# A Geometric Approach to Graph Isomorphism 

Pawan Aurora Shashank K. Mehta<br>Department of Computer Science and Engineering<br>Indian Institute of Technology, Kanpur

ISAAC 2014, Jeonju, Korea

## Graph Isomorphism Problem (GIP)

- Given graphs $G_{1}=\left(V, E_{1}\right), G_{2}=\left(V, E_{2}\right)$ with $V=\{1, \ldots, n\}$.


## Graph Isomorphism Problem (GIP)

- Given graphs $G_{1}=\left(V, E_{1}\right), G_{2}=\left(V, E_{2}\right)$ with $V=\{1, \ldots, n\}$.
- Does there exist a bijection (permutation) $\sigma: V\left(G_{1}\right) \rightarrow V\left(G_{2}\right)$ s.t. $\{u, v\} \in E_{1}$ iff $\{\sigma(u), \sigma(v)\} \in E_{2}$ ?


## Graph Isomorphism Problem (GIP)

- Given graphs $G_{1}=\left(V, E_{1}\right), G_{2}=\left(V, E_{2}\right)$ with $V=\{1, \ldots, n\}$.
- Does there exist a bijection (permutation) $\sigma: V\left(G_{1}\right) \rightarrow V\left(G_{2}\right)$ s.t. $\{u, v\} \in E_{1}$ iff $\{\sigma(u), \sigma(v)\} \in E_{2}$ ?
- Not known to be either in P or NP-Complete.


## Graph Isomorphism Problem (GIP)

- Given graphs $G_{1}=\left(V, E_{1}\right), G_{2}=\left(V, E_{2}\right)$ with $V=\{1, \ldots, n\}$.
- Does there exist a bijection (permutation) $\sigma: V\left(G_{1}\right) \rightarrow V\left(G_{2}\right)$ s.t. $\{u, v\} \in E_{1}$ iff $\{\sigma(u), \sigma(v)\} \in E_{2}$ ?
- Not known to be either in P or NP-Complete.
- Best known algorithm runs in $2 O(\sqrt{n \log n})$ time.


## An Integer Linear Program for GIP

IP-GI: Find a point $Y \in\{0,1\}^{n^{2} \times n^{2}}$ subject to the following:

$$
\begin{align*}
& Y_{i j, k l}-Y_{k l, i j}=0, \forall i, j, k, l  \tag{1a}\\
& Y_{i j, i l}=Y_{j i, l i}=0, \forall i, \forall j \neq l  \tag{1b}\\
& \sum_{k} Y_{i j, k l}=\sum_{k} Y_{i j, l k}=Y_{i j, i j}, \forall i, j, l  \tag{1c}\\
& \sum_{j} Y_{i j, i j}=\sum_{j} Y_{j i, j i}=1, \forall i  \tag{1d}\\
& Y_{i j, k l}=0, \\
& \quad\{i, k\} \in E\left(G_{1}\right) \text { and }\{j, l\} \notin E\left(G_{2}\right) \text { or }  \tag{1e}\\
& \quad\{i, k\} \notin E\left(G_{1}\right) \text { and }\{j, l\} \in E\left(G_{2}\right)
\end{align*}
$$

## An Integer Linear Program for GIP

IP-GI: Find a point $Y \in\{0,1\}^{n^{2} \times n^{2}}$ subject to the following:

$$
\begin{align*}
& Y_{i j, k l}-Y_{k l, i j}=0, \forall i, j, k, l  \tag{1a}\\
& Y_{i j, i l}=Y_{j i, l i}=0, \forall i, \forall j \neq l  \tag{1b}\\
& \sum_{k} Y_{i j, k l}=\sum_{k} Y_{i j, l k}=Y_{i j, i j}, \forall i, j, l  \tag{1c}\\
& \sum_{j} Y_{i j, i j}=\sum_{j} Y_{j i, j i}=1, \forall i  \tag{1d}\\
& Y_{i j, k l}=0, \\
& \quad\{i, k\} \in E\left(G_{1}\right) \text { and }\{j, l\} \notin E\left(G_{2}\right) \text { or }  \tag{1e}\\
& \quad\{i, k\} \notin E\left(G_{1}\right) \text { and }\{j, l\} \in E\left(G_{2}\right)
\end{align*}
$$

Theorem
$I P-G I$ has a solution iff $G_{1} \simeq G_{2}$.

## Solution Points of IP-GI

Second-order Permutation Matrix, $P_{\sigma}^{[2]}$

- The $n^{2} \times n^{2}$ symmetric matrix with $\left(P_{\sigma}^{[2]}\right)_{i j, k l}=\left(P_{\sigma}\right)_{i j}\left(P_{\sigma}\right)_{k l}$.


## Solution Points of IP-GI

Second-order Permutation Matrix, $P_{\sigma}^{[2]}$

- The $n^{2} \times n^{2}$ symmetric matrix with $\left(P_{\sigma}^{[2]}\right)_{i j, k l}=\left(P_{\sigma}\right)_{i j}\left(P_{\sigma}\right)_{k l}$. For example:

$$
P_{\sigma}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], P_{\sigma}^{[2]}=\left[\begin{array}{lllllllll}
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1
\end{array}\right]
$$

## Polytope $\mathcal{B}^{[2]}$

- Convex hull of $\mathcal{P}_{\sigma}^{[2]} \forall \sigma \in S_{n}$



## Solution Points of IP-GI



Figure: Red Vertices Correspond to the Isomorphisms Between $G_{1}, G_{2}$

## Linear Programming Relaxation of IP-GI

LP-GI: Find a point $Y$

$$
\begin{array}{ll}
\text { subject to } & (1 a)-(1 e) \\
& Y_{i j, k l} \geq 0, \forall i, j, k, l \tag{2a}
\end{array}
$$

## Linear Programming Relaxation of IP-GI

$$
\begin{array}{rll}
\text { LP-GI: } & \text { Find a point } & Y \\
\text { subject to } & (1 a)-(1 e) \\
& & Y_{i j, k l} \geq 0, \forall i, j, k, l \tag{2a}
\end{array}
$$

Note
$Y_{i j, k l} \leq 1$ is implied.

## Feasible Region of LP-GI



Figure: The Blue Vertices are the Non-Integral Vertices of Polytope $\mathcal{P}_{G_{1} G_{2}}$

## Polytope $\mathcal{P}$

- Feasible region of LP-GI $\left(\mathcal{P}_{G_{1} G_{2}}\right)$ when $G_{1}=G_{2}=(V, \emptyset)$ or $G_{1}=G_{2}=K_{n}$


Figure: The Vertices in Blue are the Vertices of Polytope $\mathcal{P}$

## Isomorphic Graphs

- Graphs $G_{1}, G_{2}$ are isomorphic iff $\mathcal{P}_{G_{1} G_{2}} \cap \mathcal{B}^{[2]}$ is non-empty


Figure: $\mathcal{P}_{G_{1} G_{2}} \cap \mathcal{B}^{[2]}$ is Non-Empty

## Non-Isomorphic Graphs

- $\mathcal{P}_{G_{1} G_{2}} \subseteq \mathcal{P} \backslash \mathcal{B}^{[2]}$ when $G_{1} \not 千 G_{2}$


Figure: Region $\mathcal{P} \backslash \mathcal{B}^{[2]}$

## Pocket

- Region of $\mathcal{P} \backslash \mathcal{B}^{[2]}$ on non- $\mathcal{B}^{[2]}$ side of a Facet plane of $\mathcal{B}^{[2]}$
- Pockets are disjoint
- $\mathcal{P}_{G_{1} G_{2}}$ must belong to a unique Pocket



## An Important Property for Non-Isomorphic Graphs

$\mathcal{P}_{G_{1} G_{2}}$ violates a unique Facet Plane of $\mathcal{B}^{[2]}$


## The Algorithm



## First Family of Facets

Theorem
$Y_{i_{1} j_{1}, k l}+Y_{i_{i 2} j_{2}, k l}+\ldots+Y_{i_{m} j_{m}, k l} \leq Y_{k l, k l}+\sum_{r \neq s} Y_{i_{r j r}, i_{s} j_{s}}$, where $i_{1}, \ldots, i_{m}, k$ are all distinct and $j_{1}, \ldots, j_{m}, l$ are also distinct. In addition, $n \geq 6, m \geq 3$.

## First Family of Facets

Theorem
$Y_{i_{1} j_{1}, k l}+Y_{i_{2} j_{2}, k l}+\ldots+Y_{i_{m} j_{m}, k l} \leq Y_{k l, k l}+\sum_{r \neq s} Y_{i_{r j r}, i_{s} j_{s}}$, where $i_{1}, \ldots, i_{m}, k$ are all distinct and $j_{1}, \ldots, j_{m}, l$ are also distinct. In addition, $n \geq 6, m \geq 3$.

Lemma
$\tau=0$ when the feasible region lies in a pocket defined by any facet above with $m>3$.

## First Family of Facets

Theorem
$Y_{i_{1} j_{1}, k l}+Y_{i_{2} j_{2}, k l}+\ldots+Y_{i_{m} j_{m}, k l} \leq Y_{k l, k l}+\sum_{r \neq s} Y_{i_{r j r}, i_{s} j_{s}}$, where $i_{1}, \ldots, i_{m}, k$ are all distinct and $j_{1}, \ldots, j_{m}, l$ are also distinct. In addition, $n \geq 6, m \geq 3$.

Lemma
$\tau=0$ when the feasible region lies in a pocket defined by any facet above with $m>3$.

Note
The case of $m=3$ is handled by explicitly adding the corresponding polynomially many inequalities to LP-GI.

## Second Family of Facets

Theorem (Jünger-Kaibel)
$-(\beta-1) \sum_{(i j) \in P \times Q} Y_{i j, i j}+\sum_{(i j) \neq(k \mid) \in P \times Q, i<k} Y_{i j, k l}+\frac{\beta^{2}-\beta}{2} \geq 0$, where
$P, Q \subseteq[n] ; \beta+1 \leq|P|,|Q| \leq n-3 ;|P|+|Q| \leq n-3+\beta ; \beta \geq 2$.

## Second Family of Facets

Theorem (Jünger-Kaibel)
$-(\beta-1) \sum_{(i j) \in P \times Q} Y_{i j, i j}+\sum_{(i j) \neq(k) \in P \times Q, i<k} Y_{i j, k l}+\frac{\beta^{2}-\beta}{2} \geq 0$, where
$P, Q \subseteq[n] ; \beta+1 \leq|P|,|Q| \leq n-3 ;|P|+|Q| \leq n-3+\beta ; \beta \geq 2$.
Lemma
$\tau=0$ when the feasible region lies in a pocket defined by any facet above with $|P|>\beta+1$ or $|Q|>\beta+1$ or $|P|=|Q|=\beta+1, \beta>2$.

## Second Family of Facets

Theorem (Jünger-Kaibel)
$-(\beta-1) \sum_{(i j) \in P \times Q} Y_{i j, i j}+\sum_{(i j) \neq(k l) \in P \times Q, i<k} Y_{i j, k l}+\frac{\beta^{2}-\beta}{2} \geq 0$, where
$P, Q \subseteq[n] ; \beta+1 \leq|P|,|Q| \leq n-3 ;|P|+|Q| \leq n-3+\beta ; \beta \geq 2$.
Lemma
$\tau=0$ when the feasible region lies in a pocket defined by any facet above with $|P|>\beta+1$ or $|Q|>\beta+1$ or $|P|=|Q|=\beta+1, \beta>2$.

Note
The case of $\beta=2$ and $|P|=|Q|=3$ is handled by explicitly adding the corresponding polynomially many inequalities to LP-GI.

## Third Family of Facets

## Theorem (Jünger-Kaibel)

In the following $P_{1}, P_{2}, Q \subseteq[n], P_{1} \cap P_{2}=\emptyset$ :

$$
\begin{aligned}
& -(\beta-1) \sum_{(i j) \in P_{1} \times Q} Y_{i j, i j}+\beta \sum_{(i j) \in P_{2} \times Q} Y_{i j, i j}+\sum_{(i j) \neq(k l) \in P_{1} \times Q, i<k} Y_{i j, k l} \\
& +\sum_{(i j) \neq(k l) \in P_{2} \times Q, i<k} Y_{i j, k l}-\sum_{(i j) \in P_{1} \times Q,(k l) \in P_{2} \times Q} Y_{i j, k l}+\frac{\beta^{2}-\beta}{2} \geq 0 .
\end{aligned}
$$

## Third Family of Facets

## Theorem (Jünger-Kaibel)

In the following $P_{1}, P_{2}, Q \subseteq[n], P_{1} \cap P_{2}=\emptyset$ :

$$
\begin{aligned}
& -(\beta-1) \sum_{(i j) \in P_{1} \times Q} Y_{i j, i j}+\beta \sum_{(i j) \in P_{2} \times Q} Y_{i j, i j}+\sum_{(i j) \neq(k l) \in P_{1} \times Q, i<k} Y_{i j, k l} \\
& +\sum_{(i j) \neq(k l) \in P_{2} \times Q, i<k} Y_{i j, k l}-\sum_{(i j) \in P_{1} \times Q,(k l) \in P_{2} \times Q} Y_{i j, k l}+\frac{\beta^{2}-\beta}{2} \geq 0 .
\end{aligned}
$$

## Lemma

$\tau=0$ when the feasible region lies in a pocket defined by any facet above subject to: (i) $\left|P_{1}\right|,\left|P_{2}\right| \geq 3$, (ii) if $\beta \geq 0$ and $\min \left\{|Q|,\left|P_{1}\right|\right\} \geq$ $\beta+1$ then $|Q|+\left|P_{1}\right|+3 \leq n+\beta$, (iii) if $\beta<0$ and $\min \left\{|Q|,\left|P_{2}\right|\right\} \geq$ $2-\beta$ then $|Q|+\left|P_{2}\right|+3 \leq n+1-\beta$.

## Fourth Family of Facets

Theorem
$Y_{p_{1} q_{1}, k l}+Y_{p_{2} q_{2}, k l}+Y_{p_{1} q_{2}, k l} \leq Y_{k l, k l}+Y_{p_{1} q_{1}, p_{2} q_{2}}$, where $p_{1}, p_{2}, k$ are distinct and $q_{1}, q_{2}, l$ are also distinct and $n \geq 6$.

## Fourth Family of Facets

Theorem
$Y_{p_{1} q_{1}, k l}+Y_{p_{2} q_{2}, k l}+Y_{p_{1} q_{2}, k l} \leq Y_{k l, k l}+Y_{p_{1} q_{1}, p_{2} q_{2}}$, where $p_{1}, p_{2}, k$ are distinct and $q_{1}, q_{2}, l$ are also distinct and $n \geq 6$.

Note
The above are polynomially many and can be included in LP-GI.

## Fourth Family of Facets

Theorem
$Y_{p_{1} q_{1}, k l}+Y_{p_{2} q_{2}, k l}+Y_{p_{1} q_{2}, k l} \leq Y_{k l, k l}+Y_{p_{1} q_{1}, p_{2} q_{2}}$, where $p_{1}, p_{2}, k$ are distinct and $q_{1}, q_{2}, l$ are also distinct and $n \geq 6$.

Note
The above are polynomially many and can be included in LP-GI.
Modified Linear Program
LP-GI with the base case facets and the above family of facets included is referred to as modified LP-GI.

## Trivial Facets

Theorem (Jünger-Kaibel)
$Y_{i j, k l} \geq 0$ for every $i, j, k, I$ such that $i \neq k$ and $j \neq I$.

## Trivial Facets

Theorem (Jünger-Kaibel)
$Y_{i j, k l} \geq 0$ for every $i, j, k, I$ such that $i \neq k$ and $j \neq I$.
Note
The above are already part of LP-GI.

## The Main Theorem

Theorem
The Algorithm, using modified LP-GI, detects non-isomorphic graph pairs in polynomial time if the solution is confined to a pocket due to any of the known facets.
$G I \in P ?$

Yes, if the known facets are all the facets of $\mathcal{B}^{[2]}$.

## A General Inequality

All the known facets of $\mathcal{B}^{[2]}$ are special instances of a general inequality

$$
\sum_{i j k l} n_{i j} n_{k l} Y_{i j, k l}+(\beta-1 / 2)^{2} \geq(2 \beta-1) \sum_{i j} n_{i j} Y_{i j, i j}+1 / 4
$$

where $\beta \in \mathbb{Z}$ and $n_{i j} \in \mathbb{Z}$ for all (ij).

## A General Inequality

All the known facets of $\mathcal{B}^{[2]}$ are special instances of a general inequality

$$
\sum_{i j k l} n_{i j} n_{k l} Y_{i j, k l}+(\beta-1 / 2)^{2} \geq(2 \beta-1) \sum_{i j} n_{i j} Y_{i j, i j}+1 / 4
$$

where $\beta \in \mathbb{Z}$ and $n_{i j} \in \mathbb{Z}$ for all (ij).
There are more Facets
Theorem
There exists at least one facet of $\mathcal{B}^{[2]}$ which is not an instance of the above inequality.

## Future Direction

- Find the remaining facets of $\mathcal{B}^{[2]}$ and show that $\tau=O(\log n)$ for them.


## Future Direction

- Find the remaining facets of $\mathcal{B}^{[2]}$ and show that $\tau=O(\log n)$ for them.
- Give a general inequality that includes all the facets.


## Thank you! Questions?

