain boundary and single NV centers on either side of it. The two NVs are marked in red circles.

• We also performed high-resolution spectroscopy on single NVs located far away from the grain boundary
(>20 µm). In this region, we found that there is a negligible spatial variation of the effective field parameters
(data not shown).

• We also performed continuous wave (CW) ODMR measurements on NV centers located near the grain
boundary. Figure 6(a) displays the CW ODMR spectrum of two NVs with same orientation, showing pos-
itive and negative shift of the overall spectrum.

4. Conclusion

We have presented a study of the ground-state hyperfine spin level structure of NV defects in diamond in the
presence of intrinsic effective fields and external magnetic fields. Apart from resolving hyperfine splitting
using pulsed ESR spectroscopy, we have experimentally verified the previously unreported ESR features of
mixing and splitting of the outer hyperfine transitions resulting from the interactions with the strain
component of the effective field. We have observed good agreement between magnetic field-dependent
ODMR fluorescence measurements and a simple theoretical model. These studies also enabled us to
experimentally measure previously unobserved transition imbalances for themI =±1 hyperfine projections
of the NV center. Finally, we have also developed a theoretical model that explores the interplay between the
elliptical polarization of the microwave drive and the polarization response of the hyperfine spin transitions.
Thus, we have investigated an unexplored regime Π⊥ ⩾ |AHF| in which the effects due to the intrinsic
effective field and the hyperfine interaction are of comparable order.

Our studies open the door to a number of interesting research directions. First, our studies provide an
in-depth understanding of the polarization selectivity of the hyperfine resonances depending on the
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ellipticity of the microwave excitation. This is of particular relevance for polarization-selective microwave
excitation of NV centers in diamond samples for zero-field sensing applications. Second, single NV ODMR
spectra of untreated type-Ib diamond we report on here provide clear signatures of the split-peak imbalance
of the central transition with improved signal-to-noise ratio. Laser excitation wavelength dependent ODMR
studies of single NV centers in these samples could provide valuable insight into the properties of the
NV−–N+ pairs in diamond [40]. Third, our studies demonstrate the viability of hyperfine resolved
microwave spectroscopy of a single NV center for atomic-scale resolution strain imaging in diamond with
high sensitivity, which represents an advance over the earlier work on wide-field strain imaging [26].
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Appendix A. Arbitrarily (elliptically) polarized microwave fields

In order to achieve full microwave polarization control of the coupling strength between the |0⟩mI and |±⟩mI

states, we theoretically investigate the magnetic resonance spectrum obtained by driving the electron spin
transitions from the |0⟩mI to the |±⟩mI states using an arbitrarily (elliptically) polarized microwave field
Bmw(t) (see figure A2). Here, we note that the z component of the microwave field Bmw

∥ does not induce

magnetic dipole transitions between the states |0⟩mI and |±⟩mI . The most general expression for the
microwave field vector Bmw

⊥ (t) perpendicular to the NV symmetry axis can be written using the parameters
ϕmw and ϵmw as [42]:

Bmw
⊥ (t) = Bmw

⊥ [cosϵmw(cosϕmwex + sinϕmwey)cosωt

+ sinϵmw(− sinϕmwex + cosϕmwey) sinωt] (A.1)

where the parameter ϵmw =±arctan
(
b
a

)
is known as the ellipticity angle as shown in figure A1. The time

evolution of the magnetic field vector traces out an ellipse in the xy plane with a and b being the length of the
semi-major and semi-minor axes of the ellipse, and the parameter ϕmw is the angle the major axis of the
ellipse makes with the x-axis. By introducing the parameter λmw, we can also parametrize the microwave
magnetic field Bmw

⊥ (t) in terms of the ratio of the amplitudes of the left-circularly polarized microwaves (σ+)
and the right-circularly polarized microwaves (σ−) as:

Bmw
⊥ (t) = Bmw

⊥,σ+(t)+Bmw
⊥,σ−(t)

= cos
(π
4
− ϵmw

)(Bmw
⊥√
2
[cos(ωt+ϕmw)ex + sin(ωt+ϕmw)ey]

+λmw
Bmw
⊥√
2
[cos(ωt−ϕmw)ex − sin(ωt−ϕmw)ey]

)
(A.2)

where the parameter λmw is related to ϵmw by λmw = tan(π4 − ϵmw).
Three special cases are of particular significance according to the equations (A.1) and (A.2):

(a) Linearly polarized microwaves corresponding to ϵmw = 0 or λmw = 1 gives:

Bmw
⊥ (t) = Bmw

⊥ (cosϕmwex + sinϕmwey)cosωt. (A.3a)
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Figure A1. The elliptical path (red) traced by the MW field vector for any arbitrary (elliptical) polarization. a and b are the lengths
of the semi-minor and semi-major axes of the ellipse, respectively.

Figure A2. (a) The Poincare sphere representing the polarization states of the microwaves propagating in the z-direction with its
magnetic field vector lying in the x− y plane. The microwave polarization states are mapped to the Stokes parameters (S1,S2,S3)
on the surface of a unit Poincare sphere using the azimuthal angle ϕmw and the ellipticity angle ϵmw . The antipodal points of the
sphere represent a pair of mutually orthogonal polarization states. Points on the equatorial circle represent linearly polarized
microwaves, and the points at the poles correspond to circularly polarized microwaves. All other points of the unit sphere indicate
elliptical polarization states. (b) The Bloch sphere representation of the six NV electron spin states described in equation (4) of
the main text. The Bloch sphere is spanned by the two states | ± 1⟩. Any general superposition state of |+ 1⟩ and | − 1⟩ can be

defined by the equation |ψ(θ,ϕ)⟩= cos
(

θ
2

)
|+ 1⟩+ eiϕ sin

(
θ
2

)
| − 1⟩, where θ and ϕ are the polar and azimuthal angles

respectively. The transverse effective field experienced by a single NV can be parametrized using the angles θΠ and ϕΠ. The six
colored dots, corresponding to the six possible electron spin states, are present on the same great circle of the Bloch sphere. The
transitions corresponding to the two states lying on the equator exhibit linearly polarized response, whereas the response is
elliptically polarized for the remaining four states.
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(b) Left-circularly polarized microwaves (σ+) corresponding to λmw = 0 or ϵmw = π
4 gives:

Bmw
⊥ (t) =

Bmw
⊥√
2
[cos(ωt+ϕmw)ex + sin(ωt+ϕmw)ey]. (A.3b)

(c) Right-circularly polarized microwaves (σ−) corresponding to ϵmw =−π
4 give:

Bmw
⊥ (t) =

Bmw
⊥√
2
[cos(ωt−ϕmw)ex − sin(ωt−ϕmw)ey]. (A.3c)

Appendix B. Derivation of the rotating frame Hamiltonian

The general Hamiltonian of the magnetic dipole moment µ̂=−γŜ interacting with the elliptically polarized
microwave control field is described as follows:

Ĥmw(t) = γ(Bmw
⊥,σ+(t)+Bmw

⊥,σ−(t)) · Ŝ

= cos
(π
4
− ϵmw

)( Ω√
2
[cos(ωt+ϕmw)Ŝx + sin(ωt+ϕmw)Ŝy]

+λmw
Ω√
2
[cos(ωt−ϕmw)Ŝx − sin(ωt−ϕmw)Ŝy]

)
(B.1)

where Ω= γBmw
⊥ is the Rabi frequency and ω is the frequency of the microwave. In the Ŝz basis

{|+ 1⟩, |0⟩, | − 1⟩}, Ŝx and Ŝy being the x and y components of the spin-1 vector operator Ŝ are described as
[35]:

Ŝx =
1√
2

0 1 0
1 0 1
0 1 0

 , Ŝy =
1√
2

0 −i 0
i 0 −i
0 i 0

 . (B.2)

The matrix representation for the Hamiltonian in the basis {|+ 1⟩, |0⟩, | − 1⟩} is given by:

Ĥmw(t) = cos
(π
4
− ϵmw

)Ω
2

 0 e−i(ωt+ϕmw) 0
ei(ωt+ϕmw) 0 e−i(ωt+ϕmw)

0 ei(ωt+ϕmw) 0



+ cos
(π
4
− ϵmw

)Ω
2

 0 λmw ei(ωt−ϕmw) 0
λmw e−i(ωt−ϕmw) 0 λmw ei(ωt−ϕmw)

0 λmw e−i(ωt−ϕmw) 0

 . (B.3)

By making a transformation to the rotating frame Û= e−iωtŜ2z , the transformed Hamiltonian has the form:

Ĥ ′mw(t) = Û†Ĥmw(t)Û

= cos
(π
4
− ϵmw

)Ω
2

 0 e−iϕmw 0
eiϕmw 0 e−i(2ωt+ϕmw)

0 ei(2ωt+ϕmw) 0


+ sin

(π
4
− ϵmw

)Ω
2

 0 e−i(ϕmw−2ωt) 0
ei(ϕmw−2ωt) 0 e−iϕmw

0 eiϕmw 0

 (B.4)

where we used the relation λmw = tan(π4 − ϵmw). Neglecting all the time dependent terms rotating at 2ω
(rotating wave approximation), the final MWHamiltonian [43] takes the form:

Ĥ ′mw =
Ω

2

 0 cos
(
π
4 − ϵmw

)
e−iϕmw 0

cos
(
π
4 − ϵmw

)
eiϕmw 0 sin

(
π
4 − ϵmw

)
e−iϕmw

0 sin
(
π
4 − ϵmw

)
eiϕmw 0


=

Ω

2

[
cos

(π
4
− ϵmw

)
e−iϕmw |1⟩⟨0|+ sin

(π
4
− ϵmw

)
eiϕmw | − 1⟩⟨0|

]
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+
Ω

2

[
sin

(π
4
− ϵmw

)
e−iϕmw |0⟩⟨−1|+ cos

(π
4
− ϵmw

)
eiϕmw |0⟩⟨1|

]
=

Ω

2

[
cos

(π
4
− ϵmw

)
e−iϕmw |1⟩+ sin

(π
4
− ϵmw

)
eiϕmw | − 1⟩

]
⟨0|+H.c (B.5)

where H.c. is the Hermitian conjugate.

Appendix C. Magnetic dipole transition strengths

At zero field, the Rabi frequencies corresponding to the magnetic dipole transitions |0⟩mI → |±⟩mI are:

Ω±,mI = 2π|⟨±,mI|Ĥ′mw|0,mI⟩|.

So, the six hyperfine spin transition strengths under driving by an arbitrarily polarized microwave field are
given by:

A−,0 =Ω2
−,0 = (2π)2

(
Ω

2

)2 ∣∣∣∣ 1√
2
cos

(π
4
− ϵmw

)
− 1√

2
sin

(π
4
− ϵmw

)
ei(2ϕmw−ϕΠ)

∣∣∣∣2
= (2π)2

(
Ω

2

)2

W−,0, (C.1a)

A+,0 =Ω2
+,0 = (2π)2

(
Ω

2

)2 ∣∣∣∣ 1√
2
cos

(π
4
− ϵmw

)
+

1√
2
sin

(π
4
− ϵmw

)
ei(2ϕmw−ϕΠ)

∣∣∣∣2
= (2π)2

(
Ω

2

)2

W+,0, (C.1b)

A−,+1 =Ω2
−,+1 = (2π)2

(
Ω

2

)2 ∣∣∣∣sin(θΠ
2

)
cos

(π
4
− ϵmw

)
− cos

(
θΠ
2

)
sin

(π
4
− ϵmw

)
ei(2ϕmw−ϕΠ)

∣∣∣∣2
= (2π)2

(
Ω

2

)2

W−,+1, (C.1c)

A+,+1 =Ω2
+,+1 = (2π)2

(
Ω

2

)2 ∣∣∣∣cos(θΠ
2

)
cos

(π
4
− ϵmw

)
+ sin

(
θΠ
2

)
sin

(π
4
− ϵmw

)
ei(2ϕmw−ϕΠ)

∣∣∣∣2
= (2π)2

(
Ω

2

)2

W+,+1, (C.1d)

A−,−1 =Ω2
−,−1 = (2π)2

(
Ω

2

)2 ∣∣∣∣cos(θΠ
2

)
cos

(π
4
− ϵmw

)
− sin

(
θΠ
2

)
sin

(π
4
− ϵmw

)
ei(2ϕmw−ϕΠ)

∣∣∣∣2
= (2π)2

(
Ω

2

)2

W−,−1, (C.1e)

A+,−1 =Ω2
+,−1 = (2π)2

(
Ω

2

)2 ∣∣∣∣sin(θΠ
2

)
cos

(π
4
− ϵmw

)
+ cos

(
θΠ
2

)
sin

(π
4
− ϵmw

)
ei(2ϕmw−ϕΠ)

∣∣∣∣2
= (2π)2

(
Ω

2

)2

W+,−1, (C.1f )

where:

cosθΠ =
−|AHF|√

Π2
⊥ + |AHF|2

andW±,mI are the normalized transition strengths. Therefore, the transition imbalance of the innermI = 0
transitions is given by:

Iinner =
A0,+ −A0,−

A0,+ +A0,−

= sin
[
2
(π
4
− ϵmw

)]
cos(2ϕmw −ϕΠ), (C.2a)
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Table C1. Hyperfine transition strengths at zero magnetic field as a function of the polarization of the microwaves.

Linear polarization σ+ polarization σ− polarization

|0,0⟩ → |−,0⟩ 1
2 (1− cos(2ϕmw −ϕΠ)) 0.500 0.500

|0,0⟩ → |+,0⟩ 1
2 (1+ cos(2ϕmw −ϕΠ)) 0.500 0.500

|0,+1⟩ → |−,+1⟩ 1
2 (1− sinθΠ cos(2ϕmw −ϕΠ)) sin2 θΠ

2 cos2 θΠ
2

|0,+1⟩ → |+,+1⟩ 1
2 (1+ sinθΠ cos(2ϕmw −ϕΠ)) cos2 θΠ

2 sin2 θΠ
2

|0,−1⟩ → |−,−1⟩ 1
2 (1− sinθΠ cos(2ϕmw −ϕΠ)) cos2 θΠ

2 sin2 θΠ
2

|0,−1⟩ → |+,−1⟩ 1
2 (1+ sinθΠ cos(2ϕmw −ϕΠ)) sin2 θΠ

2 cos2 θΠ
2

Table C2.Hyperfine transition strengths at zero magnetic field for two different ellipticity values of the microwave polarization. For
these two ellipticity values, the individualmI =±1 outer transitions can be selectively excited by tuning the azimuthal angle of the
elliptically polarized MW drive relative to the azimuthal angle of the effective field.

ϵ= π
4 − θΠ

2 ϵ=−(π4 − θΠ
2 )

|0,0⟩ → |−,0⟩ 1
2 (1− sinθΠ cos(2ϕmw −ϕΠ))

1
2 (1− sinθΠ cos(2ϕmw −ϕΠ))

|0,0⟩ → |+,0⟩ 1
2 (1+ sinθΠ cos(2ϕmw −ϕΠ))

1
2 (1+ sinθΠ cos(2ϕmw −ϕΠ))

|0,+1⟩ → |−,+1⟩ 1
2 sin

2 θΠ(1− cos(2ϕmw −ϕΠ)) 1− 1
2 sin

2 θΠ(1+ cos(2ϕmw −ϕΠ))

|0,+1⟩ → |+,+1⟩ 1− 1
2 sin

2 θΠ(1− cos(2ϕmw −ϕΠ))
1
2 sin

2 θΠ(1+ cos(2ϕmw −ϕΠ))

|0,−1⟩ → |−,−1⟩ 1− 1
2 sin

2 θΠ(1+ cos(2ϕmw −ϕΠ))
1
2 sin

2 θΠ(1− cos(2ϕmw −ϕΠ))

|0,−1⟩ → |+,−1⟩ 1
2 sin

2 θΠ(1+ cos(2ϕmw −ϕΠ)) 1− 1
2 sin

2 θΠ(1− cos(2ϕmw −ϕΠ))

and the transition imbalance of the outermI =±1 transitions is given by:

Iouter =
A+,±1 −A−,±1

A+,±1 +A−,±1

=±cosθΠ cos
[
2
(π
4
− ϵmw

)]
+ sinθΠ sin

[
2
(π
4
− ϵmw

)]
cos(2ϕmw −ϕΠ). (C.2b)

Since the transition strengths of themI =+1 andmI =−1 substates sum together, the transition
strengths observed for the outer transitions will be:

A− =A−,+1 +A−,−1

= (2π)2
(
Ω

2

)2(
1− sin

[
2
(π
4
− ϵ

)]
sinθΠ cos(2ϕmw −ϕΠ)

)
, (C.3a)

and

A+ =A+,−1 +A+,+1

= (2π)2
(
Ω

2

)2(
1+ sin

[
2
(π
4
− ϵ

)]
sinθΠ cos(2ϕmw −ϕΠ)

)
. (C.3b)

So the imbalance observed for the outer states will be:

Iouter = (A+ −A−)/(A+ +A−)

= sinθΠ sin
[
2
(π
4
− ϵ

)]
cos(2ϕmw −ϕΠ). (C.3c)

The relation between the Rabi frequencies at zero magnetic field can be obtained directly from the
equation (C.1) and is given as:

Ω2
1 +Ω2

4 =Ω2
2 +Ω2

3 (C.4)

where the subscripts 1, 2, 3 and 4 correspond to the transitions marked in the figure D1(b).
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Figure C1. (a) Plots of the normalized transition strengthsW−,mI andW+,mI for linear microwave polarization, as a function of
the MW angle ϕmw for various values of the angle θΠ and given ϕΠ = π

6
. (b) Normalized transition strength of outer transition

|0,−1⟩ → |−,−1⟩ for elliptically polarized MW field as a function of MW angle for various ϵ, where ϕΠ = π
6
and θΠ = 5π

6
. It is

clear from the figure that the normalized transition strength may approach 1 and 0 depending on the ellipticity value. This
suggests that a fully bright and fully dark state is achievable for outer states also when excited with an appropriately polarized MW
field. (c) Normalized transition strength of outer transition |0,−1⟩ → |+,−1⟩.

Appendix D. Zero-field spectroscopy for two different MWpolarization angles

We also performed high-resolution spectroscopy of a single NV center for two different MW polarization
angles ϕmw to study the influence of the relative orientation of the externally applied microwave field to the
transition magnetic dipole moment. This was done by transmitting the microwaves through only one of the
two crossed wires at a time, as shown in the figure 1(c). The two wires placed perpendicular to each other
allowed us to probe the response of the NV spin transitions for two different polarizations of the MW drive.
Since the transition imbalances formI = 0,±1 depends on the MW angle, as is evident from the
equations (7), the observed ODMR response is different for each MW polarization under study. Figure D1(a)
show the experimental data on the same NV center, where the application of MWs with two different
azimuthal angles reversed the sign of the transition imbalances for all the nuclear spin projections
mI = 0,±1. However, the polarization angle of the MWmagnetic field has no effect on the NV’s ODMR
transition frequencies as expected. Figure C1 of appendix C depicts the transition strengths of the inner and
outer transitions as a function of the MW angle.
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Figure D1. (a) ODMR spectra showing hyperfine resolved spin transitions for two possible azimuthal angles of the MW
polarization interacting with the NV spin. (b) Polarization response of the hyperfine spin transitions. The inner transitions 2 and
3 have a linearly polarized response, implying that a linearly polarized MW field is sufficient to achieve full polarization control of
the coupling strength between the states |0,0⟩ and |±,0⟩. In contrast, the outer transitions 1 and 4 have an elliptically polarized
response, implying that an elliptically polarized MW field is necessary to achieve full control over the relative coupling strengths
between the states |0,±1⟩ and |±,±1⟩ (see appendix C). Note that all the transitions follow the selection rule∆mI = 0.

Appendix E. Theoretical study of 15NV hyperfine lines at zero magnetic field

E.1. Eigenenergies and eigenvectors
The ground state spin Hamiltonian Ĥ of the 15NV center in the presence of the intrinsic effective field and
the axial hyperfine field can be expressed as:

Ĥ= DŜ2z +AHFŜz Îz +Π∥Ŝ
2
z +Πx

(
Ŝ2x − Ŝ2y

)
+Πy

(
ŜxŜy + ŜyŜx

)
(E.1)

where, AHF = 3.03MHz [44] is the axial hyperfine coupling parameter, Î= (̂Ix, Îy, Îz) is the dimensionless
nuclear spin- 12 vector operator of the host

15N spin. Solving Hamiltonian (E.1) gives the eigenenergies of the
hyperfine states in the presence of the intrinsic effective field as

E−,+1/2 = D+Π∥ −
1

2

√
4Π2

⊥ +(AHF)
2
, (E.2a)

E+,+1/2 = D+Π∥ +
1

2

√
4Π2

⊥ +(AHF)
2
, (E.2b)

E−,−1/2 = D+Π∥ −
1

2

√
4Π2

⊥ +(AHF)
2
, (E.2c)

E+,−1/2 = D+Π∥ +
1

2

√
4Π2

⊥ +(AHF)
2
. (E.2d)

The associated hyperfine eigenstates can be written in the uncoupled basis |ms,mI⟩= |ms⟩⊗ |mI⟩ as
follows:

|−,+1/2⟩=
(
sin

θΠ
2
|+ 1⟩− eiϕΠ cos

θΠ
2
| − 1⟩

)
⊗ |+ 1/2⟩, (E.3a)

|+,+1/2⟩=
(
cos

θΠ
2
|+ 1⟩+ eiϕΠ sin

θΠ
2
| − 1⟩

)
⊗ |+ 1/2⟩, (E.3b)

|−,−1/2⟩=
(
cos

θΠ
2
|+ 1⟩− eiϕΠ sin

θΠ
2
| − 1⟩

)
⊗ |− 1/2⟩, (E.3c)

|+,−1/2⟩=
(
sin

θΠ
2
|+ 1⟩+ eiϕΠ cos

θΠ
2
| − 1⟩

)
⊗ |− 1/2⟩, (E.3d)

16



Quantum Sci. Technol. 8 (2023) 025011 S Kumar et al

Figure E1. (a) The energy levels plotted for three different parameter regimes: (i)Π⊥ =Π∥ = 0, (ii) AHF ≫Π⊥,Π∥ and

(iii) AHF ⩽Π⊥,Π∥. (b) Simulated high-resolution ODMR spectrum for a single 15NV center in the presence of a large strain

showing the two hyperfine dips split by
√

4Π2
⊥ +A2

HF. The parameters used for plotting the high-resolution ODMR spectrum

are AHF = 3.03MHz,Π∥ = 4.32MHz,Π⊥ = 4.19MHz, θΠ = π/6, ϕΠ = π/4, ϕmw = π/3 and linewidth Γ∗
2 = 500 kHz.

where θΠ and ϕΠ are the angles which satisfy the relations:

cosθΠ =
AHF√

4Π2
⊥ +(AHF)

2
, (E.4a)

cosϕΠ =
Πx

Π⊥
. (E.4b)

The energy levels plotted for three different parameter regimes, (i)Π⊥ =Π∥ = 0, (ii) AHF ≫Π⊥,Π∥ and
(iii) AHF ⩽Π⊥,Π∥ are shown in the figure E1(a).

E.2. Transition strength and transition imbalance
The transition strengths can be calculated using the same procedure described in appendix C. The
normalized transition strengths for the four hyperfine spin transitions under driving by a linearly polarized
(ϵmw = 0) microwave field are given by:

W−,±1/2 =
1

2
[1− sinθΠ cos(2ϕmw −ϕΠ)] , (E.5a)

W+,±1/2 =
1

2
[1+ sinθΠ cos(2ϕmw −ϕΠ)] . (E.5b)

This will result in the transition imbalance given by:

I±1/2 = sinθΠ cos(2ϕmw −ϕΠ). (E.6)

The simulated ODMR spectrum for a 15NV showing the hyperfine resolved transitions in the presence of
an effective field is displayed in the figure E1(b).

Appendix F. Magnetic field susceptibility

The transition frequencies for the spin transitions |0⟩ → |± 1⟩ in the presence of a magnetic field can be
written in the form [36]:

f± = D+
3γ2B2

2D
sin2 θB ± γBcosθB

√
1+

γ2B2

4D
tan2 θB sin

2 θB (F.1)

where B=
√
B2
⊥ +B2

z and tanθB = B⊥/Bz. For θB =
π
2 , we obtain the susceptibility of the spin resonance

frequencies to the transverse magnetic field
∣∣∣ ∂f
∂B⊥

∣∣∣ as [22]:
∣∣∣∣ ∂f

∂B⊥

∣∣∣∣= 3γ2B⊥

D
. (F.2)
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Figure G1. Cross-wire configuration used to deliver the MW field to the NV centers.

Figure H1. Pulse sequence to obtain high-resolution spectra.

Similarly, for θB = 0, the susceptibility to the parallel magnetic field
∣∣∣ ∂f
∂Bz

∣∣∣ will be:∣∣∣∣ ∂f

∂Bz

∣∣∣∣= γ. (F.3)

It is evident from equations (F.2) and (F.3) that
∣∣∣ ∂f
∂Bz

∣∣∣>>
∣∣∣ ∂f
∂B⊥

∣∣∣ for weak magnetic fields (γB<< D).

Appendix G. Cross-wire configuration

The MW antenna in a cross-wire configuration is used to drive the NV centers. Two 25µm thick wires were
soldered and bridged across the diamond as shown in figure G1. To arrange the two wires in the cross-wire
configuration, we used a custom-made printed circuit board with a cross design. To deliver the microwaves,
we used only one MW wire at a time and the other is kept open to ensure that the two wires are not shorted.

Appendix H. Experimental procedure for pulsed ODMR

To perform the pulsed ODMR measurements on a single NV center, we used the pulse sequence described in
[28] and is shown in the figure H1. We first apply a MW π-pulse, which is followed by a 300 ns laser pulse
used for both spin-state readout and initialization of spin in thems = 0 state. The laser pulse combined with
a wait time of 1000 ns before the application of the next MW pulse allows the spin to relax to thems = 0
ground state. To obtain the high-resolution spectrum, the pulse sequence was continuously repeated while
the frequency of the MW π-pulse was swept and the NV fluorescence count was recorded. The dwell time,

18
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i.e, the duration for which the microwaves were applied at each frequency (before switching to the next
frequency in the frequency sweep) was 10ms during each sweep. This sequence was repeated n times to
improve the SNR.

ORCID iDs

Shashank Kumar https://orcid.org/0000-0002-0532-8836
Pralekh Dubey https://orcid.org/0000-0003-0669-7403
Phani Peddibhotla https://orcid.org/0000-0002-0340-0769

References

[1] Schirhagl R, Chang K, Loretz M and Degen C L 2014 Annu. Rev. Phys. Chem. 65 83–105
[2] Maze J et al 2008 Nature 455 644–7
[3] Dolde F et al 2011 Nat. Phys. 7 459–63
[4] Barson M S J et al 2017 Nano Lett. 17 1496–503
[5] Harrison J, Sellars M and Manson N 2004 J. Lumin. 107 245–8
[6] Gruber A, Dräbenstedt A, Tietz C, Fleury L, Wrachtrup J and Borczyskowski C V 1997 Science 276 2012–14
[7] Doherty MW, Dolde F, Fedder H, Jelezko F, Wrachtrup J, Manson N B and Hollenberg L C L 2012 Phys. Rev. B 85 205203
[8] Degen C L, Reinhard F and Cappellaro P 2017 Rev. Mod. Phys. 89 035002
[9] Davis H, Ramesh P, Bhatnagar A, Lee-Gosselin A, Barry J F, Glenn D R, Walsworth R L and Shapiro M G 2018 Nat. Commun. 9 131
[10] Sage D et al 2013 Nature 496 486–9
[11] Glenn D R, Fu R R, Kehayias P, Le Sage D, Lima E A, Weiss B P and Walsworth R L 2017 Geochem. Geophys. Geosyst. 18 3254–67
[12] Lillie S E, Broadway D A, Dontschuk N, Zavabeti A, Simpson D A, Teraji T, Daeneke T, Hollenberg L C L and Tetienne J-P 2018

Phys. Rev. Mater. 2 116002
[13] Simpson D A, Tetienne J-P, McCoey J M, Ganesan K, Hall L T, Petrou S, Scholten R E and Hollenberg L C L 2016 Sci. Rep. 6 22797
[14] Casola F, van der Sar T and Yacoby A 2018 Nat. Rev. Mater. 3 17088
[15] Childress L I and Hanson R 2013MRS Bull. 38 134–8
[16] Pezzagna S and Meijer J 2021 Appl. Phys. Rev. 8 011308
[17] Cerrillo J, Oviedo Casado S and Prior J 2021 Phys. Rev. Lett. 126 220402
[18] Vetter P J et al 2022 Phys. Rev. Appl. 17 044028
[19] Jarmola A, Lourette S, Acosta V M, Birdwell A G, Blümler P, Budker D, Ivanov T and Malinovsky V S 2021 Sci. Adv. 7 eabl3840
[20] Zheng H et al 2019 Phys. Rev. Appl. 11 064068
[21] Lenz T, Wickenbrock A, Jelezko F, Balasubramanian G and Budker D 2021 Quantum Sci. Technol. 6 034006
[22] Wang N, Liu C-F, Fan J-W, Feng Xi, Leong W-H, Finkler A, Denisenko A, Wrachtrup J, Li Q and Liu R-B 2022 Phys. Rev. Res.

4 013098
[23] Block M et al 2021 Phys. Rev. Appl. 16 024024
[24] Nagata K, Kuramitani K, Sekiguchi Y and Kosaka H 2018 Nat. Commun. 9 3227
[25] Jahnke K D, Naydenov B, Teraji T, Koizumi S, Umeda T, Isoya J and Jelezko F 2012 Appl. Phys. Lett. 101 012405
[26] Trusheim M E and Englund D 2016 New J. Phys. 18 123023
[27] Bersin E, Walsh M, Mouradian S L, Trusheim M E, Schröder T and Englund D 2019 npj Quantum Inf. 5 38
[28] Dréau A, Lesik M, Rondin L, Spinicelli P, Arcizet O, Roch J-F and Jacques V 2011 Phys. Rev. B 84 195204
[29] Mittiga T et al 2018 Phys. Rev. Lett. 121 246402
[30] Kölbl J, Kasperczyk M, Bürgler B, Barfuss A and Maletinsky P 2019 New J. Phys. 21 113039
[31] Knauer S, Hadden J P and Rarity J G 2020 npj Quantum Inf. 6 50
[32] Pfender M et al 2017 Nano Lett. 17 5931–7
[33] Rondin L, Tetienne J-P, Hingant T, Roch J-F, Maletinsky P and Jacques V 2014 Rep. Prog. Phys. 77 056503
[34] Sekiguchi Y, Komura Y, Mishima S, Tanaka T, Niikura N and Kosaka H 2016 Nat. Commun. 7 11668
[35] London P, Balasubramanian P, Naydenov B, McGuinness L P and Jelezko F 2014 Phys. Rev. A 90 012302
[36] Doherty MW, Michl J, Dolde F, Jakobi I, Neumann P, Manson N B and Wrachtrup J 2014 New J. Phys. 16 063067
[37] Please note that the pulsed ODMR spectrum shown in figure 2(c) was obtained by conducting measurements on another NV

defect experiencing a different effective field environment in the PCD sample under study
[38] Dobrovitski V V, Feiguin A E, Hanson R and Awschalom D D 2009 Phys. Rev. Lett. 102 237601
[39] Jamonneau P et al 2016 Phys. Rev. B 93 024305
[40] Manson N B, Hedges M, Barson M S J, Ahlefeldt R, Doherty MW, Abe H, Ohshima T and Sellars M J 2018 New J. Phys. 20 113037
[41] Binder J M et al 2017 SoftwareX 6 85–90
[42] Auzinsh M, Budker D and Rochester S 2010 Optically Polarized Atoms: Understanding Light-Atom Interactions (Oxford: Oxford

University Press)
[43] Fang K, Acosta V M, Santori C, Huang Z, Itoh K M, Watanabe H, Shikata S and Beausoleil R G 2013 Phys. Rev. Lett. 110 130802
[44] Felton S, Edmonds A M, Newton M E, Martineau P M, Fisher D, Twitchen D J and Baker J M 2009 Phys. Rev. B 79 075203

19

https://orcid.org/0000-0002-0532-8836
https://orcid.org/0000-0002-0532-8836
https://orcid.org/0000-0003-0669-7403
https://orcid.org/0000-0003-0669-7403
https://orcid.org/0000-0002-0340-0769
https://orcid.org/0000-0002-0340-0769
https://doi.org/10.1146/annurev-physchem-040513-103659
https://doi.org/10.1146/annurev-physchem-040513-103659
https://doi.org/10.1038/nature07279
https://doi.org/10.1038/nature07279
https://doi.org/10.1038/nphys1969
https://doi.org/10.1038/nphys1969
https://doi.org/10.1021/acs.nanolett.6b04544
https://doi.org/10.1021/acs.nanolett.6b04544
https://doi.org/10.1016/j.jlumin.2003.12.020
https://doi.org/10.1016/j.jlumin.2003.12.020
https://doi.org/10.1126/science.276.5321.2012
https://doi.org/10.1126/science.276.5321.2012
https://doi.org/10.1103/PhysRevB.85.205203
https://doi.org/10.1103/PhysRevB.85.205203
https://doi.org/10.1103/RevModPhys.89.035002
https://doi.org/10.1103/RevModPhys.89.035002
https://doi.org/10.1038/s41467-017-02471-7
https://doi.org/10.1038/s41467-017-02471-7
https://doi.org/10.1038/nature12072
https://doi.org/10.1038/nature12072
https://doi.org/10.1002/2017GC006946
https://doi.org/10.1002/2017GC006946
https://doi.org/10.1103/PhysRevMaterials.2.116002
https://doi.org/10.1103/PhysRevMaterials.2.116002
https://doi.org/10.1038/srep22797
https://doi.org/10.1038/srep22797
https://doi.org/10.1038/natrevmats.2017.88
https://doi.org/10.1038/natrevmats.2017.88
https://doi.org/10.1557/mrs.2013.20
https://doi.org/10.1557/mrs.2013.20
https://doi.org/10.1063/5.0007444
https://doi.org/10.1063/5.0007444
https://doi.org/10.1103/PhysRevLett.126.220402
https://doi.org/10.1103/PhysRevLett.126.220402
https://doi.org/10.1103/PhysRevApplied.17.044028
https://doi.org/10.1103/PhysRevApplied.17.044028
https://doi.org/10.1126/sciadv.abl3840
https://doi.org/10.1126/sciadv.abl3840
https://doi.org/10.1103/PhysRevApplied.11.064068
https://doi.org/10.1103/PhysRevApplied.11.064068
https://doi.org/10.1088/2058-9565/abffbd
https://doi.org/10.1088/2058-9565/abffbd
https://doi.org/10.1103/PhysRevResearch.4.013098
https://doi.org/10.1103/PhysRevResearch.4.013098
https://doi.org/10.1103/PhysRevApplied.16.024024
https://doi.org/10.1103/PhysRevApplied.16.024024
https://doi.org/10.1038/s41467-018-05664-w
https://doi.org/10.1038/s41467-018-05664-w
https://doi.org/10.1063/1.4731778
https://doi.org/10.1063/1.4731778
https://doi.org/10.1088/1367-2630/aa5040
https://doi.org/10.1088/1367-2630/aa5040
https://doi.org/10.1038/s41534-019-0154-y
https://doi.org/10.1038/s41534-019-0154-y
https://doi.org/10.1103/PhysRevB.84.195204
https://doi.org/10.1103/PhysRevB.84.195204
https://doi.org/10.1103/PhysRevLett.121.246402
https://doi.org/10.1103/PhysRevLett.121.246402
https://doi.org/10.1088/1367-2630/ab54a8
https://doi.org/10.1088/1367-2630/ab54a8
https://doi.org/10.1038/s41534-020-0277-1
https://doi.org/10.1038/s41534-020-0277-1
https://doi.org/10.1021/acs.nanolett.7b01796
https://doi.org/10.1021/acs.nanolett.7b01796
https://doi.org/10.1088/0034-4885/77/5/056503
https://doi.org/10.1088/0034-4885/77/5/056503
https://doi.org/10.1038/ncomms11668
https://doi.org/10.1038/ncomms11668
https://doi.org/10.1103/PhysRevA.90.012302
https://doi.org/10.1103/PhysRevA.90.012302
https://doi.org/10.1088/1367-2630/16/6/063067
https://doi.org/10.1088/1367-2630/16/6/063067
https://doi.org/10.1103/PhysRevLett.102.237601
https://doi.org/10.1103/PhysRevLett.102.237601
https://doi.org/10.1103/PhysRevB.93.024305
https://doi.org/10.1103/PhysRevB.93.024305
https://doi.org/10.1088/1367-2630/aaec58
https://doi.org/10.1088/1367-2630/aaec58
https://doi.org/10.1016/j.softx.2017.02.001
https://doi.org/10.1016/j.softx.2017.02.001
https://doi.org/10.1103/PhysRevLett.110.130802
https://doi.org/10.1103/PhysRevLett.110.130802
https://doi.org/10.1103/PhysRevB.79.075203
https://doi.org/10.1103/PhysRevB.79.075203

	High-resolution spectroscopy of a single nitrogen-vacancy defect at zero magnetic field
	1. Introduction
	2. Theory
	3. Experiments
	3.1. Description of the experimental setup
	3.2. High-resolution spectroscopy
	3.2.1. Zero-field spectroscopy

	3.3. Relation between Rabi frequencies and transition strengths
	3.4. Spectroscopy around zero magnetic field
	3.5. Characterization of the PCD

	4. Conclusion
	Appendix A. Arbitrarily (elliptically) polarized microwave fields
	Appendix B. Derivation of the rotating frame Hamiltonian
	Appendix C. Magnetic dipole transition strengths
	Appendix D. Zero-field spectroscopy for two different MW polarization angles
	Appendix E. Theoretical study of 15NV hyperfine lines at zero magnetic field
	E.1.  Eigenenergies and eigenvectors
	E.2.  Transition strength and transition imbalance

	Appendix F. Magnetic field susceptibility
	Appendix G. Cross-wire configuration
	Appendix H. Experimental procedure for pulsed ODMR
	References


