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Abstract In [1] the authors show that two graphs G1,G2, on n vertices each, are
isomorphic if and only if the feasible region of a certain linear program, LP-GI, in-
tersects with the Quadratic Assignment Problem (QAP)-polytope in R(n4+n2)/2. The
linear program LP-GI in [1] is obtained by relaxing an integer linear program whose
feasible points correspond to the isomorphisms between G1,G2. In this paper we take
an analogous approach with the linear programs replaced with conic programs. A
completely positive description of the QAP-polytope was obtained in [13]. By adding
the graph conditions to this description we get a completely positive formulation of
the graph isomorphism problem. However, analogous to integer linear programs, it is
NP-hard to optimize over the cone of completely positive matrices. So we relax this
formulation by replacing the cone of completely positive matrices with the cone of
positive semidefinite matrices. We observe that the resulting SDP is the Lovász Theta
function [10] of a graph product of G1,G2 and can be efficiently computed. We pro-
vide a natural heuristic that uses the SDP to solve the graph isomorphism problem.
We run our heuristic on several pairs of non-isomorphic strongly regular graphs and
find the results to be encouraging. Further, by adding the non-negativity constraints
to the SDP, we obtain a doubly non-negative formulation, DNN-GI. We show that if
the set of optimal points in DNN-GI contains a point of rank at most 3, then the given
pair of graphs must be isomorphic.
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1 Introduction

The graph isomorphism problem (GI) is a well-studied computational problem; listed
as an open problem in [6]. Formally, given two graphs G1 and G2 on n vertices each,
GI is a decision problem that asks if there exists a bijection σ : V (G1)→V (G2) such
that {u,v} ∈ E(G1) iff {σ(u),σ(v)} ∈ E(G2). Each such bijection is called an iso-
morphism between G1,G2. Without loss of generality, we assume that the vertices
in both the graphs are labeled by integers 1, . . . ,n. Hence V (G1) = V (G2) = [n] and
each bijection is a permutation of 1, . . . ,n. The most successful approach in tackling
the GI problem has been a group-theoretic approach. The fastest known algorithm
for GI for general graphs uses this approach and runs in quasipolynomial time [2].
A polyhedral approach, like the one used in [1], is not expected to solve the problem
for general graphs in sub-exponential time [11]. ODonnell, Wright, Wu, and Zhou
[12] and Codenotti, Schoenbeck, and Snook [16] studied the Lasserre hierarchy [9]
of semidefinite relaxations of the integer linear program for GI. They proved that a
class of graphs known as the CFI graphs [3] cannot be distinguished by o(n) levels of
the Lasserre hierarchy. However, none of the known results rule out a sub-exponential
time algorithm for strongly regular graphs using either a polyhedral or a semidefinite
approach. In this paper we present a semidefinite approach to tackle the graph isomor-
phism problem. We present an iterative rounding procedure and show experimentally
that it is effective in differentiating between non-isomorphic strongly regular graphs.
Further, we prove that if the feasible region of a certain positive semidefinite program
has points of rank at most 3, then the given pair of graphs must be isomorphic.

The rest of the paper is organized as follows. In Section 2 we present a completely
positive (CP) formulation of the graph isomorphism (GI) problem. In this section we
first present a CP formulation of the QAP-polytope and then arrive at the CP formu-
lation for GI by adding the graph constraints. In Section 3 we relax an optimization
version of the CP formulation to obtain a SDP relaxation that we show is equivalent
to a formulation of the Lovász Theta function of a graph product of the input graphs
G1,G2. Further in this section we present our heuristic algorithm and give a geometric
interpretation of the same. We also show that the SDP formulation implies several of
the linear constraints of the LP formulation given in [1]. We end the section by pre-
senting the results of some experimentation with strongly regular graphs and show
that our SDP formulation is superior to the LP formulation given in [1]. In Section
4 we prove a technical result on the rank structure of the feasible region of the SDP
formulation when the feasible region is restricted to the set of points that have the
maximum possible value of the objective function. We prove that if this region has a
point of rank at most 3, then the given pair of graphs must be isomorphic. Finally we
conclude in Section 5 with some open problems.

2 CP formulation of GI

An m×m symmetric real matrix M is said to be positive semidefinite if it can be ex-
pressed as QQT for some m×k real matrix Q. If the row vectors of Q are v1

T , . . . ,vm
T ,
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then we will call this set a vector-realization of M in k-dimensional space. It is easy
to see that there is always a vector realization in k = rank(M) dimensional space.

If matrix M has a vector realization in which each vi belongs to the non-negative
orthant of Rk, then it is called a completely positive(CP) matrix. cp-rank of a com-
pletely positive matrix M is the smallest integer k such that M has a non-negative
vector realization in k dimensional space.

A CP program is a program with linear constraints and a linear objective function,
where the variable matrix is confined to the cone of CP matrices. In this section we
give a CP formulation of GI and study its feasible region.

In [13] a CP formulation of the Quadratic Assignment Problem (QAP) is given.
It is established there that the feasible region of a certain completely positive pro-
gram QAPCP is equal to the convex hull of rank-1 n2×n2 matrices given by xxT ,x =
vec(X),X ∈ Π , where Π is the set of all n× n permutation matrices and vec(X) is
the n2-dimensional vector obtained from X columnwise. We observe that these rank-
1 matrices are nothing but the P[2]

σ matrices defined in [1]. Moreover, the feasible
region of QAPCP is the QAP-polytope, defined as B[2] in [1]. Further, in [13], the
authors present another CP formulation of the QAP, denoted as QAPCP1 with feasi-
ble region equal to the convex hull of rank-1 (n2 + 1)× (n2 + 1) matrices given by
yyT ,y =

[
1

vec(X)

]
,X ∈ Π . Note that the feasible regions of QAPCP and QAPCP1 are

in bijective correspondence. Here, we will present a CP program that is equivalent to
QAPCP1, in the sense that their feasible regions are identical. Then we will add the
graph conditions to our CP program to get a CP formulation whose feasible region is
the convex hull of those rank-1 matrices yyT that correspond to the permutation ma-
trices X with the underlying permutation as an isomorphism between the input pair
of graphs. Clearly, this CP formulation has a non-empty feasible region if and only if
the input graphs are isomorphic.

Let C ∗ denote the cone of (n2 +1)× (n2 +1) completely positive matrices. Con-
sider the set of all (n2 +1)× (n2 +1) matrices Y with index set (([n]× [n])∪{ω})×
(([n]× [n])∪{ω}), that satisfy the following set of constraints:

Y ∈ C ∗ (1a)
Yi j,ik = 0 , 1≤ i, j,k ≤ n, j 6= k (1b)
Yji,ki = 0 , 1≤ i, j,k ≤ n, j 6= k (1c)
Yω,ω = 1 (1d)
Yi j,ω = Yi j,i j , 1≤ i, j ≤ n (1e)

∑
i, j∈[n]

Yi j,i j = n (1f)

Let F denote the set of all (n2 + 1)× (n2 + 1) matrices Y that satisfy the con-
straints (1a)-(1f). Let Z be an N×N completely positive matrix or, more generally, a
positive semidefinite matrix. Then there exists a set of vectors {ui|1 ≤ i ≤ N} such
that Zi j = ui ·uj for all i, j. We will refer to {ui|1≤ i≤ N} as a vector realization of
Z.
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2.1 CP description of the QAP-polytope

Let w be any fixed unit vector. Then for every unit vector v, we call u = (w+v)/2 a
united vector with respect to w. Note that u ·u≤ 1.

Observation 1 With respect to a fixed unit vector w,

– a vector u is united if and only if u ·w = ‖u‖2.
– if u1 and u2 are mutually orthogonal united vectors, then u1 +u2 is also a united

vector.
– let u1, . . . ,uk be a set of pairwise orthogonal united vectors. This set is maximal

(i.e., no new united vector can be added to it while preserving pairwise orthogo-
nality) if and only if w belongs to the subspace spanned by these vectors.

– let u1, . . . ,uk be a set of pairwise orthogonal united vectors. w belongs to the
subspace spanned by these vectors if and only if ∑i ui = w.

– let u1, . . . ,uk be a set of pairwise orthogonal united vectors. ∑i ui = w if and only
if ∑i ‖ui‖2 = 1.

Let Y be a point in F . Since it is a completely positive matrix, there exist vectors
uij for 1 ≤ i, j ≤ n and a unit vector w such that Yi j,kl = uij ·ukl and Yi j,ω = Yω,i j =
uij ·w. Note that the same would be true if Y was any positive semidefinite matrix.
From conditions (1d) and (1e) we see that uij are united vectors with respect to w.
From condition (1b) we see that {ui1, . . . ,uin} is a set of mutually orthogonal united
vectors, for each i. Same is true for {u1i, . . . ,uni} from (1c). Further, condition (1f)
enforces that each of the sets, {ui1, . . . ,uin}, (equivalently, {u1i, . . . ,uni}) is a maxi-
mal pairwise orthogonal set of united vectors. Note that ∑ j Yi j,i j = (∑ j uij) ·w. Since,
∑ j uij being the sum of pairwise orthogonal united vectors is also a united vector,
(∑ j uij) ·w = (∑ j uij) · (∑ j uij) ≤ 1, implying that ∑ j Yi j,i j ≤ 1 ∀ i. So condition (1f)
enforces that ∑ j Yi j,i j = 1 ∀ i.

Observe that Y is a (n2 +1)× (n2 +1) matrix having its last row and the last col-
umn equal to its diagonal, see condition (1e). Hence the n2×n2 principal submatrix
contains complete information of Y . We will refer to it as Ỹ . So Ỹi j,kl = uij ·ukl for
all i, j,k, l. Clearly Y can be obtained from Ỹ by setting Yi j,n2+1 =Yn2+1,i j = Ỹi j,i j and
Yn2+1,n2+1 = 1. The remaining entries of Y are same as those of Ỹ . So, Ỹ is an orthog-
onal projection of Y onto a (n2× n2)-dimensional subspace. Since the projection of
a convex set onto some of its coordinates is convex, the set formed by all Ỹ is also
convex. Let us denote this set as Fp. The following Lemma shows that Fp is in fact
the QAP-polytope in Rn2×n2

, henceforth denoted as B[2].

Lemma 1 Fp = B[2].

Proof Let P[2]
σ denote a rank-1 matrix yyT , where y= vec(Pσ ),Pσ ∈Π . Recall that the

QAP-polytope B[2], is defined as the convex hull of P[2]
σ for all σ ∈ Sn. Observe that

P[2]
σ is the n2×n2 principal submatrix of the (n2+1)×(n2+1) rank-1 matrix Z = zzT

where z =
[

vec(Pσ )
1

]
. Clearly, matrix Z is a completely positive matrix since it has

a non-negative vector realization in 1-dimensional space. Also, Zn2+1,n2+1 = 1 and
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Zi j,n2+1 = zi j · zn2+1 = zi j = Zi j,i j. Similarly, Zn2+1,i j = Zi j,i j. Moreover, (P[2]
σ )i j,ik =

(Pσ )i j · (Pσ )ik = 0 for all i and j 6= k. Similarly, (P[2]
σ ) ji,ki = (Pσ ) ji · (Pσ )ki = 0 for all

i and j 6= k. Also, ∑i, j∈[n](P
[2]
σ )i j,i j = ∑i, j∈[n](Pσ )i j · (Pσ )i j = ∑i, j∈[n](Pσ )i j = n. Thus,

Z ∈F and P[2]
σ ∈Fp. This is true for all σ ∈ Sn. Hence, B[2] ⊆Fp.

Consider a non-negative vector realization {uij|i, j ∈ [n]}∪ {w} of Y ∈F . We
arrange the vectors {uij|i, j ∈ [n]} as the entries of a n× n matrix W with (i, j)-th
entry being uij, as shown below

W =


u11 u12 u13 . . . u1n
u21 u22 u23 . . . u2n

...
...

...
. . .

...
un1 un2 un3 . . . unn


Conditions (1b) and (1c) ensure that the vectors in any row or any column of W
are pairwise orthogonal. From Observation 1 the vectors in each row/column form a
maximal set of pairwise orthogonal united vectors. Also from the same observation,
the vectors in each row/column add up to the vector w. Assume that the vector real-
ization is in an N-dimensional space, where N is the cp-rank of Y . Let Wr denote the
n×n matrix formed by the r-th coordinate of each vector uij, as shown below

Wr =


u11(r) u12(r) u13(r) . . . u1n(r)
u21(r) u22(r) u23(r) . . . u2n(r)

...
...

...
. . .

...
un1(r) un2(r) un3(r) . . . unn(r)


Each element of Wr is non-negative and each row and each column adds up to wr,
the r-th coordinate of the vector w. Hence Wr is wr times a doubly-stochastic matrix.
But the vectors in the same row (resp. column) are pairwise orthogonal, implying that
exactly one entry is non-zero in each row (resp. column) of Wr if wr > 0. So Wr =
wrPσr for some permutation σr. We can express W by ∑r wrPσr er where er denotes
the unit vector along the r-th axis. Ỹi j,kl is the inner product of the vectors uij and ukl

which is (∑r wr(Pσr)i jer) · (∑s ws(Pσs)kles) = ∑r w2
r (Pσr)i j.(Pσr)kl = ∑r w2

r (P
[2]
σr )i j,kl .

Thus Ỹ = ∑r w2
r P[2]

σr . Since ∑r w2
r = ‖w‖

2 = 1, Ỹ is a convex combination of some of
the P[2]

σ s or Ỹ ∈B[2]. Hence, Fp ⊆B[2]. ut

2.2 GI as a CP feasibility problem

Let G1 = ([n],E1) and G2 = ([n],E2) be simple graphs on n vertices each. Define
a graph G = (V,E), where V = [n]× [n] and {i j,kl} ∈ E if either {i,k} ∈ E1 and
{ j, l} /∈ E2 or {i,k} /∈ E1 and { j, l} ∈ E2, provided i 6= k and j 6= l. Let F G

p be the
subset of Fp satisfying Ỹi j,kl = 0 ∀ {i j,kl} ∈ E.

Theorem 1 G1 ∼= G2 if and only if F G
p 6= /0.
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Proof We will establish that F G
p = B

[2]
G1G2

, where B
[2]
G1G2

is the convex hull of those

P[2]
σ that correspond to an isomorphism between G1,G2. Clearly, B

[2]
G1G2

= /0 implies

that there is no P[2]
σ that corresponds to an isomorphism between G1,G2 or that G1 6∼=

G2. On the other hand, if B
[2]
G1G2
6= /0, there must exist at least one P[2]

σ that corresponds
to an isomorphism between G1,G2, or G1 ∼= G2. From the definition of G above,
Ỹi j,kl = 0 implies that either {i,k} is an edge in G1 and { j, l} is not an edge in G2 or
{i,k} is not an edge in G1 and { j, l} is an edge in G2. Clearly, no edge preserving
bijection between G1,G2 can map i to k and j to l or at least one of (Pσ )ik and (Pσ ) jl
must be zero for all the bijections σ that give an isomorphism between G1,G2 or
(P[2]

σ )i j,kl = 0 for each such bijection for all {i j,kl} ∈ E. So a point Z ∈B
[2]
G1G2

must

satisfy Zi j,kl = 0 ∀ {i j,kl} ∈ E. Since Z ∈ Fp, we have Z ∈ F G
p . Thus, B

[2]
G1G2

⊆
F G

p . Next, consider a point Ỹ ∈ F G
p . From the proof of Lemma 1 we know that

Ỹi j,kl = ∑r w2
r (P

[2]
σr )i j,kl where ∑r w2

r = 1. Since Ỹi j,kl = 0 ∀ {i j,kl} ∈ E, we have

∑r w2
r (P

[2]
σr )i j,kl = 0 ∀ {i j,kl} ∈ E implying that (P[2]

σr )i j,kl = 0 ∀ {i j,kl} ∈ E for every
σr corresponding to wr > 0. Thus, σr for every wr > 0 gives an edge preserving
bijection between G1,G2 or Ỹ ∈B

[2]
G1G2

or F G
p ⊆B

[2]
G1G2

. ut

2.3 GI as a CP optimization problem

Consider the following optimization program:

CP-GI: maximize ∑
i, j∈[n]

Yi j,i j

subject to (1a)-(1e)
Yi j,kl = 0 , ∀ {i j,kl} ∈ E (2a)

The following observation follows from Theorem 1.

Observation 2 Graphs G1,G2 are isomorphic if and only if the objective function of
CP-GI attains its maximum possible value of n.

We next investigate the maximum possible value that the objective function of
CP-GI can attain when G1,G2 are not isomorphic. Let H denote the n× n rook’s
graph. The set of vertices of H is [n]× [n] and the set of edges consists of all {i j,kl}
such that i = k, j 6= l and i 6= k, j = l. Define HG as the graph obtained by taking
the union of the edges of the graphs G and H. CP-GI can equivalently be defined as
follows:

CP-GI: maximize ∑
i, j∈[n]

Yi j,i j

subject to Y ∈ C ∗ (3a)
Yω,ω = 1 (3b)
Yi j,ω = Yi j,i j , 1≤ i, j ≤ n (3c)
Yi j,kl = 0 , ∀ {i j,kl} ∈ HG (3d)
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Note that in the above formulation of CP-GI, the constraints (1b)-(1c) are subsumed
by the graph constraints (3d). If we relax the above formulation by replacing the cone
of completely positive matrices with the cone of positive semidefinite matrices (let
us call the resulting formulation SDP-GI), then we get a formulation of the Lovász
theta function [10] of the graph HG. There are several equivalent formulations of the
Lovász theta function of a graph G. It is easy to see that the following formulation is
equivalent to SDP-GI. Here e is the vector of all ones and S n denotes the space of
n×n real symmetric matrices. Further, the weak optimization problem for T H(G) is
solvable in polynomial time [5].

ϑ(G) =max
x
{eT x : x ∈ T H(G)},where

T H(G) =

{
x ∈ Rn : ∃W =

[
U x
xT 1

]
∈S n+1,

diag(U) = x,Ui j = 0,(i, j) ∈ E,W � 0
}
.

It is shown in [7] that by replacing the positive semidefinite condition in a SDP
formulation of the Lovász theta number of a graph by the completely positive con-
dition, the optimum value of the resulting program is the stability number (indepen-
dence number) of that graph. So the optimum value of CP-GI is the stability number
of HG. Note that the subset of vertices of H given by Iσ = {(i j)|i ∈ [n], j = σ(i)} is
an independent set of size n for every σ ∈ Sn.

Lemma 2 Graphs G1,G2 are isomorphic if and only if the graph HG contains an
independent set of size n. Moreover, every σ ∈ Sn for which Iσ is an independent set
in HG, gives an isomorphism between G1,G2.

Proof Let HG contain an independent set of size n. Clearly, this independent set cor-
responds to some permutation σ since any independent set in HG of size n must
contain exactly one vertex from each row and exactly one vertex from each column,
viewing the vertices as the squares of a n×n chessboard. Also, there is no edge be-
tween the vertices (iσ(i)) and ( jσ( j)) for all i 6= j. This implies that either {i, j}
is an edge in G1 and {σ(i),σ( j)} is an edge in G2, or {i, j} is not an edge in G1
and {σ(i),σ( j)} is not an edge in G2. Thus, σ gives an edge preserving bijection
between G1,G2 or σ is an isomorphism between G1,G2. For the other direction, let
σ be an isomorphism between G1,G2. This implies that for every edge {i, j} ∈ G1,
{σ(i),σ( j)} ∈ G2. So there cannot be an edge in HG between (iσ(i)) and ( jσ( j))
for all i 6= j or (iσ(i)) for all i ∈ [n] forms an independent set of size n. ut

Corollary 1 If G1,G2 are non-isomorphic, then the maximum independent set in HG
has size at most n− 1. Hence, for non-isomorphic G1,G2, the maximum value that
the objective function of CP-GI can take is n−1.

It follows from a result in [8] that graphs G1,G2 are isomorphic if and only if HG
contains a clique of size n. The same also follows from Lemma 2.

It follows from Lemma 2 and Corollary 1, that a PTAS for the maximum in-
dependent set (MIS) problem suffices to decide graph isomorphism. However, our
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graph GH has genus Ω(n2) since it contains the complete graph on n vertices, Kn, as
a subgraph. It is shown in [4] that the MIS problem cannot have a PTAS if the input
graph has genus Ω(N) where N is the number of vertices in the input graph.

In this section we have seen that the graph isomorphism problem can be solved
via a completely positive formulation. However, it is NP-hard to optimize over the
cone of completely positive matrices. But the same is not true of a positive semidef-
inite formulation. Although in general semidefinite programs may not be solvable in
polynomial time, they can be solved in polynomial time to within an additive error of
2−nc

if the feasible region is nonempty and is contained in a polynomially-sized ball
centred at the origin. This is true for the SDP we are interested in. The natural step
now is to relax the cp formulation to a positive semidefinite formulation and design a
rounding algorithm to obtain a solution to the former from the latter.

3 SDP relaxation - Lovász Theta function

In this section we consider the positive semidefinite relaxation of the completely
positive formulation of the graph isomorphism problem. In the previous section we
named the resulting semidefinite program as SDP-GI and showed that it is nothing
but the Lovász theta function of the graph HG. As mentioned above, we can solve
SDP-GI to arbitrary precision in polynomial time. However, it is not guaranteed that
each vector in a vector realization of a solution Y to SDP-GI, must lie in the non-
negative orthant of Rk for any value of k≥ rank(Y ). It is expected that SDP-GI being
a relaxation of CP-GI, must obtain a larger value for its objective function than the
one obtained by CP-GI. This is not always true as the following observation shows.

Observation 3 The maximum possible value that the objective function of SDP-GI
can attain is n.

Recall that when we arrived at the maximum possible value of the objective function
of CP-GI to be n, we did not require the vectors to have non-negative co-ordinates. So
the above observation also follows from the same argument. Clearly, when the given
pair of graphs are isomorphic, the objective function of SDP-GI must attain a value of
n, similar to the case with CP-GI. However, unlike the case with CP-GI, the objective
function of SDP-GI can attain a value of n, even when the given pair of graphs are
not isomorphic. So using SDP-GI to decide graph isomorphism can have only false
positives but no false negatives. An optimum value strictly less than n for SDP-GI
also indicates an optimum value strictly less than n for the corresponding CP-GI,
implying that the given graphs are non-isomorphic. So we need to only consider the
case when ϑ(GH) = n.

Let T G denote the set of points at which ϑ(GH)= n and let T G
p be the orthogonal

projection of T G onto the (n2× n2)-dimensional subspace spanned by the n2× n2

principal submatrix of points in T G. Note that T G
p is F G

p with the CP cone replaced
with the PSD cone. Clearly, F G

p ⊆T G
p . Further, note that all points in F G

p are n2×n2

matrices with entries in R≥0. However, the same is not true for points in T G
p . But we

can enforce this by adding Yi j,kl ≥ 0 as an additional constraint to SDP-GI. Let the
resulting program be denoted as DNN-GI, where DNN denotes the cone of doubly
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non-negative matrices. Also, let DG
p denote T G

p ∩{Yi j,kl ≥ 0 ∀ i, j,k, l}. Further, let
DG denote the feasible region of DNN-GI restricted to the points at which ϑ(GH) =
n. One of our goals in the rest of this paper would be to prove certain properties of
points in DG

p when G1,G2 are isomorphic.

In Theorem 1 we established that F G
p = B

[2]
G1G2

, where B
[2]
G1G2

is the convex hull

of those P[2]
σ that correspond to an isomorphism between G1,G2. It follows from this

theorem that B
[2]
G1G2

⊆ DG
p . Since B

[2]
G1G2

6= /0 if and only if G1,G2 are isomorphic,

P[2]
σ ∈ DG

p if and only if σ is an isomorphism between G1 and G2. Recall that P[2]
σ

denotes a rank-1 matrix yyT , where y = vec(Pσ ),Pσ ∈ Π . Clearly, P[2]
σ are the only

rank-1 points in F G
p . The following lemma shows that the same is true even for DG

p ,
which implies that when G1,G2 are non-isomorphic, then for any point Y ∈ DG

p , we
have rank(Y )≥ 2. We will later improve this lower bound to 4.

Lemma 3 P[2]
σ are the only rank-1 points in DG

p . Also, these constitute some of the
extreme points of DG

p .

Proof If Y is a rank-1 point in DG
p , then there exists a vector v = {vi j|1≤ i, j ≤ n} ∈

Rn2
such that Yi j,kl = vi j ·vkl or Y = vvT . Since Yi j,il = 0 for j 6= l, for any given i, vi j

must be zero for at least n− 1 values of j. Similarly for a given j, vi j is zero for at
least n−1 values of i.

If vi j = 0 for all j, then for any arbitrary k, l, Ykl,kl =∑ j Yi j,kl = 0. Hence ∑kl Ykl,kl =

0. This is absurd because ∑kl Ykl,kl must be n as Y is a point in DG
p . So we see that

for each i there exists a unique ji such that vi ji 6= 0 and vi j = 0 for all j 6= ji. Since
Y ∈DG

p , ∑ j Yi j,i j = 1 for each i. So 1 = ∑ j Yi j,i j = ∑ j v2
i j = v2

i ji . Hence vi ji is either 1
or −1. But vi ji ·vk jk ≥ 0 for all i,k. So either all vi ji are 1 or all are −1. Let V denote
the n× n matrix with Vi j = vi j for all i, j. We see that each row of V has one 1 (or
−1) and the rest of the entries are 0. Similarly we can show that each column has
one 1 (respectively, −1). So V is a permutation matrix, say Pσ or its negation, and
Y = P[2]

σ . Since rank-1 points lie on extreme rays of the PSD cone they form some of
the extreme points of DG

p . ut
From the above we have a vector realization of a rank-1 point in DG as {uiσ(i)|1≤

i≤ n}∪{w} for some σ ∈ Sn that gives an isomorphism between G1,G2. Further, the
vectors {uiσ(i)|1≤ i≤ n} are unit vectors aligned with the unit vector w or the vector
realization of a rank-1 point in DG is nothing but n+ 1 copies of the vector w or
written as a set is simply the vector w. This gives us the following iterative procedure
for the graph isomorphism problem. Starting with an arbitrary point Y ∈ DG having
a vector realization {ui j|1 ≤ i, j ≤ n} ∪ {w}, the procedure attempts to iteratively
construct a rank-1 solution. Actually a rank-3 solution suffices (refer to Theorem 2).
In each iteration, a vector ui j that has the maximum inner product with the vector
w, is forced to align with the vector w (unless it is already aligned, in which case it
is ignored). From (3c), we can easily find such a vector by examining the diagonal
entries of Y and selecting the ui j that corresponds to the maximum value of Yi j,i j less
than 1. In case of multiple diagonal entries having the maximum value, we iterate
over all of them. Further, ui j can be aligned with w by adding the constraint Yi j,i j = 1
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to DNN-GI. If the procedure successfully finds a solution of value n and rank at
most 3, then the given pair of graphs are isomorphic, else after forcing less than n
diagonal entries to 1 the optimum value of DNN-GI drops below n, implying either
that the given graphs are non-isomorphic or that the set of vectors forced to align
with w do not coincide with any isomorphism of G1,G2. So if A is the set of all
isomorphisms between G1,G2, then Algorithm 1 returns 0 when either A = /0 i.e.,
the given pair of graphs are non-isomorphic, or for every σ ∈ A there exists (i, j)
such that Yi j,i j = 1 is included in DNN-GI but σ(i) 6= j. Note that this can happen
only when a solution of value n exists such that none of the maximum valued (< 1)
diagonal entries corresponds to any σ ∈ A.

Algorithm 1 Algorithm for testing if G1,G2 are isomorphic
1: function GRAPHISOTEST(GH ,map,itr) . map is a n-dimensional vector initialized to

map(i) =−1 ∀ i ∈ [n]
2: Y ←SDP-SOLVER(DNN-GI,GH ,map) . For every map(i) = j an additional constraint of the

form Yi j,i j = 1 is added to DNN-GI
3: itr← itr+1
4: if trace(Y )< n+1 then
5: return 0 . G1,G2 are not isomorphic
6: else if rank(Y )≤ 3 then . Refer to Theorem 2
7: return 1 . G1,G2 are isomorphic
8: else
9: val←max{Yi j,i j : Yi j,i j < 1, i, j ∈ [n]} . The largest value less than 1 along the diagonal of Y

10: for all i, j ∈ [n] do
11: if Yi j,i j == val then
12: map(i)← j . Yi j,i j = 1 added to DNN-GI
13: f lag←GRAPHISOTEST(GH ,map,itr)
14: if f lag == 1 then
15: return 1
16: else
17: map(i)←−1 . Yi j,i j = 1 failed to generate a solution of value n
18: end if
19: end if
20: end for
21: return 0
22: end if
23: end function

3.1 Geometric interpretation of Algorithm 1

Consider SDP-GI without the graph conditions. We refer to a set of n pairwise or-
thogonal united vectors as a n-frame. Here united vectors are as defined in Section
2.1. We could think of the objective of the SDP as that of finding a set of n, n-frames,
so as to maximize the total inner product of these n2 vectors with a unit vector w.
The vectors forming a n-frame also form a basis of the n-dimensional subspace of the
ambient space spanned by the n2 vectors. Clearly, the objective function attains its
maximum value when the vector w lies in the span of each of the n, n-frames. In the
absence of any graph conditions, these n n-frames could be aligned with each other in
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n! different ways, to together span a n-dimensional space that contains the vector w.
Each graph condition could be interpreted as one that forces two vectors from differ-
ent n-frames to be orthogonal to each other, thereby ruling out certain ways in which
they could be aligned with each other. A value of less than n for the objective function
implies that the graph conditions have not only ruled out all possible alignments of
the n-frames with each other but also forced them far enough to contain the vector w
in their spans. Since the objective function is the sum of the projections of the vector
w in the n n-frames, vector w has a projection of value less than 1 in a n-frame in
whose span it is not contained, leading to a total value of less than n. A rank-1 so-
lution corresponds to the situation when one vector from each of the n n-frames is
aligned with the vector w, and the remaining n2− n vectors all become zero (or are
orthogonal to the vector w). So it is natural to take the vector that the SDP solution
has placed closest to the vector w as the one that could possibly be aligned with w in
a rank-1 solution.

3.2 Analysis of Algorithm 1

Note that when the input pair of graphs are isomorphic, the algorithm terminates as
soon as it has found a solution of value n and rank at most 3. On the other hand,
for non-isomorphic graphs, the algorithm terminates only when an exhaustive search
fails to find a solution of value n and rank at most 3. Clearly, in the worst-case the al-
gorithm takes exponential time. Also, the algorithm can return 0 even when the input
pair of graphs are isomorphic, since the search is not exhaustive in the sense that it is
not guaranteed to try all the n! possible mappings between the vertices of G1,G2. The
search is limited to the mappings that correspond to the maximum valued diagonal
entries having a value of less than 1, in the first solution obtained in each recursive
call. Since in the subsequent iterations of the algorithm, each of these maximum val-
ued entries are forced to 1, one at a time, a value of 1 is not considered when deciding
the maximum valued diagonal entries of a solution Y . Recall that the maximum value
that any entry in a solution matrix Y can take is 1. So Algorithm 1 can output false
negatives but certainly not false positives.

In Section 3.3 we run Algorithm 1 on some pairs of isomorphic and non- isomor-
phic strongly regular graphs and find that in all the cases the algorithm terminates
with the correct solution and in polynomial time. Note that DNN-GI can be con-
verted to its feasibility version DNN-GI-OPT by removing the objective function and
including it as the constraint ∑i, j∈[n]Yi j,i j = n. So now a feasible solution to DNN-
GI-OPT is one that achieves the maximum possible value of n in DNN-GI. In the
following we show that several of the constraints in [1, LP-GI] are implicit in DNN-
GI-OPT, thus offering some explanation to the unexpected performance of Algorithm
1. Note that we can replace DNN-GI with DNN-GI-OPT in Algorithm 1 with mini-
mal changes that do not affect its performance.

Consider a solution Y to DNN-GI-OPT having a vector realization {uij|1≤ i, j ≤
n}. Since the objective function achieves its maximum value, namely, n for Y , each set
{ui1, . . . ,uin} is a maximal orthogonal set. Similarly each set {u1i, . . . ,uni} is also a
maximal orthogonal set. So from the united vector property we have ∑i uij = ∑ j uij =
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w. We then have 1 = wT w = (∑i uij) ·w = ∑i Yi j,ω = ∑i Yi j,i j. Similarly ∑ j Yi j,i j = 1.
We also have ∑k Yi j,kl = uij · (∑k ukl) = uij ·w =Yi j,i j. Similarly ∑l Yi j,kl =Yi j,i j. Note
that these conditions are the same as the conditions (1c), (1d) in [1, LP-GI]. Also, note
that (1a) in [1, LP-GI] is implicit in the PSD constraint while (1b) in [1, LP-GI] forms
a subset of (3d) in DNN-GI-OPT. Let Xi j denote the n×n matrix formed by reshaping
(reshape(Y (n∗ (i−1)+ j, :)′,n,n) in Matlab) the (i j)th row of Y . The constraint (1f)
in [1, LP-GI] can be written as AXi j = Xi jB, where A,B are the adjacency matrices
of G1,G2, respectively. The constraint (1e) in [1, LP-GI] can be written as AX = XB
where X is the n×n matrix formed by reshaping the diagonal of Y . We will show that
(1e) is implied by (1f) and the PSD constraint, thus making it redundant for DNN-GI
as long as (1f) holds. We can view the matrix Xi j for a PSD matrix Y as uij ·V where
V is a n× n matrix such that V (k, l) = ukl. Note that the matrix V is similar to the
matrix W defined in the proof of Lemma 1. So we have A(uij ·V )= (uij ·V )B for all i, j
assuming that (1f) holds. In particular, we have A(ui1 ·V ) = (ui1 ·V )B for all i. Adding
these equations, we get A(u11 ·V +u21 ·V + . . .+un1 ·V ) = (u11 ·V +u21 ·V + . . .+
un1 ·V )B or A((u11+u21+ . . .+un1) ·V ) = ((u11+u21+ . . .+un1) ·V )B, which is the
same as A(w ·V ) = (w ·V )B or AX =XB. Finally, consider (1f). From [1, Observation
2], a subset of the conditions given by (1f) imply the remaining conditions (those
not already included in (1b)) given by (3d) in DNN-GI-OPT. This leaves the only
interesting conditions in (1f) as those that correspond to i 6= k and j 6= l. Consider the
special case when the input graphs are isomorphic and Y belongs to the convex hull
of the feasible P[2]

σ s. Clearly, in this case AXi j = Xi jB holds for all i, j. However, we
cannot claim the same for the situation when Y does not belong to the convex hull of
the feasible P[2]

σ s. We could add the constraint (1f) to DNN-GI-OPT without affecting
its polynomial time solvability to obtain a SDP with feasible region strictly contained
within the feasible region of [1, LP-GI] and hence stronger than [1, LP-GI]. In the
following section however, we show via experimentation that even without (1f) the
semidefinite formulation performs better than the LP formulation from [1] as far as
strongly regular graphs are concerned.

3.3 Experiments with the Lovász Theta function

3.3.1 Experimental setup

We use a public domain software [14,15] based on Matlab to solve the semidefinite
program for the Lovász Theta function. Small changes are made to the software to
take advantage of the fact that the matrix AAT is a diagonal matrix, which allows for
an easy solution to the system AAT x = b. Also there is no need to store the matrix
A separately which saves an enormous amount of space. Separate functions are writ-
ten to directly compute and store only the diagonal of the square matrix AAT without
first creating matrix A, and to directly compute the matrix-vector products Ay and AT y
without first creating and storing matix A. Constraints of the form Yi j,i j = 1 are added
dynamically to the SDP and these can cause the matrix AAT to have off-diagonal en-
tries, since Yi j,i j = Yi j,ω constraints are already present. To circumvent this, the con-
straint Yi j,i j = Yi j,ω is replaced with the constraint Yi j,ω = 1 every time a constraint
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of the form Yi j,i j = 1 is added to the SDP, since Yi j,ω = 1 along with Yi j,i j = 1 im-
plies Yi j,i j =Yi j,ω . The experiments are run on a desktop computer equipped with the
Intel R©CoreTM i5-6400 CPU @ 2.70GHz×4 running Matlab R2017b (9.3.0.713579)
on Ubuntu 18.04.2 LTS.

We run Algorithm 1 with SDP-GI instead of DNN-GI. This is so because the
SDP solver does not allow the linear conditions to be specified as inequalities. How-
ever, since the diagonal vector of a PSD matrix is always non-negative, we can create
a larger matrix with the original matrix as a principal sub-matrix, and with condi-
tion that all the diagonal entries outside the principal sub-matrix are equal to the
off-diagonal entries of the original matrix. This would result in a variable matrix of
dimension (N+

(N
2

)
)×(N+

(N
2

)
) if the original matrix was of dimension N×N. This

is not practical since our original matrix is n2×n2 where n is the number of vertices in
the input graphs. So for even ten vertex graphs, the variable matrix of the SDP would
blow up to 5050× 5050. Hence, we run the solver on the original variable matrix
without the non-negativity conditions and it turns out that we can still differentiate
non-isomorphic strongly regular graphs in polynomial time as summarized in Table
1. However, the same is not true for CFI graphs. Here, we do get an optimal solution
but with the solution matrix having negative entries. Thus our experiments with the
Lovász theta function on CFI graphs are not interesting.

3.3.2 Results

Column one of Table 1 identifies the strongly regular graph family by giving its pa-
rameters whereas column two of Table 1 identifies the two graphs from this fam-
ily on which the experiment is run. For example a table entry with column one as
(25,12,5,6) implies a strongly regular graph having n = 25 vertices, degree of each
vertex as 12, the number of common neighbors shared by each pair of adjacent ver-
tices as 5 and the number of common neighbors shared by each pair of non-adjacent
vertices as 6. A value of 2-3 under column two of this table entry means that the
second and the third graphs in the order of listing on the website [17], are used as
the pair of non-isomorphic graphs belonging to the class (25,12,5,6). A value of i-i
under column two suggests that two copies of the same graph are used and hence
in this case the input graphs are isomorphic. Column three of Table 1 lists the num-
ber of times that SDP-GI is solved for each input. We observe that for isomorphic
graphs, the algorithm converges quickly to a solution of value n and rank at most 3.
For non-isomorphic graphs, every time exactly n+ 1 iterations of SDP-GI suffice.
These iterations correspond to setting Y1 j,1 j = 1 for j = 1 . . .n after the first iteration
where the original SDP is solved. Since in each of these n-iterations the value of the
objective function drops below n, we can safely conclude that the given pair of graphs
are non-isomorphic, and there is no need to run the algorithm on the remaining di-
agonal entries. We observe that irrespective of the input graphs being isomorphic or
non-isomorphic, the solution obtained during the first iteration of SDP-GI has each
diagonal entry equal to 1/n. Since the maximum number of times that SDP-GI gets
solved for any input is at most n+ 1, Algorithm 1 runs in time that is bounded by a
polynomial in n. Further, in comparison to the results with the same set of graphs in
[1], the number of times that SDP-GI is solved is several orders of magnitude less
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than the number of times that LP-GI is solved in [1] (see [1, Table 1]). For example
consider the graph pair 4-5 from the family (50,21,8,9). From [1, Table 1], LP-GI is
solved 1050 times before the feasible region becomes empty, as compared to only 51
times of SDP-GI.

Table 1

Class Pair
No. of
iterations
of SDP-GI

Class Pair
No. of
iterations
of SDP-GI

Class Pair
No. of
iterations
of SDP-GI

(16,6,2,2) 1-1 6 (29,14,6,7) 4-4 2 (40,12,2,4) 2-3 41
(16,6,2,2) 1-2 17 (29,14,6,7) 4-5 30 (40,12,2,4) 2-4 41
(16,6,2,2) 2-2 5 (29,14,6,7) 5-5 2 (40,12,2,4) 2-5 41
(25,12,5,6) 1-1 3 (35,18,9,9) 1-1 2 (40,12,2,4) 3-3 3
(25,12,5,6) 1-2 26 (35,18,9,9) 1-2 36 (40,12,2,4) 3-4 41
(25,12,5,6) 1-3 26 (35,18,9,9) 1-3 36 (40,12,2,4) 3-5 41
(25,12,5,6) 1-4 26 (35,18,9,9) 1-4 36 (40,12,2,4) 4-4 2
(25,12,5,6) 1-5 26 (35,18,9,9) 1-5 36 (40,12,2,4) 4-5 41
(25,12,5,6) 2-2 2 (35,18,9,9) 2-2 2 (40,12,2,4) 5-5 4
(25,12,5,6) 2-3 26 (35,18,9,9) 2-3 36 (45,12,3,3) 1-1 4
(25,12,5,6) 2-4 26 (35,18,9,9) 2-4 36 (45,12,3,3) 1-2 46
(25,12,5,6) 2-5 26 (35,18,9,9) 2-5 36 (45,12,3,3) 1-3 46
(25,12,5,6) 3-3 2 (35,18,9,9) 3-3 2 (45,12,3,3) 1-4 46
(25,12,5,6) 3-4 26 (35,18,9,9) 3-4 36 (45,12,3,3) 1-5 46
(25,12,5,6) 3-5 26 (35,18,9,9) 3-5 36 (45,12,3,3) 2-2 6
(25,12,5,6) 4-4 2 (35,18,9,9) 4-4 2 (45,12,3,3) 2-3 46
(25,12,5,6) 4-5 26 (35,18,9,9) 4-5 36 (45,12,3,3) 2-4 46
(25,12,5,6) 5-5 2 (35,18,9,9) 5-5 2 (45,12,3,3) 2-5 46
(26,10,3,4) 1-1 2 (36,14,4,6) 1-1 2 (45,12,3,3) 3-3 4
(26,10,3,4) 1-2 27 (36,14,4,6) 1-2 37 (45,12,3,3) 3-4 46
(26,10,3,4) 1-3 27 (36,14,4,6) 1-3 37 (45,12,3,3) 3-5 46
(26,10,3,4) 1-4 27 (36,14,4,6) 1-4 37 (45,12,3,3) 4-4 6
(26,10,3,4) 1-5 27 (36,14,4,6) 1-5 37 (45,12,3,3) 4-5 46
(26,10,3,4) 2-2 2 (36,14,4,6) 2-2 2 (45,12,3,3) 5-5 6
(26,10,3,4) 2-3 27 (36,14,4,6) 2-3 37 (50,21,8,9) 1-1 2
(26,10,3,4) 2-4 27 (36,14,4,6) 2-4 37 (50,21,8,9) 1-2 51
(26,10,3,4) 2-5 27 (36,14,4,6) 2-5 37 (50,21,8,9) 1-3 51
(26,10,3,4) 3-3 2 (36,14,4,6) 3-3 2 (50,21,8,9) 1-4 51
(26,10,3,4) 3-4 27 (36,14,4,6) 3-4 37 (50,21,8,9) 1-5 51
(26,10,3,4) 3-5 27 (36,14,4,6) 3-5 37 (50,21,8,9) 2-2 2
(26,10,3,4) 4-4 3 (36,14,4,6) 4-4 2 (50,21,8,9) 2-3 51
(26,10,3,4) 4-5 27 (36,14,4,6) 4-5 37 (50,21,8,9) 2-4 51
(26,10,3,4) 5-5 2 (36,14,4,6) 5-5 2 (50,21,8,9) 2-5 51
(28,12,6,4) 1-1 4 (37,18,8,9) 1-1 3 (50,21,8,9) 3-3 2
(28,12,6,4) 1-2 29 (37,18,8,9) 1-2 38 (50,21,8,9) 3-4 51
(28,12,6,4) 1-3 29 (37,18,8,9) 1-3 38 (50,21,8,9) 3-5 51
(28,12,6,4) 1-4 29 (37,18,8,9) 1-4 38 (50,21,8,9) 4-4 2
(28,12,6,4) 2-2 6 (37,18,8,9) 1-5 38 (50,21,8,9) 4-5 51
(28,12,6,4) 2-3 29 (37,18,8,9) 2-2 2 (50,21,8,9) 5-5 2
(28,12,6,4) 2-4 29 (37,18,8,9) 2-3 38 (64,18,2,6) 1-1 6
(28,12,6,4) 3-3 5 (37,18,8,9) 2-4 38 (64,18,2,6) 1-2 65
(28,12,6,4) 3-4 29 (37,18,8,9) 2-5 38 (64,18,2,6) 1-3 65
(28,12,6,4) 4-4 5 (37,18,8,9) 3-3 2 (64,18,2,6) 1-4 65
(29,14,6,7) 1-1 2 (37,18,8,9) 3-4 38 (64,18,2,6) 1-5 65
(29,14,6,7) 1-2 30 (37,18,8,9) 3-5 38 (64,18,2,6) 2-2 6
(29,14,6,7) 1-3 30 (37,18,8,9) 4-4 2 (64,18,2,6) 2-3 65
(29,14,6,7) 1-4 30 (37,18,8,9) 4-5 38 (64,18,2,6) 2-4 65
(29,14,6,7) 1-5 30 (37,18,8,9) 5-5 2 (64,18,2,6) 2-5 65
(29,14,6,7) 2-2 2 (40,12,2,4) 1-1 4 (64,18,2,6) 3-3 6
(29,14,6,7) 2-3 30 (40,12,2,4) 1-2 41 (64,18,2,6) 3-4 65
(29,14,6,7) 2-4 30 (40,12,2,4) 1-3 41 (64,18,2,6) 3-5 65
(29,14,6,7) 2-5 30 (40,12,2,4) 1-4 41 (64,18,2,6) 4-4 6
(29,14,6,7) 3-3 2 (40,12,2,4) 1-5 41 (64,18,2,6) 4-5 65
(29,14,6,7) 3-4 30 (40,12,2,4) 2-2 5 (64,18,2,6) 5-5 5
(29,14,6,7) 3-5 30

Continued on next page
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Table 1 – continued from previous page

Class Pair
No. of
iterations
of SDP-GI

Class Pair
No. of
iterations
of SDP-GI

Class Pair
No. of
iterations
of SDP-GI

Table 1: Results of experiments with strongly regular graphs from [17]

4 Rank structure of DG
p

In the previous section we showed that if the optimal feasible region of DNN-GI
contains a point of rank-1, then the given pair of graphs must be isomorphic. In this
section we extend this claim to all points of rank at most 3. This would allow us to
terminate Algorithm 1 as soon as we have obtained a point of rank 3, rather than
going all the way to construct a rank-1 solution.

Lemma 4 Consider a point Y in DG
p of rank r ≤ n. If it has a vector realization

{uij|1 ≤ i, j ≤ n} such that there exist i, j1, . . . , jr with
∥∥uij1

∥∥2
> 0,

∥∥uij2

∥∥2
> 0, . . .

,
∥∥uijr

∥∥2
> 0, then it belongs to the CP-feasible region, B

[2]
G1G2

.

Proof Vectors uij1 , uij2 , . . . ,uijr are mutually orthogonal vectors so they can be taken
as a basis of the r-dimensional space in which all the vectors lie. Now since the
remaining vectors make non-negative dot products with these r vectors, all the vectors
lie in the positive orthant of this basis. Thus the given matrix Y is completely positive
and hence belongs to the CP-feasible region. ut

Lemma 5 All rank-2 points of DG
p belong to the CP-feasible region, B

[2]
G1G2

.

Proof Let Y be a rank-2 point in DG
p with vector realization {uij|1 ≤ i, j ≤ n}. The

vectors must be in 2-dimensional space so for each i there are at most two values of j
such that uij is non-zero. If for some i there is only one such index, j = j1, such that
uij is non-zero, then ∑

n
j=1 uij = w (this must be true since ∑i j Yi j,i j = n) implies that

uij1 = w. If uij is non-zero for only one value of j for all i, then Y will be a rank-1

matrix, i.e., P[2]
σ for some σ . But Y is a rank-2 matrix so there exists an i such that

uij1 and uij2 are non-zero for some j1 6= j2. From Lemma 4 Y is a completely positive
matrix. ut

Given a vector realization of a solution of DNN-GI, {uij|1 ≤ i, j ≤ n}, a subset
{uiji |i ∈ I} of non-zero vectors will be called a consistent set if upjp ·uqjq > 0 for all
p,q∈ I. If I = {1, . . . ,n}, then it will be called a complete consistent set. Let {uiji |1≤
i ≤ n} be a complete consistent set. Define a function f as f (i) = ji for 1 ≤ i ≤ n.
From (1b) and (1c) we see that f is a permutation. From the graph conditions (2a) we
see that f is an isomorphism between G1 and G2.

Observation 4 If {uij|1≤ i, j ≤ n} is the vector realization of a solution Y of DNN-
GI which contains a complete consistent set {u1σ(1), . . . ,unσ(n)}, then σ is an iso-
morphism between G1 and G2.
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Lemma 6 Let {uj1,uj2} be a pair of orthogonal united vectors with uj1 +uj2 = w,
for j = 1,2, . . . ,r. Then there exists a consistent set of vectors {vj ∈ {uj1,uj2}| j =
1, . . . ,r}.

Proof Since uj1 ·uj2 = 0 and uj1 +uj2 = w,
∥∥uj1

∥∥2
+
∥∥uj2

∥∥2
= 1 for each j. Without

loss of generality assume that for each j,
∥∥uj1

∥∥2 ≥
∥∥uj2

∥∥2. Let vj = uj1. So
∥∥vj
∥∥2 ≥

1/2 ∀ j. For arbitrary p 6= q, we will show that up1 ·uq1 > 0. Contrary to the claim,
assume that up1 ·uq1 = 0. From the above, we have

∥∥up1
∥∥2

= up1 ·w= up1 ·uq1+up1 ·
uq2 = up1 ·uq2. Similarly

∥∥uq1
∥∥2

= up2 ·uq1. Also, we have 1 = ‖w‖2 = (up1+up2) ·
(uq1+uq2) =

∥∥up1
∥∥2

+
∥∥uq1

∥∥2
+up2 ·uq2. First consider the case that

∥∥up1
∥∥2

> 1/2

or
∥∥uq1

∥∥2
> 1/2. In this case 1 =

∥∥up1
∥∥2

+
∥∥uq1

∥∥2
+up2 ·uq2 > 1, which is absurd.

Next we consider the remaining case that
∥∥up1

∥∥2
=
∥∥uq1

∥∥2
= 1/2. From the above,

up1 ·uq2 = 1/2 and up2 ·uq1 = 1/2. So
∥∥up1−uq2

∥∥2
= 1/2+ 1/2− 2up1 ·uq2 = 0,

giving up1 = uq2. Similarly we can show that up2 = uq1. This gives {up1,up2} =
{uq1,uq2}, which violates our assumption that p 6= q. ut

Lemma 7 The vector realization {uij|1 ≤ i, j ≤ n} of any rank-3 point in DG
p con-

tains at least one complete consistent set.

Proof If there exist i, j1, j2, j3 such that
∥∥uij1

∥∥2
> 0,

∥∥uij2

∥∥2
> 0,

∥∥uij3

∥∥2
> 0, then

the claim holds from Lemma 4.
Next suppose the only non-zero vectors are {uiji ,uiki |1≤ i≤ r}∪{uiji |i > r}. So

uiji = w for i > r. From Lemma 6 there exist vi ∈ {uiji ,uiki} for 1 ≤ i ≤ r such that
vi′ ·vi′′ > 0 for all 1≤ i′, i′′ ≤ r. The desired complete consistent set is {xi|1≤ i≤ n}
where xi = vi for i≤ r and xi = w for i > r. Observe that vi ·w = ‖vi‖2 > 0. ut

Theorem 2 If the set of optimal points in DNN-GI contains a point of rank at most
3, then G1,G2 are isomorphic.

5 Conclusions

In this paper we presented a semidefinite approach to graph isomorphism and showed
its relation to the well known Lovász Theta function of a graph product of the input
graphs. We presented an iterative rounding procedure to construct a rank-1 solution to
establish that the given pair of graphs are isomorphic. So far this procedure is simply
a heuristic and can possibly give false negatives. We leave it as an open problem
to prove the correctness of this procedure or to show that it is not guaranteed to
always return a rank-1 solution if one exists. Our experimental results with strongly
regular graphs are encouraging and it would be a worthwhile exercise to try these
experiments with larger graphs to see if the same holds true even for them. In any
case it is desirable to find an explanation for the experimental results reported in this
paper. Further, it would be interesting to see if the results of Section 4 can be extended
to points of rank-4 and higher.
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