Coloring 3-colorable Graphs

Pawan Kumar Aurora
Advised by Prof. Shashank K Mehta

Department of Computer Science and Engineering
Indian Institute of Technology, Kanpur

State of the Art Seminar
A mapping $f : V(G) \to \{1, \ldots, k\}$ s.t. $f(u) \neq f(v)$ if $(u, v) \in E(G)$

The chromatic number of a graph is the smallest k s.t. G can be k-colored

It is NP-Hard to color a graph using optimal number of colors [1]

The same is true also for graphs of constant chromatic number at least 3
We will focus on 3-colorable graphs.

Objective: to color such a graph using as few colors as possible.

It is NP-Hard to color such a graph using 4 colors [2].

Nothing better in terms of lower bounds is known.

Best upper bounds of the order of $|V|^\epsilon$ for $\epsilon > 0$.

Gap is HUGE.
3-colorable Graphs
Applications

- Compiler Optimization: Assigning variables to registers
- Scheduling: Assigning jobs to time slots
Wigderson’s Algorithm [3]

- Based on the following facts:
 1. The subgraph induced by the neighborhood of any vertex is 2-colorable
 2. 2-coloring is polynomial time solvable
 3. $\Delta + 1$ colors suffice to color any graph having maximum degree Δ

- Using facts 1 and 2, 2-color $N(v)$ for a vertex v having $\text{deg}(v) \geq \lceil \sqrt{n} \rceil$; remove colored vertices and iterate

- The remaining graph has $\Delta < \lceil \sqrt{n} \rceil$; color it using $\lceil \sqrt{n} \rceil$ colors using fact 3

- Total number of colors used: $O(\sqrt{n})$
Consider the following recurrence for some $\epsilon > 0$:

$$C(n) \leq 2 + C(n - \epsilon n/f(n))$$

Solving first for n' in the range $[n/2, n]$ we get:

$$C(n) \leq 2f(n)/\epsilon + C(n/2)$$

Solving the above recurrence gives $C(n) = O(f(n))$.

Repeatedly finding a 2-colorable set of size $\epsilon n/f(n)$ gives $O(f(n))$-coloring.
Blum’s Algorithm: How to get a set of desired size?

- Either directly find a set of desired size
 - For e.g. $N(v)$ for a vertex v having degree at least $n/f(n)$
- Or combine several small sets to get a set of desired size
 - Find a 2-colorable set S having $|N(S)| \leq f(n)|S|$
 - For e.g. $N(v)$ for a vertex v having degree at most $f(n)$
 - Remove both S and $N(S)$ from the graph while collecting S in a bucket
 - Repeat until the graph is reduced to less than half its original size
 - The bucket contains a 2-colorable set of size $\Omega(n/f(n))$
Blum’s Algorithm: A simple Case

▶ For all pairs of vertices \(u, \nu \in V(G) \), consider the 2-colorable set \(S = N(u) \cap N(\nu) \)

▶ For the case where \(|S| \geq \frac{n}{f(n)^2}\), one of the following always holds:

1. \(|N(S)| \leq n/f(n)\) (same as \(f(n)|S|\)) ⇒ Collect \(S\)
2. \(|N(S)| > n/f(n)\) and \(N(S)\) is 2-colorable ⇒ \(N(S)\) is the desired set
3. \(|N(S)| > n/f(n)\) and \(N(S)\) is not 2-colorable ⇒ Next slide
Blum’s Algorithm: $|N(S)| > \frac{n}{f(n)}$ and $N(S)$ is not 2-colorable

- The first condition is inconsequential, the second condition alone is enough
- $N(S)$ is not 2-colorable \Rightarrow S is not monochromatic $\Rightarrow u$ and v belong to the same color class
- Merge u and v to w:
 $V = V - \{u, v\} \cup \{w\}$, $N(w) = N(u) \cup N(v)$
- Results in a graph having one less vertex without using any new color
Blum’s Algorithm: Input Graph

- We can assume the following about our input graph:
 1. It has minimum degree at least $f(n)$
 2. It has maximum degree at most $n/f(n)$
 3. No two vertices share more than $n/f(n)^2$ neighbors

- The above can be enforced for any arbitrary $f(n)$

- However, the value of $f(n)$ is determined by how best we can handle the above graph
Blum’s Algorithm: High Level Idea

- Remember that our aim is still to find a 2-colorable set of size $\Omega(n/f(n))$
- We will find a set that contains a large enough independent set
- Using an approximate vertex cover algorithm we will extract an independent set
- The size of the independent set obtained will determine the value of $f(n)$
Blum’s Algorithm: Using Vertex Cover

- \(I \) is an independent set in a graph \(G \) \(\Rightarrow \) \(V(G) - I \) is a vertex cover in \(G \) and vice versa
- An algorithm for vertex cover can be used to find an independent set
- Since both the problems are NP-Hard, we can only hope for an approximate result
- If \(VC \) is an optimal vertex cover in \(G \), then we can find a vertex cover of size at most \(\left(2 - \frac{\log \log |V|}{2 \log |V|} \right) |VC| \) in \(G \) [5]
Blum’s Algorithm: Using Vertex Cover

\[|I| \geq \frac{1}{2} \left(1 - \frac{1}{\log |T|} \right) |T| \Rightarrow |VC| \leq \frac{1}{2} \left(1 + \frac{1}{\log |T|} \right) |T| \]

We find a vertex cover of size at most

\[\frac{1}{2} \left(1 + \frac{1}{\log |T|} \right) \left(2 - \frac{\log \log |T|}{2 \log |T|} \right) |T| < \left[1 - \Omega \left(\frac{1}{\log |T|} \right) \right] |T| \]

That gives an independent set of size \(\Omega \left(\frac{|T|}{\log |T|} \right) \)

Note: It would be useless to find a subset \(T \) that contains an independent set of size at least \(\frac{1}{2+\epsilon} \left(1 - \frac{1}{\log |T|} \right) |T| \)
Consider three sets red, blue and green of roughly the same size.

For all pairs of vertices in different sets, add an edge with probability p.

The resulting graph is 3-colorable and has all the edges distributed uniformly at random.

For a vertex $v \in \text{red}$, $N(v)$ is nearly half blue and half green.

So $N(N(v))$ is almost half red.
But worst-case graphs are not random

Can we atleast find a subset of \(N(N(v)) \) for some \(v \) that contains an independent set nearly half its size?

The answer is YES

This exercise is useful only when the subset size is sufficiently larger than \(f(n) \)

Every vertex has a neighborhood of size at least \(f(n) \) which trivially contains an independent set at least half its size.
Blum’s Algorithm: Finding desired subset-Step 1

- Consider a vertex $v \in \text{red}$
- Find a subset S of $N(v)$ s.t. nearly half of the edges incident on S enter into red
- Let red be the color with the most edges incident
 - Implies $D_{\text{red}}(\text{blue} \cup \text{green}) \geq \frac{1}{2} D(\text{blue} \cup \text{green})$
- However, it is not true that $D_{\text{red}}(N(v)) \geq \frac{1}{2} D(N(v))$ for any $v \in \text{red}$
 - Vertices can have wildly varying degrees
- Solution lies in restricting the vertex degrees extremely tightly
Blum’s Algorithm: Counter-example

$D(\text{red}) = 5m$, $D(\text{green}) = D(\text{blue}) = (4 + \frac{1}{2})m$

$\forall v \in \text{red}: D_{\text{red}}(N(v)) = 8 + \frac{m}{2}$, $D_{\text{V-red}}(N(v)) = 4 + m$

$D(N(v)) = 12 + \frac{3}{2}m$. So, $D_{\text{red}}(N(v)) \approx \frac{1}{3}D(N(v))$
Blum’s Algorithm: First Neighborhood

\[S = N(v) \cap \{ v \in V \mid d(v) \in [(1 + \delta)^j, (1 + \delta)^{j+1}) \}, \quad \delta = \frac{1}{5 \log n} \]

- For some \(j \), \(D_{red}(S) \approx \frac{1}{2} D(S) \)
Having obtained the set S, we now look at $N(S)$

Even though $D_{red}(S) \approx \frac{1}{2} D(S)$, it is possible that many of the edges are incident on a few red vertices.

The same trick is used again and this time $N(S)$ is partitioned into bins.

Each bin has vertices lying in a close range in terms of their degree into S.

One of these bins is our desired subset.
Blum’s Algorithm: Second Neighborhood

\[T = \{ v \in N(S) \mid d_S(v) \in [(1 + \delta)^i, (1 + \delta)^{i+1}) \} \]

For some \(i \), \(|T| = \tilde{\Omega} \left(\frac{f(n)^4}{n} \right) ; \frac{|T \cap \text{red}|}{|T|} \geq \frac{1}{2} \left(1 - \frac{1}{\log n} \right) \)
Blum’s Algorithm: So what is our $f(n)$?

- Applying vertex cover to the set T, we get an independent set of size $\Omega \left(\frac{|T|}{\log |T|} \right) = \tilde{\Omega} \left(\frac{f(n)^4}{n} \right)$
- In order to be useful, we need $\tilde{\Omega} \left(\frac{f(n)^4}{n} \right) = \Omega \left(\frac{n}{f(n)} \right)$
- That gives an $\tilde{O} \left(n^{0.4} \right)$-coloring
- An $\tilde{O} \left(n^{0.375} \right)$-coloring can be obtained by handling certain dense regions differently
Karger-Motwani-Sudan’s Algorithm [6]: High Level Idea

Consider the following embedding of a 5-cycle on the surface of a unit sphere:

Vertices are mapped to points on the unit sphere in such a manner that adjacent vertices get mapped to far away points.
KMS Algorithm: High Level Idea

Consider cutting the unit sphere via the randomly chosen planes P_1 and P_2:

That divides the vertices into four groups. Giving each group a distinct color we get a legal approximate coloring.
KMS Algorithm: Finding the desired Embedding

- Let v_1, v_2, \ldots, v_n be unit vectors in \mathbb{R}^n
- Vector v_i corresponds to vertex i
- Minimizing $\langle v_i, v_j \rangle$ will keep v_i and v_j far apart
- Consider the following optimization problem:

 $$\begin{align*}
 \text{minimize} & \quad \alpha \\
 \text{subject to} & \quad \langle v_i, v_j \rangle \leq \alpha \quad \text{if} \ (i, j) \in E(G) \\
 & \quad \langle v_i, v_i \rangle = 1 \\
 & \quad v_i \in \mathbb{R}^n.
 \end{align*}$$

- An optimal solution to the above program will give us the desired embedding.
KMS Algorithm: Finding the desired Embedding

- Unfortunately the program cannot be solved as is
 - Good news is there is a way around
- Consider a $n \times n$ symmetric positive semidefinite matrix M
- **Fact:** M can be decomposed into UU^T
- From the above, $M[i, j] = \langle u_i, u_j \rangle$ where $u_i = U[i, :]$ and $u_j = U[j, :]$
Consider the following optimization problem:

\[
\begin{align*}
\text{minimize} & \quad \alpha \\
\text{where} & \quad \{m_{ij}\} \text{ is positive semidefinite} \\
\text{subject to} & \quad m_{ij} \leq \alpha \quad \text{if } (i, j) \in E(G) \\
& \quad m_{ij} = m_{ji} \\
& \quad m_{ii} = 1.
\end{align*}
\]

An optimal solution to the above program can still give us the desired embedding.

And the above program can be solved efficiently.
Consider the following k vectors in \mathbb{R}^n:

- Each vector has 0 in the last $n-k$ positions
- Vector i has $-\sqrt{\frac{k-1}{k}}$ in the ith position and $\frac{1}{\sqrt{k(k-1)}}$ in the remaining $k-1$ positions

Clearly each vector has unit length and inner product of any two distinct vectors is $-\frac{1}{k-1}$

For a k-colorable graph, the k colors coincide with the k vectors defined above

So we have $\alpha \leq -\frac{1}{k-1}$ for a k-colorable graph
KMS Algorithm: Obtaining a coloring

- For a 3-colorable graph, the optimal value is atmost $-\frac{1}{2}$
- Vectors corresponding to adjacent vertices are at least $\frac{2\pi}{3}$ radians (120 degrees) apart
- Using this fact, we can obtain a coloring via the following two methods:
 1. Hyperplane Partitions
 2. Vector Projections
KMS Algorithm: Hyperplane Partitions

- Random hyperplanes passing through the origin are used to cut the n-dimensional unit sphere
- Using h hyperplanes, we can obtain 2^h distinct regions
- Associate a distinct color with each region, giving each vertex the color of the region containing its vector
- It is possible that two adjacent vertices are given the same color (though with small probability)
- Legally colored vertices are removed and the algorithm is repeated on the graph remaining
Given two vectors at an angle of θ, the probability that they are separated by a random hyperplane is θ/π

We have $\theta \geq 2\pi/3$ as the angle between the vectors corresponding to the endpoints of an edge.

We say that an edge is cut by a hyperplane if these vectors are separated by the hyperplane.

So the probability of an edge being cut is at least $2/3$.

A cut edge implies its endpoints belonging to different regions and hence getting different colors.
KMS Algorithm: Hyperplane Partitions

- Pick $2 + \lceil \log_3 \Delta \rceil$ random hyperplanes independently.
- Probability that an edge is not cut by any of these is atmost $(1 - 2/3)^{2+\lceil \log_3 \Delta \rceil} \leq 1/9\Delta$.
- Let m' be the number of uncut edges.
- $E[m'] \leq m/9\Delta \leq n/18 < n/8$, since $m \leq n\Delta/2$.
- By Markov’s Inequality, $Pr\{m' > n/4\} \leq 1/2$.
- Thus, with probability atleast $1/2$ we have atmost $n/4$ uncut (monochromatic) edges.
KMS Algorithm: Hyperplane Partitions

- Deleting one endpoint of each of the $n/4$ uncut edges leaves a set of at least $3n/4$ legally colored vertices.
- The number of colors used is $2^{2+\lceil \log_3 \Delta \rceil} = O(\Delta^{\log_3 2})$.
- That translates to $O(n^{0.387})$ colors using Wigderson’s technique.
- Iterating on the deleted vertices we get an $O(n^{0.387})$-coloring.
- No improvement over Blum’s $O(n^{0.375})$-coloring.
KMS Algorithm: Vector Projections

- Fix a parameter c and choose a random n-dimensional vector r
- Compute a subset S of vertices i with $\langle v_i, r \rangle \geq c$
- Let the subgraph induced on S have n' vertices and m' edges
- Delete one endpoint of each edge to leave an independent set on $n' - m'$ vertices
- For sufficiently large c, $n' \gg m'$ and we get an independent set of size roughly n'
KMS Algorithm: Vector Projections

- \(r = (r_1, \ldots, r_n) \), where \(r_i \) are independent random variables having the standard normal distribution
- The distribution function for \(r \) has density

\[
f(y_1, \ldots, y_n) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi}} e^{-y_i^2/2} = \frac{1}{(2\pi)^{n/2}} e^{-\frac{1}{2} \sum_i y_i^2}
\]

- Note that the density function depends only on the distance of the point from the origin
- Therefore the distribution of \(r \) is spherically symmetric
KMS Algorithm: Vector Projections

- For any unit vector $u \in \mathbb{R}^n$, $\langle u, r \rangle$ is distributed according to the standard normal distribution

Shaded area corresponds to $N(t) = P[\langle u, r \rangle \geq t]$
KMS Algorithm: Vector Projections

- We have $P[\langle v_i, r \rangle \geq c] = N(c)$, so $E[n'] = nN(c)$
- $P[\langle v_1, r \rangle \geq c \text{ and } \langle v_2, r \rangle \geq c] \leq P[\langle (v_1 + v_2), r \rangle \geq 2c]$

 $= P[\langle \frac{v_1 + v_2}{\|v_1 + v_2\|}, r \rangle \geq \frac{2c}{\|v_1 + v_2\|}]$

 $= N\left(\frac{2c}{\|v_1 + v_2\|}\right)$.

- $\|v_1 + v_2\| = \sqrt{v_1^2 + v_2^2 + 2\langle v_1, v_2 \rangle} \leq \sqrt{2 - 2/2} = 1$

- $P[\langle v_1, r \rangle \geq c \text{ and } \langle v_2, r \rangle \geq c] \leq N(2c)$

- So, $E[m'] \leq mN(2c) \leq n\Delta N(2c)/2$ (Δ is max degree)

- Thus, $E[n' - m'] \geq nN(c) - n\Delta N(2c)/2$
KMS Algorithm: Vector Projections

- For every \(x > 0 \), \(\phi(x) \left(\frac{1}{x} - \frac{1}{x^3} \right) < N(x) < \phi(x) \cdot \frac{1}{x} \)
- From the above, we have \(\frac{N(c)}{N(2c)} \geq 2 \left(1 - \frac{1}{c^2} \right) e^{3c^2/2} \)
- Solving for \(c \) so that \(\Delta N(2c) < N(c) \), we get \(c = \sqrt{\frac{2}{3}} \ln \Delta \)
- For the above value of \(c \), \(E[n' - m'] \geq \tilde{\Omega} \left(\frac{n}{\Delta^{1/3}} \right) \)
- Repeatedly coloring and removing independent sets of the above size gives an \(\tilde{O}(\Delta^{1/3}) \)-coloring
- Using Wigderson’s technique we get an \(\tilde{O}(n^{0.25}) \)-coloring
The ideas of Blum and KMS are combined to get an $\tilde{O}(n^{3/14})$-coloring of a 3-colorable graph.

Similar in spirit to Wigderson’s algorithm.

Blum’s coloring tools are used to color a graph with large average degree.

When the remaining graph has a small average degree, KMS ideas are used to extract an independent set of reasonable size.
Blum & Karger’s Algorithm

- Consider a graph with average degree at most $cn^{9/14}$
- So at least half the vertices in the graph have degree less than $2cn^{9/14}$
- The subgraph induced by those vertices has maximum degree at most $2cn^{9/14}$
- Using KMS algorithm, we can color the subgraph with $\tilde{O}(n^{3/14})$ colors
- From the coloring we can find an independent set of size $\tilde{\Omega}(n^{11/14})$
- Using the independent set we can make progress towards an $\tilde{O}(n^{3/14})$-coloring of the original graph
Directions for Future Work

- One idea constant in all the algorithms is finding a large set that can be colored using a constant number of colors.
- Taking this idea forward, we would like to explore the possibility of finding large planar induced sub-graphs.
- **Fact:** Planar graphs are 4-colorable [8].
- An interesting problem in its own right.
- One Approach:
 - The subgraph induced by the vertices that lie along the diameter is clearly planar.
 - Planarity testing is polynomial time solvable.
 - Can we use the above facts to obtain a provably large induced planar subgraph?
There exist graphs having chromatic number at least $n^{\Omega(1)}$ that can be embedded on the unit sphere such that $\langle v_i, v_j \rangle \leq -\frac{1}{2}$ for all $(i, j) \in E(G)$.

So, having obtained an embedding as above, it is not possible to guarantee a coloring with $n^{o(1)}$ colors.

Can we add more constraints that are not satisfied by the class of graphs mentioned above?

In that case, can we get an $n^{o(1)}$-coloring?
Directions for Future Work

- The graph obtained by removing the feedback vertex set is an induced forest which is 2-colorable.
- Can we show that the size of a feedback vertex set in a 3-colorable graph is not too large?
- How about a partial feedback vertex set that removes only the odd cycles?
- Graphs that are both C_3-free and C_5-free have $N(v)$ and $N(N(v))$ as independent sets for any vertex v.
- How well we can do for such graphs? Can we extend the same to general graphs?
- C_4-free graphs: $|N(u) \cap N(v)| \leq 1 \ \forall \ u, v \in V(G)$; Using Blum’s algorithm we get $\tilde{O}(n^{1/3})$; Can we do better?
References I

References II

Reuven Bar-Yehuda and Shimon Even.
A linear-time approximation algorithm for the weighted vertex cover problem.

David R. Karger, Rajeev Motwani, and Madhu Sudan.
Approximate graph coloring by semidefinite programming.

Avrim Blum and David R. Karger.
An \(\tilde{O}(n^{3/14})\)-coloring algorithm for 3-colorable graphs.

K. Appel and W. Haken.
Every planar map is four colorable.