A Geometric Approach to Graph Isomorphism

Pawan Aurora Shashank K. Mehta

Department of Computer Science and Engineering Indian Institute of Technology, Kanpur

ISAAC 2014, Jeonju, Korea

Pawan Aurora

A Geometric Approach to Graph Isomorphism

ISAAC 2014, Jeonju, Korea 1 / 24

• Given graphs $G_1 = (V, E_1), G_2 = (V, E_2)$ with $V = \{1, ..., n\}$.

- Given graphs $G_1 = (V, E_1), G_2 = (V, E_2)$ with $V = \{1, ..., n\}$.
- Does there exist a bijection (permutation) σ : V(G₁) → V(G₂) s.t. {u, v} ∈ E₁ iff {σ(u), σ(v)} ∈ E₂?

◆□▶ ◆圖▶ ◆圖▶ ◆圖▶ ─ 圖

- Given graphs $G_1 = (V, E_1), G_2 = (V, E_2)$ with $V = \{1, ..., n\}$.
- Does there exist a bijection (permutation) σ : V(G₁) → V(G₂) s.t. {u, v} ∈ E₁ iff {σ(u), σ(v)} ∈ E₂?
- Not known to be either in P or NP-Complete.

・ロト ・四ト ・ヨト ・ヨト ・ヨ

- Given graphs $G_1 = (V, E_1), G_2 = (V, E_2)$ with $V = \{1, ..., n\}$.
- Does there exist a bijection (permutation) σ : V(G₁) → V(G₂) s.t. {u, v} ∈ E₁ iff {σ(u), σ(v)} ∈ E₂?
- Not known to be either in P or NP-Complete.
- Best known algorithm runs in $2^{O(\sqrt{n \log n})}$ time.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

An Integer Linear Program for GIP

IP-GI: Find a point $Y \in \{0,1\}^{n^2 \times n^2}$ subject to the following:

$$Y_{ij,kl} - Y_{kl,ij} = 0 , \forall i,j,k,l$$
(1a)

$$Y_{ij,il} = Y_{ji,li} = 0 , \forall i, \forall j \neq l$$
(1b)

$$\sum_{k} Y_{ij,kl} = \sum_{k} Y_{ij,lk} = Y_{ij,ij} , \forall i,j,l$$
 (1c)

$$\sum_{j} Y_{ij,ij} = \sum_{j} Y_{ji,ji} = 1 , \forall i$$
(1d)

$$Y_{ij,kl} = 0$$
, $\{i,k\} \in E(G_1)$ and $\{j,l\} \notin E(G_2)$ or
 $\{i,k\} \notin E(G_1)$ and $\{j,l\} \in E(G_2)$ (1e)

An Integer Linear Program for GIP

IP-GI: Find a point $Y \in \{0,1\}^{n^2 \times n^2}$ subject to the following:

$$Y_{ij,kl} - Y_{kl,ij} = 0 , \forall i,j,k,l$$
(1a)

$$Y_{ij,il} = Y_{ji,li} = 0 , \forall i, \forall j \neq l$$
(1b)

$$\sum_{k} Y_{ij,kl} = \sum_{k} Y_{ij,lk} = Y_{ij,ij} , \forall i,j,l$$
 (1c)

$$\sum_{j} Y_{ij,ij} = \sum_{j} Y_{ji,ji} = 1 , \forall i$$
(1d)

$$Y_{ij,kl} = 0$$
, $\{i, k\} \in E(G_1)$ and $\{j, l\} \notin E(G_2)$ or
 $\{i, k\} \notin E(G_1)$ and $\{j, l\} \in E(G_2)$ (1e)

Theorem

IP-GI has a solution iff $G_1 \simeq G_2$.

Pawan Aurora

A Geometric Approach to Graph Isomorphism

Solution Points of IP-GI

Second-order Permutation Matrix, $P_{\sigma}^{[2]}$

• The $n^2 \times n^2$ symmetric matrix with $(P_{\sigma}^{[2]})_{ij,kl} = (P_{\sigma})_{ij}(P_{\sigma})_{kl}$.

Solution Points of IP-GI

Second-order Permutation Matrix, $P_{\sigma}^{[2]}$

• The $n^2 \times n^2$ symmetric matrix with $(P_{\sigma}^{[2]})_{ij,kl} = (P_{\sigma})_{ij}(P_{\sigma})_{kl}$. For example:

A Geometric Approach to Graph Isomorphism

Polytope $\mathcal{B}^{[2]}$

 $\mathcal{P}^{[2]}_{\sigma_1}$ $\mathcal{P}^{[2]}_{\sigma_n}$ $\mathcal{P}^{[2]}_{\sigma_2}$ $\mathcal{B}^{[2]}$ $\mathcal{P}^{[2]}_{\sigma_6}$ $\mathcal{P}^{[2]}_{\sigma_3}$ $\mathcal{P}^{[2]}_{\sigma_5}$ $\mathcal{P}^{[2]}_{\sigma_4}$

Convex hull of $\mathcal{P}^{[2]}_{\sigma} \ \forall \ \sigma \in S_n$

A Geometric Approach to Graph Isomorphism

ISAAC 2014, Jeonju, Korea 5 / 24

3

<ロ> (日) (日) (日) (日) (日)

Solution Points of IP-GI

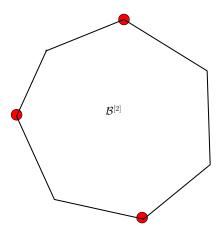


Figure: Red Vertices Correspond to the Isomorphisms Between G_1, G_2

Pawan Aurora

A Geometric Approach to Graph Isomorphism

ISAAC 2014, Jeonju, Korea 6 / 24

Linear Programming Relaxation of IP-GI

LP-GI: Find a point
$$Y$$

subject to $(1a)$ - $(1e)$
 $Y_{ij,kl} \ge 0, \forall i, j, k, l$ (2a)

Pawan Aurora A Geometric Approach to Graph Isomorphism ISAAC 2014, Jeonju, Korea 7 / 24

イロト 不得下 イヨト イヨト 二日

Linear Programming Relaxation of IP-GI

LP-GI: Find a point
$$Y$$

subject to $(1a)$ - $(1e)$
 $Y_{ij,kl} \ge 0$, $\forall i, j, k, l$ (2a)

Note $Y_{ij,kl} \leq 1$ is implied.

Pawan Aurora

A Geometric Approach to Graph Isomorphism

ISAAC 2014, Jeonju, Korea 7 / 24

Feasible Region of LP-GI

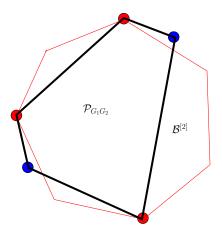


Figure: The Blue Vertices are the Non-Integral Vertices of Polytope $\mathcal{P}_{G_1G_2}$

Pawan Aurora

A Geometric Approach to Graph Isomorphism

ISAAC 2014, Jeonju, Korea 8 / 24

(日) (同) (三) (三)

Polytope \mathcal{P}

Feasible region of LP-GI ($\mathcal{P}_{G_1G_2}$) when $G_1 = G_2 = (V, \emptyset)$ or $G_1 = G_2 = K_n$

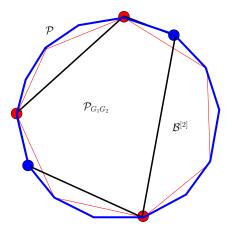


Figure: The Vertices in Blue are the Vertices of Polytope \mathcal{P}

Pawan Aurora

A Geometric Approach to Graph Isomorphism

ISAAC 2014, Jeonju, Korea 9 / 24

- 3

Isomorphic Graphs

▶ Graphs G_1, G_2 are isomorphic iff $\mathcal{P}_{G_1G_2} \cap \mathcal{B}^{[2]}$ is non-empty

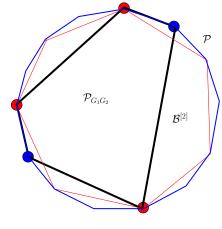


Figure: $\mathcal{P}_{G_1G_2} \cap \mathcal{B}^{[2]}$ is Non-Empty

Pawan Aurora

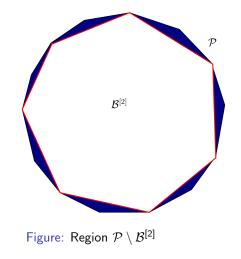
A Geometric Approach to Graph Isomorphism

ISAAC 2014, Jeonju, Korea 10 / 24

3

Non-Isomorphic Graphs

 $\blacktriangleright \mathcal{P}_{G_1G_2} \subseteq \mathcal{P} \setminus \mathcal{B}^{[2]} \text{ when } G_1 \not\simeq G_2$

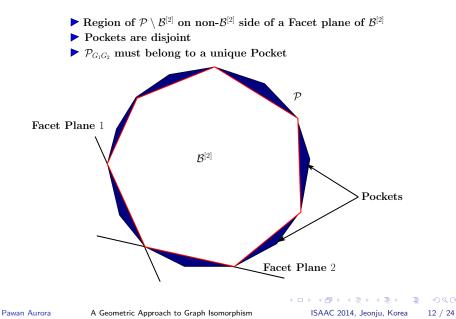


A Geometric Approach to Graph Isomorphism

ISAAC 2014, Jeonju, Korea 11 / 24

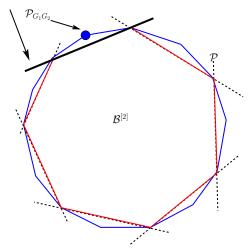
3

Pocket



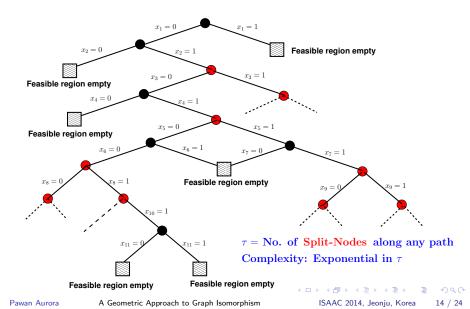
An Important Property for Non-Isomorphic Graphs

 $\mathcal{P}_{G_1G_2}$ violates a unique Facet Plane of $\mathcal{B}^{[2]}$



- < A

The Algorithm



First Family of Facets

Theorem

 $Y_{i_1j_1,kl} + Y_{i_2j_2,kl} + \ldots + Y_{i_mj_m,kl} \leq Y_{kl,kl} + \sum_{r \neq s} Y_{i_rj_r,i_sj_s}$, where i_1, \ldots, i_m, k are all distinct and j_1, \ldots, j_m, l are also distinct. In addition, $n \geq 6, m \geq 3$.

イロト 不得下 イヨト イヨト 二日

First Family of Facets

Theorem

 $Y_{i_1j_1,kl} + Y_{i_2j_2,kl} + \ldots + Y_{i_mj_m,kl} \leq Y_{kl,kl} + \sum_{r \neq s} Y_{i_rj_r,i_sj_s}$, where i_1, \ldots, i_m, k are all distinct and j_1, \ldots, j_m, l are also distinct. In addition, $n \geq 6, m \geq 3$.

Lemma

 $\tau = 0$ when the feasible region lies in a pocket defined by any facet above with m > 3.

イロト 不得下 イヨト イヨト 二日

First Family of Facets

Theorem

 $Y_{i_1j_1,kl} + Y_{i_2j_2,kl} + \ldots + Y_{i_mj_m,kl} \leq Y_{kl,kl} + \sum_{r \neq s} Y_{i_rj_r,i_sj_s}$, where i_1, \ldots, i_m, k are all distinct and j_1, \ldots, j_m, l are also distinct. In addition, $n \geq 6, m \geq 3$.

Lemma

 $\tau = 0$ when the feasible region lies in a pocket defined by any facet above with m > 3.

Note

The case of m = 3 is handled by explicitly adding the corresponding polynomially many inequalities to LP-GI.

Second Family of Facets

Theorem (Jünger-Kaibel)

$$-(\beta-1)\sum_{(ij)\in P\times Q}Y_{ij,ij}+\sum_{(ij)\neq (kl)\in P\times Q, i< k}Y_{ij,kl}+\frac{\beta^2-\beta}{2}\geq 0, \text{ where }$$

 $P, Q \subseteq [n]; \beta + 1 \leq |P|, |Q| \leq n - 3; |P| + |Q| \leq n - 3 + \beta; \beta \geq 2.$

Second Family of Facets

Theorem (Jünger-Kaibel)

$$-(\beta-1)\sum_{(ij)\in P\times Q} Y_{ij,ij} + \sum_{(ij)\neq(kl)\in P\times Q, i< k} Y_{ij,kl} + \frac{\beta^2 - \beta}{2} \ge 0, \text{ where}$$
$$P, Q \subseteq [n]; \beta+1 \le |P|, |Q| \le n-3; |P|+|Q| \le n-3+\beta; \beta \ge 2.$$

Lemma

 $\tau = 0$ when the feasible region lies in a pocket defined by any facet above with $|P| > \beta + 1$ or $|Q| > \beta + 1$ or $|P| = |Q| = \beta + 1, \beta > 2$.

Second Family of Facets

Theorem (Jünger-Kaibel)

$$-(\beta-1)\sum_{(ij)\in P\times Q}Y_{ij,ij}+\sum_{(ij)\neq (kl)\in P\times Q, i< k}Y_{ij,kl}+\frac{\beta^2-\beta}{2}\geq 0, \text{ where }$$

0

 $P, Q \subseteq [n]; \beta + 1 \leq |P|, |Q| \leq n - 3; |P| + |Q| \leq n - 3 + \beta; \beta \geq 2.$

Lemma

 $\tau = 0$ when the feasible region lies in a pocket defined by any facet above with $|P| > \beta + 1$ or $|Q| > \beta + 1$ or $|P| = |Q| = \beta + 1, \beta > 2$.

Note

The case of $\beta = 2$ and |P| = |Q| = 3 is handled by explicitly adding the corresponding *polynomially many* inequalities to LP-GI.

Pawan Aurora

Third Family of Facets

Theorem (Jünger-Kaibel) In the following $P_1, P_2, Q \subseteq [n], P_1 \cap P_2 = \emptyset$:

$$-(\beta-1)\sum_{(ij)\in P_1\times Q}Y_{ij,ij}+\beta\sum_{(ij)\in P_2\times Q}Y_{ij,ij}+\sum_{(ij)\neq (kl)\in P_1\times Q, i
$$+\sum_{(ij)\neq (kl)\in P_2\times Q, i$$$$

Pawan Aurora

ISAAC 2014, Jeonju, Korea 17 / 24

イロト 不得 トイヨト イヨト 二日

Third Family of Facets

Theorem (Jünger-Kaibel) In the following $P_1, P_2, Q \subseteq [n], P_1 \cap P_2 = \emptyset$:

$$- (\beta - 1) \sum_{(ij) \in P_1 \times Q} Y_{ij,ij} + \beta \sum_{(ij) \in P_2 \times Q} Y_{ij,ij} + \sum_{(ij) \neq (kl) \in P_1 \times Q, i < k} Y_{ij,kl}$$

$$+ \sum_{(ij) \neq (kl) \in P_2 \times Q, i < k} Y_{ij,kl} - \sum_{(ij) \in P_1 \times Q, (kl) \in P_2 \times Q} Y_{ij,kl} + \frac{\beta^2 - \beta}{2} \ge 0.$$

Lemma

 $\tau = 0$ when the feasible region lies in a pocket defined by any facet above subject to: (i) $|P_1|, |P_2| \ge 3$, (ii) if $\beta \ge 0$ and $\min\{|Q|, |P_1|\} \ge \beta + 1$ then $|Q| + |P_1| + 3 \le n + \beta$, (iii) if $\beta < 0$ and $\min\{|Q|, |P_2|\} \ge 2 - \beta$ then $|Q| + |P_2| + 3 \le n + 1 - \beta$.

Pawan Aurora

Fourth Family of Facets

Theorem

 $Y_{p_1q_1,kl} + Y_{p_2q_2,kl} + Y_{p_1q_2,kl} \le Y_{kl,kl} + Y_{p_1q_1,p_2q_2}$, where p_1, p_2, k are distinct and q_1, q_2, l are also distinct and $n \ge 6$.

イロト 不得 トイヨト イヨト 二日

Fourth Family of Facets

Theorem

 $Y_{p_1q_1,kl} + Y_{p_2q_2,kl} + Y_{p_1q_2,kl} \le Y_{kl,kl} + Y_{p_1q_1,p_2q_2}$, where p_1, p_2, k are distinct and q_1, q_2, l are also distinct and $n \ge 6$.

Note

The above are polynomially many and can be included in LP-GI.

18 / 24

Fourth Family of Facets

Theorem

 $Y_{p_1q_1,kl} + Y_{p_2q_2,kl} + Y_{p_1q_2,kl} \le Y_{kl,kl} + Y_{p_1q_1,p_2q_2}$, where p_1, p_2, k are distinct and q_1, q_2, l are also distinct and $n \ge 6$.

Note

The above are polynomially many and can be included in LP-GI.

Modified Linear Program

LP-GI with the base case facets and the above family of facets included is referred to as *modified* LP-GI.

Trivial Facets

Theorem (Jünger-Kaibel) $Y_{ij,kl} \ge 0$ for every i, j, k, l such that $i \ne k$ and $j \ne l$.

Trivial Facets

Theorem (Jünger-Kaibel) $Y_{ij,kl} \ge 0$ for every i, j, k, l such that $i \ne k$ and $j \ne l$.

Note

The above are already part of LP-GI.

イロト 不得 トイヨト イヨト 二日

The Main Theorem

Theorem

The Algorithm, using modified LP-GI, detects non-isomorphic graph pairs in polynomial time if the solution is confined to a pocket due to any of the known facets.

(日) (周) (三) (三)

Yes, if the known facets are all the facets of $\mathcal{B}^{[2]}$.

Pawan Aurora

A Geometric Approach to Graph Isomorphism

A General Inequality

All the known facets of $\mathcal{B}^{[2]}$ are special instances of a general inequality

$$\sum_{ijkl} n_{ij} n_{kl} Y_{ij,kl} + (\beta - 1/2)^2 \ge (2\beta - 1) \sum_{ij} n_{ij} Y_{ij,ij} + 1/4$$

where $\beta \in \mathbb{Z}$ and $n_{ij} \in \mathbb{Z}$ for all (*ij*).

Pawan Aurora

A General Inequality

All the known facets of $\mathcal{B}^{[2]}$ are special instances of a general inequality

$$\sum_{ijkl} n_{ij} n_{kl} Y_{ij,kl} + (\beta - 1/2)^2 \ge (2\beta - 1) \sum_{ij} n_{ij} Y_{ij,ij} + 1/4$$

where $\beta \in \mathbb{Z}$ and $n_{ij} \in \mathbb{Z}$ for all (*ij*).

There are more Facets

Theorem

There exists at least one facet of $\mathcal{B}^{[2]}$ which is not an instance of the above inequality.

Pawan Aurora

イロト 不得下 イヨト イヨト 二日

Future Direction

► Find the remaining facets of B^[2] and show that τ = O(log n) for them.

Future Direction

- ► Find the remaining facets of B^[2] and show that τ = O(log n) for them.
- Give a general inequality that includes all the facets.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Thank you! Questions?

Pawan Aurora

A Geometric Approach to Graph Isomorphism

ISAAC 2014, Jeonju, Korea 24 / 24

3