
Constant Factor Approximation for the
Weighted Partial Degree Bounded Edge Packing

Problem

Pawan Aurora1, Monalisa Jena2 ?, Rajiv Raman3

1 IISER, Bhopal, India
paurora@iiserb.ac.in

2 IIIT-Delhi, India
monalisaj@iiitd.ac.in

3 IIIT-Delhi, India and NYU, Abu Dhabi
rajiv@iiitd.ac.in

Abstract. In the partial degree bounded edge packing problem (PDBEP),
the input is an undirected graph G = (V,E) with capacity cv ∈ N on each
vertex v. The objective is to find a feasible subgraph G′ = (V,E′) max-
imizing |E′|, where G′ is said to be feasible if for each e = {u, v} ∈ E′,
degG′(u) ≤ cu or degG′(v) ≤ cv. In the weighted version of the problem,
additionally each edge e ∈ E has a weight w(e) and we want to find a
feasible subgraph G′ = (V,E′) maximizing

∑
e∈E′ w(e). The problem is

already NP-hard if cv = 1 for all v ∈ V [Zhang, FAW-AAIM 2012].
In this paper, we introduce a generalization of the PDBEP problem. We
let the edges have weights as well as demands, and we present the first
constant-factor approximation algorithms for this problem. Our results
imply the first constant-factor approximation algorithm for the weighted
PDBEP problem, improving the result of Aurora et al. [FAW-AAIM
2013] who presented an O(logn)-approximation for the weighted case.
We also study the weighted PDBEP problem on hypergraphs and present
a constant factor approximation if the maximum degree of the hyper-
graph is bounded above by a constant.
We study a generalization of the weighted PDBEP problem with de-
mands where each edge additionally specifies whether it requires at least
one, or both its end-points to not exceed the capacity. The objective is
to pick a maximum weight subset of edges. We give a constant factor
approximation for this problem.
We also present a PTAS for the weighted PDBEP problem with demands
on H-minor free graphs, if the demands on the edges are bounded by
polynomial. We show that the PDBEP problem is APX-hard even for
bipartite graphs with cv = 1, ∀v ∈ V and having degree at most 3.

1 Introduction

Packing problems are central objects of study in the theory of algorithms.
Quintessential examples of such problems are the Independent Set problem [4]

? The author is supported by a TCS Scholarship

in graphs, Maximum Matchings in graphs [10, 13], and the Knapsack Problem
[17]. Due to their fundamental nature, and wide applicability, these problems
and variants thereof have been studied intensively over several decades. In this
paper, we study a variant of the matching problem that is called the Partial
Degree Bounded Edge Packing problem (PDBEP for short).

In the most basic version of this problem, the input is an undirected graph
G = (V,E), with unit capacities on the vertices, and unit weight on the edges.
The goal is to pack a maximum cardinality set E′ ⊆ E of edges such that in the
resulting sub-graph G′ = (V,E′), each edge e = {u, v} ∈ E′ is satisfied, where
an edge is said to be satisfied if either of its end-points has degree at most 1 in
the sub-graph G′, i.e., degG′(u) ≤ 1 or degG′(v) ≤ 1.

The Maximum Matching problem, phrased as above would be to find a sub-
graph G′ = (V,E′) with maximum number of edges E′ such that each edge is
satisfied, where an edge is said to be satisfied if both of its end-points have degree
at most 1 in the sub-graph G′, i.e., degG′(u) ≤ 1 and degG′(v) ≤ 1.

The difference between the Maximum Matching problem and the PDBEP
problem is only in the definition of when an edge is satisfied. While in the case
of Maximum Matching, we require that the degree condition at both end-points
be satisfied, we only require a weaker condition to be satisfied for the PDBEP
problem, namely that for each edge, the degree condition be satisfied at at least
one end-point. One can immediately observe that despite the seeming similarity
with the maximum matching problem, the solutions to the two problems can
be vastly different. For example, consider a star K1,n. The maximum matching
problem has a solution of size 1, whereas the PDBEP problem on the same
instance has a solution of size n. In fact, while the Maximum Matching problem
admits a polynomial time algorithm [10], our problem is NP-hard [20] even in
the case of unit capacities.

The PDBEP problem was introduced by Zhang in [20]. He studied this prob-
lem motivated by an application in computing on binary strings [6]. The problem
he studied is called the Maximum Expressive Independent Set (MEIS for short)
problem where the objective is to find a subset X of maximum cardinality from
a set of binary strings W such that no string t ∈ X is expressible from X \ {t},
where a binary string s is expressible from a set of binary strings S, if it can be
obtained by combining the strings in S using bitwise AND and OR operators. He
studied a restricted version of this problem where each string is 2-regular which
means that it has exactly two ones. This he posed as a graph problem where
the graph has a vertex for every bit position and an edge {i, j} corresponds to
a string that has ones at positions i, j. Now a solution to the PDBEP problem
with uniform cu = 2 corresponds to a subset of strings such that for any string
in the subset with ones at positions i, j, at most one other string can have a 1 at
one of these two positions which means that the subset of edges gives a solution
to the MEIS problem (this follows from Lemma 2.4 in [20]).

Another natural application of the PDBEP problem is in resource allocation.
Here, we are given |V | types of resources and |E| jobs. Each job needs two types
of resources. A job u can be accomplished if either one of its necessary resources

is shared by no more than cu other jobs. The problem then asks to finish as
many jobs as possible. In many natural settings a job may be allocated a larger
set of resources than is actually required, or alternately, the job may still be
able to complete with a subset of the resources allocated. A natural setting is
for example, allocating man-power for projects. Some project might be allocated
with slightly larger teams than is essential to complete, but might be satisfied
with a possibly smaller subset. The PDBEP problem models these scenarios.

We now formally define the problems studied in this paper. In the PDBEP
problem, the input is an undirected (multi-)graph G = (V,E) with a capacity
cv ∈ N on each vertex v. We want to compute a subgraph G′ = (V,E′) of G
with maximum |E′| such that each edge in E′ is satisfied. We say that an edge
is satisfied if at least one of its end-points is not overloaded. Thus, we want for
each edge e = {u, v} ∈ E′, |δ′(u)| ≤ cu or |δ′(v)| ≤ cv, where for any vertex vi,
δ′(vi) denotes the set of edges in E′ incident on vi. For an edge e = {u, v}, an
end-point that is not overloaded, we call a good end-point of e.

In the weighted PDBEP problem, each edge e is additionally associated with
a weight we and the objective is to find a subgraph G′ = (V,E′) such that w(E′)
is maximized and each edge e ∈ E′ is satisfied, where w(E′) =

∑
e∈E′ w(e). We

also study the unit-capacity case, i.e., cv = 1, ∀v ∈ V . We use PEp to denote
the weighted PDBEP problem with unit-capacity.

We also consider the weighted PDBEP Problem with Demands, denoted
PEpD and defined as follows: Given an undirected (multi-)graph, with w, d :
E → N, the weights and demands respectively, on the edges, and c : V → N the
capacity on the vertices. We want to find a sub-graph G′ = (V,E′) such that
w(E′) is maximized, and each edge in E′ is satisfied, where an edge e = {u, v}
is said to be satisfied, if d(δ′(u)) ≤ cu or d(δ′(v)) ≤ cv, where for any F ⊆ E,
d(F) =

∑
e∈F de.

The rest of the paper is organized as follows. In Section 2, we present the no-
tation used, and present preliminary results. Section 3 describes related work. We
study the PEp problem in Section 4, and then present results for the PEpD prob-
lem in Section 5. In Section 6, we study a generalized version of the PEpD prob-
lem and give a constant factor approximation algorithm for it. In Section 7, we
study the weighted PDBEP problem on hypergraphs of constant degree. We give
a PTAS for the weighted PDBEP problem on H-minor free graphs in Section 8.
In Section 9, we prove that the PDBEP problem is APX-hard.

2 Preliminaries

Let G = (V,E) denote an undirected graph. In our setting, the graphs come
equipped with a weight function w : E → N and a demand function d : E → N
on the edges, and a capacity function c : V → N on the vertices. We also consider
the special case when all vertices have unit capacity. In this setting, we assume
that the demand of each edge is also 1, and that the graphs are simple. When
we consider the general problem, the graph is no longer assumed to be simple.

We also consider directed graphs, denoted D = (V,A). Each edge (u, v) ∈ A
with head v and tail u is said to be entering v, and exiting u. We use in(v), out(v)
respectively to denote the edges entering and exiting v.

For a vertex v, we let δ(v) = {e = {u, v} ∈ E} denote the set of edges incident
on v. In the weighted setting, we let δmax(v) = {e ∈ δ(v) : w(e) ≥ w(f) ∀f ∈
δ(v)}. Thus, δmax(v) is the set of heaviest weighted edges incident on v. For a
set F ⊆ E of edges, we let w(F) =

∑
e∈F w(e), and d(F) =

∑
e∈F de.

We also consider in this paper, two graph orientation problems. The Max-
imum Degree-Bounded Orientation Problem with Demands (OrD) is defined
as follows: The input is identical to the PEpD problem, namely an undirected
graph G = (V,E), w, d : E → N and c : V → N. The goal is to select a maximum

weight subset of edges E′ ⊆ E, and compute an orientation
−→
E′ of the edges in

E′ such that the total demand of in(v) is at most its capacity for each v ∈ V ,
i.e,

∑
e∈in(v) de ≤ cv for all v ∈ V . When all vertex capacities are 1, we assume

de = 1, ∀e ∈ E, and use Or to denote this problem with unit capacity and
demands.

A solution to PEpD yields a solution to the OrD problem on the same
instance. To see this, each edge e in a feasible PEpD solution has a good end-
point, and orienting e towards its good end-point is a feasible solution to OrD of
the same weight. It would be tempting to hope that the reverse might be true;
and if so, this would be cause for cheer as we will show that the OrD problem
is tractable. Unfortunately, this is not the case even in the unit-capacity case.
Consider for example, a triangle with unit capacity on the vertices, and unit
weight on the edges. Any feasible solution to the PEp problem consists of at
most 2 edges, but orienting the three edges in a cycle is feasible for Or. In fact,
it is known that the PEp problem is NP-hard [20].

Our approximation algorithms for the PEpD problem nevertheless use a
solution to the OrD problem as a starting point, and in fact, any solution to
the OrD problem can be transformed into one for the PEpD problem on the
same instance at the loss of a small constant factor. The relation between the
two problems is useful, and we capture this in the following proposition.

Proposition 1. For any instance I, OPTPEpD(I) ≤ OPTOrD(I).

We show that Or problem can be reduced in polynomial time to the b-
matching problem in bipartite graphs, which can be solved in polynomial time[18].
Hence, Or can be solved in polynomial time. Similarly, the OrD problem with
demands can be reduced to the demand matching problem in bipartite graphs
[19], and hence, 2-approximation follows.

Lemma 1. The Or problem can be solved in polynomial time.

Proof. We prove this by giving a polynomial time reduction from Or to b-
matching in bipartite graphs. The reduction is as follows: Given an instance
G = (V,E), c : V → N, w : E → N of the Or problem, we construct a bipartite
graph H = (E ∪ V, F), with capacities be = 1 for all e ∈ E and bv = cv for all

v ∈ V . The edges F are defined as follows: For each edge e = {u, v}, add two
edges {e, u}, {e, v} to F , each of weight w(e).

Suppose E′ ⊆ E is a feasible solution to Or, where
−→
E′ denotes a feasible

orientation of E′. We claim that E′ yields a feasible matching M in H of the

same weight. Corresponding to each e = (u, v) ∈
−→
E′, pick {e, v} in M . Then,

exactly one edge is chosen in M for each e ∈ E′, and for each v, at most cv edges
in M are incident on it. Thus, M is feasible and has weight w(M) = w(E′).

Let M be a maximum weight b-matching in H. Let E′ ⊆ E be the set of
edges of G covered by M . We claim that E′ is a feasible solution to Or. To see
this, since be = 1 for all e ∈ E, for each e = {u, v}, at most one of {e, u} or
{e, v} is in M . This defines an orientation of e in the graph G. If {e, u} ∈ M ,
let e ∈ E′ and −→e = (v, u). Else, if {e, v} ∈ M , let e ∈ E′ and let −→e = (u, v).
Since edges {e, v} and {e, u} have the same weight as that of e, it follows that
w(E′) = w(M).

Since b-matching in bipartite graphs admits a polynomial time algorithm
[18], it follows that Or can be solved in polynomial time. ut

A similar reduction, implies that OrD has a 2-approximation algorithm.

Lemma 2. The OrD problem has a 2-approximation algorithm.

Proof. We use a reduction similar to that in Lemma 1. The only difference is that
the edges in F inherit both the weight as well as demand of the corresponding
edge, and in the bipartite graph H, we set be = de for e ∈ E, and bv = cv for
each v ∈ V . Since demand-matching on bipartite graphs has a 2-approximation
algorithm [16], the lemma follows. ut

3 Related work

The PDBEP problem was introduced by Zhang [20] motivated by a problem of
resource allocation as well as a problem of finding large independent sets. This
is the unit demand and unit weight version of our problem, namely PEpD with
the additional constraint that w(e) = de = 1 for all e ∈ E. As mentioned earlier,
Zhang proved that unit capacity version of PDBEP i.e., PEp with unit edge
weights is NP-Hard. This result follows from the fact that for a graph G = (V,E),
a solution of size k for PEp implies a dominating set of size |V | − k. Since the
Dominating Set problem is NP-hard [12], this implies PEp is NP-hard. Zhang
also presented a 2-approximation algorithm for PEp, with unit edge weights, and
a 32/11-approximation algorithm, again with unit edge-weights and a uniform
capacity of 2 for all vertices. Dehne et al. [8] studied a parameterized version of
the PDBEP problem (with vertex capacity 1 and edge demands 1), and obtained
algorithms that are exponential in the size of the PEp solution.

A related problem is the problem of packing vertex disjoint T -stars where a
T -star is a complete bipartite graph K1,t for some 1 ≤ t ≤ T . In [3], the authors
gave a 9

4
T
T+1 -approximation for this problem. When T ≥ |V | − 1, the T -star

packing in an edge weighted graph where the objective is to maximize the total
weight of the edges in the stars is exactly the PEp problem.

Aurora et al. [2] presented a simple 2-approximation algorithm for PEp with
arbitrary vertex capacity, but unit demands and unit weights on the edges.
In the setting with weighted edges, but unit demands on the edges, they pre-
sented only an O(log n)-approximation algorithm. We introduce the version of
the PEp problem with demands on the edges, and present the first constant-
factor approximation for this general case.

The PDBEP problem on hypergraphs was first studied by Aurora et al. [2],
motivated by its natural application in the resource allocation. They presented a
constant factor approximation algorithm for the r-PDBEP on k-uniform hyper-
graphs if both k and r are constants. The r-PDBEP problem is a generalization of
the PDBEP problem, where each hyperedge in the solution demands the degree
condition to be satisfied at at least r vertices it is incident on. We give a simple
combinatorial d-approximation algorithm for the weighted PDBEP problem on
hypergraphs if the maximum degree of any vertex is d.

The PEp problem, as stated earlier is similar to the Maximum weight match-
ing problem, for which several polynomial time algorithms are known [10, 14].
The demand version of the problem, PEpD is similar to the demand matching
problem introduced by Shepherd and Vetta [19]. For the demand matching prob-
lem, Shepherd and Vetta presented a 3.264-approximation for general graphs and
a 2.764-approximation for bipartite graphs. These results have since been im-
proved using the technique of iterative rounding to a factor 3 for general graphs,
and a factor of 2 for bipartite graphs [16, 15].

The degree-bounded orienting problem Or is a classic combinatorial opti-
mization problem. However, it has mostly received attention in terms of main-
taining connectivity. See [18] for more details.

4 A 2-approximation algorithm for unit capacity
instances

In this section, we present a 2-approximation algorithm for the PEp problem. In
this setting, recall that cv = 1 for all v ∈ V . Earlier, a 2-approximation algorithm
was known only for the unweighted case by Zhang [20], i.e., when w(e) = 1 for
all e ∈ E.

Our algorithm is combinatorial. We show that we can carefully select a subset
of edges such that an upper bound on OPTPEp can be constructed from this
subset. Recall that for a vertex v ∈ V , δmax(v) denotes the set of edges of
maximum weight incident on v, and we use emax(v) to denote an edge in δmax(v).

The set of edges Emax ⊆ E is constructed as follows: Let v1, . . . , vn be an
arbitrary ordering of the vertices. Starting with E1

max = E2
max = ∅, for each i

from 1, . . . , n, if an edge from δmax(vi) has not been chosen, pick an arbitrary
edge e = {vi, vj} from δmax(vi). If e ∈ δmax(vj) and no edges from δmax(vj) have
been chosen yet we add e to E2

max, otherwise add e to E1
max. We denote the set

Emax = E1
max ∪ E2

max. Observe that by the way we choose the edges in E2
max

at most one edge from δmax(v) is chosen for each vertex. This is encoded in the
Proposition below.

Proposition 2. For each v ∈ V , |E2
max ∩ δmax(v)| ≤ 1

Lemma 3. OPTPEp ≤
∑
v∈V w(emax(v))

Proof. We show that
∑
v∈V w(emax(v)) is an upper-bound on the Max-orientation

problem Or on the same instance. Then, the lemma follows from Proposition 1.
Let F ⊆ E be a feasible solution to the Or problem in G. Since the vertices have
unit capacity, for any vertex v ∈ V , there is at most one edge of F in-coming to
v. Let w(in(v)) denote the weight of this edge if any, and zero otherwise. Then,∑

(u,v)∈F w(u, v) =
∑
v∈V w(in(v)) ≤

∑
v∈V w(emax(v)). ut

Note that in order to obtain an upper bound, we require that we sum up
w(emax(v)) over all vertices as w(Emax) by itself does not constitute an upper
bound. The example in Figure 1 shows this.

4d c

321

a 5 b

Fig. 1. The set Emax of edges is shown in bold. In this example,
∑

e∈Emax
w(e) =

w(a, b) + w(d, c) = 9. However, OPTPEp = w(a, b) + w(b, c) + w(b, d) = 10.

In order to obtain our claimed approximation, we construct an orientation of

the edges in Emax such that
−→
Gmax = (V,

−→
Emax) is acyclic, and show that each

connected component of
−→
Gmax is an out-tree.

Lemma 4. There exists an orientation of the edges in Emax such that each

connected component of
−→
Gmax = (V,

−→
Emax) is an out-tree.

Proof. We suggest a natural orientation of the edges in Emax. Suppose the ver-
tices are considered in the order of v1, . . . , vn during the construction of Emax.
In iteration i of the construction, if an edge is added to either E1

max or E2
max,

then orient that edge towards vi. Since in each iteration at most one edge can be
added to Emax, our orientation ensures that for any vertex vi ∈ V , at most one

edge in
−→
Emax is oriented towards vi, which implies the in-degree of any vertex

is at most 1. Note that this shows the set Emax is in fact a feasible solution to
the Or problem.

To show that each connected component of
−→
Gmax is an out-tree, we also

require that the graph
−→
Gmax is acyclic. In contrary, let C = v0, v1, . . . , vk, v0 be

a directed cycle in
−→
Gmax. Our orientation ensures that if an edge e is oriented

towards v, then e ∈ δmax(v). Thus, the weight of an in-coming edge into a vertex
v has weight at least as large as any out-going edge. Thus, following the cycle
from v0, the weight of the edges can not increase. Therefore, the only possibility
is that all edges in C have equal weight. However, we add an edge e incident
on a vertex v into Emax only if no edge in δmax(v) is present in Emax when v
is processed, and we then orient e towards v. If, without loss of generality, the
vertex v0 was the first to be processed during the construction of Emax, then
the edge {vk, v0} is already present in the solution when we process vk. Since
{vk, v0} ∈ δmax(vk), no edge is added during the processing of vk. This implies

no edge is oriented towards vk, which is a contradiction. Hence,
−→
Gmax is acyclic.

Thus, we have
−→
Gmax is acyclic and each vertex has in-degree at most 1. This

ensures each connected component of Gmax is an out-tree. ut

The example in Figure 1 shows that w(Emax) is not an upper bound on
OPTPEp. However, we can re-write the upper bound by distinguishing the con-
tribution from the edges of E1

max and E2
max.

Lemma 5. OPTPEp ≤ w(E1
max) + 2w(E2

max)

Proof. Consider the above oriented graph
−→
Gmax = (V,

−→
Emax). We claim that for

any vertex vi, if no edge is oriented towards vi, then there is exactly one edge
in E2

max incident on vi. To see this, note that if no edge is oriented towards vi,
then before iteration i, we have already added at least one edge from δmax(vi)
to Emax. Let j be the minimal iteration such that an edge from the set δmax(vi)
is added to Emax. Then according to our construction, the edge {vj , vi} is the
only edge added to the set E2

max among all the edges incident on vi in Emax.

Let v be any vertex towards which no edge is oriented in
−→
Gmax. Then there

is exactly one edge in E2
max incident on v. Let e = {u, v} be that edge. We

add another edge of weight w(e) between u and v to
−→
Gmax, and orient this

edge towards v. Let the resulting multi-graph be
−→
G ′max = (V,

−→
E ′max). In

−→
G ′max,

exactly one edge from δmax(v) is oriented towards v for each vertex v. Thus,∑
v∈V w(emax(v)) =

∑
e∈
−→
E ′

max
w(e) =

∑
e∈E1

max
w(e) + 2

∑
e∈E2

max
w(e). Using

Lemma 3, we get OPTPEp ≤ w(E1
max) + 2w(E2

max). ut

Theorem 1. There exists a 2-approximation algorithm for PEp.

Proof. Since each connected component of the graph
−→
Gmax is an out-tree, we

can partition the vertices into two sets such that all the edges in
−→
Emax cross the

partition. To see this, for any tree T in
−→
Gmax, label the vertices with distance

from the root. Since T is a tree, a vertex with odd label is only adjacent to
vertices with even label, and vice-versa. Therefore, we can partition V into two
sets X and Y , where X consists of odd-labeled vertices, and Y consists of even-
labeled vertices. The set of edges between X and Y consists of all the edges.

Now consider the cut (X,Y) in Gmax, and orient the edges in Emax as follows:

Orient all the edges in E1
max in the same way it is oriented in

−→
Gmax, and orient

each edge e ∈ E2
max, towards both the end-points. Note that

∑
e∈δ+(X) w(e) +∑

e∈δ+(Y) w(e) = w(E1
max) + 2w(E2

max), since each edge in E2
max is present in

both δ+(X) and δ+(Y), where for any Z, δ+(Z) denotes the set of out-going
edges from Z. Therefore, max{δ+(X), δ+(Y)} ≥ (w(E1

max)+2w(E2
max))/2. Thus,

by returning the maximum among δ+(X), and δ+(Y), we guarantee a solution
of weight at least OPTPEp/2 (Using Lemma 5).

Now it remains to prove the feasibility of δ+(X), and δ+(Y). Note that the
in-degree of any vertex is at most 1 in the oriented graph, which ensures both
δ+(X) and δ+(Y) are individually feasible for PEp. ut

Note that our 2-approximation algorithm for PEp improves the result of
Babenko and Gusakov [3] for the special case of T -star packing when T = |V |−1.
They proposed a 9

4
T
T+1 -approximation algorithm for this problem.

5 A constant-factor approximation algorithm

In this section, we obtain a (4+ε)-approximation algorithm for any ε > 0 for the
PEpD problem on general graphs, and a (2 + ε)-approximation algorithm for
the PEpD problem on bipartite graphs. Our algorithm holds for a slightly more
general problem. Instead of demands on the edges, we let each edge e = {u, v}
have possibly different demands d(e, u), d(e, v) at its end-points. It is possible
that d(e, u) exceeds the capacity cu of vertex u, and yet, e could be in our
solution since its other end-point, namely v could be its good end-point.

Given a graph G = (V,E), our algorithm finds an oriented multi-graph
−→
G ′ =

(V,
−→
E ′) having w(E′) almost equal to the optimal PEpD solution such that for

all the vertices, the in-degree constraint is satisfied. Next, by finding a directed

cut of weight at least w(E′)/4 in
−→
G ′, we guarantee a (4+ε)-approximate solution

for PEpD in G.

Lemma 6. Given a graph G = (V,E), weights w : E → N, demands d : E → N
on the edges, and capacities c : V → N on the vertices, a directed multi-graph−→
G ′ = (V,

−→
E ′) with w(E′) at least (1− ε)OPTPEpD can be constructed from G in

polynomial time such that
∑
e∈in(v) de ≤ cv, for all v ∈ V .

Proof. Let OPTPEpD denote an optimal solution for the PEpD problem, and
F ⊆ E be the edges picked in this solution. For any vertex vi, if the degree
condition is satisfied in F , then we set OPTiPEpD to be the total weight of the
edges incident on vi in F , otherwise we set OPTiPEpD to be 0. Since for any
edge in F , the degree condition is satisfied at at least one end-point, we have∑n
i=1 OPTiPEpD ≥ OPTPEpD.

For all vi ∈ V , we consider the problem of picking a maximum weight sub-set
of edges from δ(vi) such that the degree condition is satisfied. Observe that at
each vertex, this amounts to solving an independent Knapsack problem. Since
Knapsack admits an FPTAS [17], we obtain a solution Ai of weight at least

(1− ε)OPTi, where OPTi is the optimal solution to this problem w.r.t. vertex
vi. Therefore, we have

n∑
i=1

w(Ai) ≥ (1− ε)
n∑
i=1

OPTi

≥ (1− ε)
n∑
i=1

OPTiPEpD

≥ (1− ε)OPTPEpD.

The second inequality is true because OPTiPEpD is a feasible solution to the
knapsack problem w.r.t. vi.

Observe that in a similar way, we can show that
∑n
i=1 w(Ai) is at least

(1− ε)OPTOrD. The set of edges in ∪ni=1Ai is in fact a feasible solution to the
OrD problem. To see this, for each vertex vi, orient the edges in Ai \ ∪i−1j=1Aj
towards the vertex vi. This ensures that for any vertex, the total demand of the
incoming edges is at most its capacity. Since, each edge can appear at most twice
in the sum

∑n
i=1 w(Ai), we have a (2+ ε)-approximation algorithm for the OrD

problem.
However, the set of edges in ∪ni=1Ai may not be a feasible solution for the

PEpD problem. In order to obtain the (4 + ε)-approximation, we construct a

directed multi-graph
−→
G ′ = (V,

−→
E ′) as follows: Pick an arbitrary ordering of the

vertices, say v1, . . . , vn. Starting with E′ = ∅, for each i from 1, . . . n, add the
edges in Ai to the multi-set of edges E′ and orient the edges in Ai towards vi. By
doing this, we ensure that

∑
e∈E′ w(e) =

∑n
i=1 w(Ai) ≥ (1− ε)OPTPEpD. ut

Theorem 2. For any ε > 0, there exists a (2 + ε)-approximation algorithm for
PEpD on bipartite graphs.

Proof. Given a bipartite graph G = (U ∪V,E), using Lemma 6, we can find the

directed multi-graph
−→
G ′ = (U ∪ V,

−→
E ′) with w(E′) ≥ (1− ε′)OPTPEpD, for any

ε′ > 0 such that total demand of the in-coming edges to any vertex is at most
its capacity. So, the set of incoming edges to U and the set of in-coming edges to

V in
−→
G ′ are separately feasible for the PEpD problem on G, and the maximum

of both has weight at least (1 − ε′)OPTPEpD/2. Choosing ε′ = ε/(2 + ε), we
obtain a solution of weight at least OPTPEpD/(2 + ε) for the PEpD problem on
bipartite graphs. ut

In order to get the desired approximation ratio for general graphs, we find a

directed cut (DICUT) of weight at least w(E′)/4 in
−→
G ′. Given a directed multi-

graph
−→
Gm and an edge weight function w : E(Gm) → N, a DICUT is defined

to be the set of out-going edges from some vertex subset X (we denote it by

δ+(X)). Note that any directed cut in
−→
G ′ is a feasible PEpD solution. Lemma

7 captures this.

Lemma 7. Any directed cut of the directed multi-graph
−→
G ′ is a feasible PEpD

solution of G.

Proof. Let δ+(X) be a DICUT of
−→
G ′. This implies for all v ∈ V \X, out(v) = ∅,

and for any edge (u, v) in δ+(X) directed towards v, the degree condition of v
is satisfied in G. This ensures δ+(X) is a feasible PEpD solution. ut

Lemma 8. Given a directed multi-graph
−→
G ′ = (V,

−→
E ′), weights w : E′ → N,

there exists a directed cut of size at least w(E′)/4.

Proof. Consider the trivial randomized algorithm which adds any vertex in V
to the set X with probability 1/2. Any directed edge e = (u, v) is a cut if u ∈ X
and v ∈ V \X. This happens with probability 1/4. So, the expected weight of
the DICUT is

E
(∑
e∈δ+(X)

w(e)

)
=
∑
e∈
−→
E ′

w(e) · Pr
(
e ∈ δ+(X)

)
=
∑
e∈
−→
E ′

w(e) · 1

4
=
w(E′)

4
.

This ensures, there exists a DICUT of weight at least w(E′)/4. To find it, de-
randomize this by using the method of conditional expectations. ut

Armed with Lemma 6, 7, and 8 we can now complete the proof.

Theorem 3. There exists a (4+ε)-approximation algorithm for PEpD, for any
ε > 0.

Proof. Given an instance of PEpD, let OPTPEpD be an optimal solution to

PEpD. Lemma 6 shows that we can obtain an oriented graph
−→
G ′ = (V,

−→
E ′)

having w(E′) ≥ (1 − ε′)OPTPEpD, for any ε′ > 0 such that
∑
e∈in(v) de ≤ cv,

for all v ∈ V . Combining this with Lemma 7 and Lemma 8 we obtain a PEpD
solution in G of weight at least w(E′)/4 which is at least (1 − ε′)OPTPEpD/4.
Using ε′ = ε/(4+ε), we get a PEpD solution of weight at least OPTPEpD/(4+ε).

ut

6 A constant approximation for a generalized PEpD
problem

In this section, we obtain a (7 + ε)-approximation algorithm for a generalized
PEpD problem in which we allow each edge to decide when it is satisfied. In this
problem, some edges only require that the degree condition is satisfied at at least
one end-vertex while the remaining edges require that the degree condition at
both end-vertices be satisfied. Formally, given an undirected graph G = (V,E1∪
E2) with w, d : (E1 ∪ E2) → N, the weights and demands respectively on the
edges, and c : V → N the capacity on the vertices. The goal is to find a subgraph
G′ = (V,E′) such that w(E′) is maximized, and each edge in E′ is satisfied,
where any edge e = (u, v) ∈ E1 is satisfied if d(δ′(u)) ≤ cu or d(δ′(v)) ≤ cv, and
any edge e = (u, v) ∈ E2 is satisfied if d(δ′(u)) ≤ cu and d(δ′(v)) ≤ cv.

Note that this generalized PEpD problem on the subgraph G1 = (V,E1) is
the same as the PEpD problem on G1 and this problem on the subgraph G2 =

(V,E2) is the same as the demand matching problem on G2. Our algorithm solves
the PEpD problem on G1 and the demand-matching problem on G2 and then
returns the solution of maximum weight. Since we can have a (4+ε)-approximate
solution for the PEpD problem on G1 and a 3-approximate solution for the
demand matching problem on G2, we have a (7 + ε)-approximate solution for
this generalized PEpD on G. To see this, let OPT be the optimal solution to the
generalized PEpD problem on G and OPT1, OPT2 be the optimal solutions to
the PEpD problem on G1 and the demand matching problem on G2 respectively.
Let A1 ≥ OPT1/(4 + ε) be any solution to PEpD on G1 and A2 ≥ OPT2/3 be
any solution to the demand matching problem on G2. We have

OPT ≤ OPT1 + OPT2

≤ (4 + ε)A1 + 3A2

=⇒ max{A1, A2} ≥
OPT

7 + ε
.

Theorem 4. For any ε > 0, there exists a (7 + ε)-approximation algorithm for
the generalized PEpD problem in which some edges are satisfied if the degree
condition is satisfied at at least one end-vertex while the other edges are satisfied
if degree condition is satisfied at both end-vertices.

7 A constant approximation for PDBEP on hypergraphs
of constant degree

In this section, we study the PDBEP problem on hypergraphs. We present a
d-approximation algorithm for the weighted PDBEP problem on hypergraphs
having maximum degree d. Given a hypergraph H = (X,E) with maximum
degree d. We partition E into at most d disjoint subsets {E1, E2, · · · , Ed} such
that each subset Ei is a feasible PDBEP solution. So, the subset of edges with
maximum weight gives a d-approximate solution. We construct this partition
using Algorithm 1.

Algorithm 1 Edge Partitioning
i← 1
while E 6= ∅ do

Ei ← E
while ∃ unsatisfied edge e ∈ Ei do

Ei ← Ei \ e
end while
E ← E \ Ei

i← i + 1
end while

Lemma 9. Algorithm 1 partitions E into at most d subsets and each subset Ei
is a feasible solution to the PDBEP problem.

Proof. It is easy to verify that each Ei is a feasible solution to the PDBEP
problem, otherwise there exists an unsatisfied edge in Ei.

At any iteration i, we remove the unsatisfied hyperedges from Ei and if any
hyperedge e is not satisfied then all the vertices on which e is incident have
degree at least 2. Hence, in the sub-hypergraph Hi = (Xi, Ei), each vertex has
degree at least 1, where Xi ⊆ X is the set of vertices whose degree is at least 1
in the residual hypergraph before iteration i starts. This implies if a vertex has
degree at least 1 in the residual hypergraph at the end of iteration (i− 1), then
its degree decreased by at least 1 at the end of iteration i. Since the degree of
any vertex is at most d, after d rounds every vertex has degree 0. So, algorithm
1 partitions E into at most d subsets. ut

Theorem 5. The weighted PDBEP problem on hypergraphs having maximum
degree d has a d-approximation algorithm.

Proof. Let OPT be the optimal solution to the PDBEP problem on H = (X,E)
and Algorithm 1 partition E into d subsets E1, E2, · · · , Ed. We have,

d∑
i=1

w(Ei) = w(E) ≥ w(OPT)

=⇒ max
i
w(Ei) ≥

w(OPT)

d

Thus by returning the maximum weighted subset among {E1, E2, · · · , Ed}, we
get a d-approximate solution. ut

8 PTAS for PEpD on minor-free graphs

In this section, we obtain a PTAS for PEpD on H-minor-free graphs. Our result
follows the standard procedure for proving a PTAS for such graphs. We present
a polynomial time algorithm for graphs of bounded-treewidth. However, the
algorithm only works in the setting where the demands on the edges are bounded
by a polynomial. A PTAS for H-minor-free graphs then follows from the results
of Demaine et al. [9].

8.1 A polynomial time algorithm for bounded-treewidth graphs

For the sake of completeness, we give a definition of a tree-decomposition. See
[5] for a description and results on tree-decompositions.

Definition 1. A tree decomposition of a graph G = (V,E) is a pair (T,X),
where T = (I, F) is a tree and X = {Xi| i ∈ I} is a set with Xi ⊆ V satisfying

–
⋃
i∈I

Xi = V .

– for any edge e = (u, v) ∈ E, there exists an i ∈ I with u ∈ Xi and v ∈ Xi.

– for all v ∈ V , the set of nodes {i ∈ I| v ∈ Xi} forms a connected subtree of
T .

We refer to the vertices of T as nodes and the corresponding Xi’s as bags in order
to distinguish them from the vertices of G. The width of any tree decomposition
T = (I, F) is max

i∈I
|Xi| − 1 and the tree-width of a graph G, denoted as tw(G)

is the minimum width among all possible tree decompositions of G. Let G be a
graph with tw(G) = t − 1, for constant t > 0, and let (T,X) with T = (I, F)
and X = {Xi| i ∈ I} be a tree decomposition of G of width t− 1. It is also well
known that without loss of generality we can assume that T is a rooted binary
tree [5].

Define for all i ∈ I, Yi = {v ∈ Xj | j is a proper descendant of i}. Let
G[Xi] = (Xi, Ei), and G[Yi] = (Yi, Fi) denote the vertex induced subgraphs
of G with vertices in Xi and Yi respectively. Let G′ = (V,E′) be an optimal
solution for PEpD, and F ′i = Fi ∩E′, E′i = Ei ∩E′. For any v ∈ Xi, let demi(v)
be the total demand of the edges incident on v in the subgraph G′i = (V, F ′i ∪E′i).
For any bag Xi, let di be the vector representing demi(v) for each vertex v ∈ Xi.
Suppose f be another vector representing whether dem(v) ≤ cv, or dem(v) > cv,
where dem(v) denotes the total demand of the edges incident on v in G′. For any
v ∈ V , we set f(v) = cv, if dem(v) ≤ cv, and f(v) =∞, otherwise. The vector fi
denotes the vector f with restriction to the vertices in Xi.

We now describe our dynamic program. The dynamic program works bottom-
up. Each DP cell C(i, E′i, fi,di) represents the subproblem of choosing a set of
edges F ′i ⊆ Fi with maximum total weight, such that F ′i∪E′i are feasible assuming
demi(v) and dem(v) are bounded above by di and fi respectively.

For any vertex v ∈ Xi, f(v) is either cv or ∞. Since di � fi i.e., the vector
di is component-wise less than or equal to the vector fi, di(v) can take values in
{0, 1, · · · , cv} if f(v) = cv and can take values in {0, 1, · · · , d(δ(v))} if f(v) =∞,
where d(δ(v)) denotes the total demand of the edges in E incident on v. For
each node i, we enumerate over all subsets of Ei to find E′i, and enumerate over
all possible vectors that fi and di can take to find fi and di. Since f provides
an upper bound on the demand on any vertex in G′, edges in any subgraph of
G′ must satisfy the feasibility constraint assuming demand on any vertex v can
be at most f(v). Note that for any node v ∈ Xi, di(v) is the demand of the
edges in F ′i ∪E′i incident on v. So, for any leaf node i, we set di(v) = demE′

i
(v),

where demE′
i
(v) represents the demand of the edges in E′i incident on v. Let

W(i, E′i, fi,di) be the weight of the DP cell C(i, E′i, fi,di). For any leaf node i,
we compute W(i, E′i, fi,di) as follows:

W(i, E′i, fi,di) =

{
w(E′i), if ∀{u, v} ∈ E′i, fi(u) ≤ cu or fi(v) ≤ cv
−∞, otherwise.

For any internal node i, with children j and k for which we have already com-
puted the DP cells, we can compute the DP cell as follows:

W(i, E′i, fi,di) =

{
A
(
W(i, E′i, fi,di)

)
, if ∀{u, v} ∈ E′i, fi(u) ≤ cu or fi(v) ≤ cv

−∞, otherwise.

Where, A
(
W(i, E′i, fi,di)

)
can be computed as follows:

A
(
W(i, E′i, fi,di)

)
= max

E′
j ,fj,dj�fj,

E′
k,fk,dk�fk

{
W(j, E′j , fj,dj) + W(k,E′k, fk,dk)

+ w(E′i \ (E′j ∪ E′k))− w(E′j ∩ E′k)

∣∣∣∣
∀v ∈ {Xi ∩Xj ∩Xk}, fi(v) = fj(v) = fk(v),

∀v ∈ {Xi ∩Xj}, fi(v) = fj(v),

∀v ∈ {Xi ∩Xk}, fi(v) = fk(v),

∀v ∈ Xi,di(v) ≥ dj(v) + dk(v)+

demE′
i\(E′

j∪E′
k)

(v)− demE′
j∩E′

k
(v)

}
,

Where, demE′
i\(E′

j∪E′
k)

(v) and demE′
j∩E′

k
(v) denote the demands of the edges

incident on v in the subgraphs (V,E′i \ (E′j ∪E′k)) and (V,E′j ∩E′k) respectively.
Note that if v /∈ Xj , then dj(v) = 0 and if v /∈ Xk, then dk(v) = 0.

The optimal solution is the max
E′

r,fr
{W(r, E′r, fr, fr)}, where r is the root node

of the tree T .
The number of nodes in the tree-decomposition T of G is at most O(nt) [5].

For any node i ∈ I, |Xi| ≤ t, so E′i can take at most 2t
2

values, and fi can
take at most 2t values. For any vertex v ∈ Xi, di(v) can take at most ndmax

values, where dmax = maxe de. So, total number of cells in the DP can be at
most O(nt) · 2t2 · 2t · (ndmax)t = O(n(ndmax)t). Each DP cell takes O((ndmax)2t)
computation time. So the running time of the DP is O(n(ndmax)3t) which is
polynomial if dmax is bounded above by a ploynomial.

Theorem 6. The PEpD problem, on graphs with bounded tree-width can be
solved in polynomial time if the demands on the edges are bounded by a polyno-
mial.

8.2 Partition into bounded treewidth graphs

We use the following result of Demaine et al. [9] on the structure of H-minor-free
graphs.

Lemma 10 ([9]). For a fixed graph H, there is a constant cH such that, for
any integer k ≥ 1 and for every H-minor-free graph G, the vertices of G (or the

edges of G) can be partitioned into k + 1 sets such that any k of the sets induce
a graph of tree-width at most cHk. Furthermore, such a partition can be found
in polynomial time .

Theorem 7. In H-minor free graphs, there is a PTAS for the PEpD problem
if the demands on the edges are bounded by polynomial.

Proof. Let G = (V,E) be any H-minor-free graph. We apply Lemma 10 with
k = 1/ε to partition E into sets E1, E2, · · ·E1+1/ε. Let E′ be the edges in the
optimal solution, and E′1 = E′ ∩ E1, E

′
2 = E′ ∩ E2, · · · , E′1+1/ε = E′ ∩ E1+1/ε.

Let E′m be the set with minimum weight among {E′1, E′2, · · · , E′1+1/ε}. Since,

w(E′m) ≤ w(E′)
k+1 . this implies w(E′ \ E′m) ≥ (1− 1/(k + 1))w(E′).

Let Gi be the subgraph of G with edge set Ei = ∪j 6=iEj . Each Gi has tree-
width bounded by cHk for which we can get the optimal solution OPTi by
using Theorem 6. Since the set E′ \ E′i is a feasible solution to Gi, we have
OPTi ≥ w(E′ \ E′i).

max{OPT1, · · · ,OPTk+1} ≥ OPTm ≥ w(E′ \ E′m)

≥
(

1− 1

k + 1

)
w(E′) ≥ (1− ε)w(E′).

Hence, the maximum weighted solution among the solutions for G1, G2, · · ·Gk+1

gives a PTAS. ut

9 APX-hardness

In this section, we prove that the PEp problem is APX-hard even for unweighted
bipartite graphs of degree bounded by 3. Earlier, only NP-hardness was known.
This was proved by Zhang [20] by showing that for a graph G = (V,E), a
solution to unweighted PEp of size k implies a Dominating Set in G of size
|V | − k. Our result follows from the following facts: graphs of bounded degree
have large dominating sets, and the fact that the Dominating Set problem is
APX-hard on bipartite graphs of degree bounded by 3.

Proposition 3. Let G = (V,E) be a graph with degree bounded by B. Then,
any dominating set in G has size at least |V |/(1 +B).

Proof. Let |V | = n and suppose there is a dominating set S ⊂ V of size <
n/(1 + B). Since each v ∈ S can dominate at most B vertices in V \ S, all
vertices in S together can dominate < nB/(B + 1) vertices. Since any vertex in
G either belongs to S or is dominated by a vertex in S, we have the total number
of vertices in G < n/(B + 1) + nB/(B + 1) = n contradicting our assumption
that |V | = n. ut

Lemma 11. The Dominating Set problem on bipartite graphs of degree bounded
by 3 is APX-hard.

Proof. It is known that the dominating set problem on cubic graphs is APX-
hard [1]. We reduce this problem to the dominating set problem on bipartite
graphs of degree bounded by 3. We use the reduction identical to the one given
in [11], which we describe here for completeness. Let G = (V,E) be a cubic
graph. We reduce G to a bipartite graph G′ = (X∪Y,E′) with maximum degree
3 as follows: For each edge e = {x, y} ∈ E(G), we subdivide e by adding 3 new
vertices Se = {ae, be, ce}. Hence, |E(G′)| = 4|E(G)|, and E(G′) contains 4 edges
{x, ae}, {ae, be}, {be, ce} and {ce, y} corresponding to each edge e ∈ E(G). Set
X = V ∪ {be : e ∈ E(G)}, Y = {ae, ce : e ∈ E(G)}. Clearly, G′ is bipartite. The
maximum degree in G′ is 3, since the degree of each vertex in V (G) remains
unchanged, and the new vertices added have degree 2.

Let D′ be a dominating set of G′, i.e., for each v ∈ V (G′), either v or a
neighbour u of v is in D′, and we say that u dominates v. We claim that any
dominating set D′ of G′ can be modified without increasing its size such that
|Se ∩ D′| = 1, ∀e ∈ E(G). For an edge e ∈ E(G), either the vertex be ∈ D′,
or it is dominated by at least one of its neighbours. Hence, |Se ∩ D′| ≥ 1.
Suppose |D′ ∩ Se| = 3, then clearly D′ \ {be} is a dominating set of smaller size.
Hence, we can assume |D′ ∩ Se| ≤ 2 for all e ∈ E(G). Suppose there is an edge
e = {x, y} ∈ E(G) such that |Se ∩D′| = 2. First, assume that {ae, ce} ∈ D′. If
x, y ∈ D′, we can remove one of ae or ce to obtain a dominating set of smaller
size. Therefore, we can assume that at least one of x, y is not in D′. Without
loss of generality, assume y 6∈ D′. Then, D′′ = (D′ \ {ce}) ∪ {y} is a dominating
set, and |D′′| = |D′|. If {ae, be} ∈ D′, and if y ∈ D′, D′ \ {be} is a dominating
set of smaller size. If y 6∈ D′, then D′′ = (D′ \ {be}) ∪ {y} is a dominating set,
and |D′′| = |D′|. Hence, for any dominating set D′ of G′, there is a dominating
set D′′ of G′ such that |D′′| ≤ |D′|, and |D′′ ∩ Se| = 1, ∀e ∈ E(G).

Let D′ be a dominating set of G′ such that |D′ ∩ Se| = 1, ∀e ∈ E(G). Then,
we claim that D = V (G) ∩ D′ is a dominating set for G. To see this, consider
a vertex x ∈ V (G). Suppose x 6∈ D. Then, there is an edge e = {x, y} ∈ E(G)
such that ae ∈ D′, since D′ is a dominating set for G′. Since |D′ ∩ Se| = 1, this
implies y ∈ D′. Hence, x is dominated by y ∈ D. Therefore,

|D| ≤ |D′| − |E| (1)

On the other hand, let D be a dominating set in G. Then, we construct a
dominating set D′ for G′ as follows: Suppose u ∈ V (G) is not in D. Then, there
is an edge e = {u, v} ∈ E(G) such that v ∈ D. Add the vertex ae in D′. Then,
ae dominates be and v dominates ce. If e = {u, v} is such that both u, v 6∈ D, or
both u, v ∈ D. Then add the vertex be to D′. This ensures all vertices in G′ are
dominated and we have added one vertex for each edge in E(G). Therefore,

|D′| = |D|+ |E| (2)

We now show that our reduction is an L-reduction. See [7] for definitions. Let
OPT and OPT′ denote the optimal solutions for G and G′ respectively. From
Eqn.(2), it follows that |OPT′| ≤ |OPT| + |E|. From Proposition 3, we have

|OPT| ≥ |V |/4, and since G is a cubic graph, we have |E| ≤ 3|V |/2. Putting
these together, we get

|OPT′| ≤ |OPT|+ |E| [eqn. (2)]

≤ |OPT|+ 3|V |/2 [G is a cubic graph]

≤ |OPT|+ 6|OPT| [from Proposition (3)]

= 7|OPT|

For any dominating set D′ for G′, let D be the corresponding dominating set
for G obtained as above. From Eqn.(1), |D| ≤ |D′| − |E|. Therefore,

|D| − |OPT| ≤ (|D′| − |E|)− (|OPT′| − |E|)
= |D′| − |OPT′|

Hence, we have shown that the dominating set problem on bipartite graphs
of degree bounded by 3 is APX-hard if the dominating set problem on cubic
graphs is APX-hard. ut
Next, we give a PTAS reduction from the dominating set problem on unweighted
bipartite graphs of degree bounded by 3 to the PEp problem on unweighted
bipartite graphs of degree bounded by 3.

We use the following result of Zhang [20] on the relation between Dominating
Sets and PEp on unweighted graphs.

Lemma 12 ([20]). Let G = (V,E) be a graph without isolated vertices having
w(e) = 1, for all e ∈ E. In G, there is a solution of size k to the PEp problem
if and only if there is a solution of size |V | − k to the dominating set problem.

Theorem 8. The PEp problem is APX-hard for unweighted bipartite graphs
having degree at most 3.

Proof. We prove that an existence of a PTAS for the PEp problem on bipartite
graphs of degree at most 3 implies a PTAS for the dominating set problem on
the same class of graphs, contradicting Lemma 11.

Let G = (U ∪ V,E) be a bipartite graph with degree bounded by 3 and
|U ∪ V | = n. By Proposition 3, OPTDS(G) ≥ n/4, where OPTDS(G) denotes
the optimal solution to the dominating set problem on G. Lemma 12 implies that
OPTPEp(G) = n−OPTDS(G), where OPTPEp(G) denotes the optimal solution
to the PEp problem on G. Suppose there exists a PTAS for the PEp problem.
This implies that for every ε > 0, we can find a sub-graph G′ = (V,E′) such
that |E′| ≥ (1 − ε)(n −OPTDS(G)). By Lemma 12, there exists a dominating
set C of size, |C| = n− |E′|. Therefore,

|C| = n− |E′| ≤ n− (1− ε)(n−OPTDS(G))

≤ 4εOPTDS(G) + (1− ε)OPTDS(G)

≤ (1 + 3ε)OPTDS(G).

Therefore, the PEp problem is APX-hard, even on unweighted bipartite
graphs of degree bounded by 3. ut

10 Conclusion

To obtain better than 2-approximation for PEp, (2+ε)-approximation for PEpD
on bipartite graphs, and (4 + ε)-approximation for PEpD on general graphs, we
need to find better upper bounds on OPTPEp, OPTPEpD on bipartite graphs,
and OPTPEpD on general graphs respectively.

Following example in Figure 2 shows that the upper bound is factor 2 away
from the optimal PEp solution.

1 1

11

11

1

1

Fig. 2. OPTPEp = 2, where the upper bound is
∑

v∈V w(emax(v)) = 4

References

1. Paola Alimonti and Viggo Kann. Hardness of approximating problems on cubic
graphs. In Algorithms and Complexity, Third Italian Conference, CIAC ’97, Rome,
Italy, March 12-14, 1997, Proceedings, pages 288–298, 1997.

2. Pawan Aurora, Sumit Singh, and Shashank K. Mehta. Partial degree bounded
edge packing problem for graphs and k-uniform hypergraphs. J. Comb. Optim.,
32(1):159–173, 2016.

3. Maxim A. Babenko and Alexey Gusakov. New exact and approximation algo-
rithms for the star packing problem in undirected graphs. In 28th International
Symposium on Theoretical Aspects of Computer Science, STACS 2011, March 10-
12, 2011, Dortmund, Germany, pages 519–530, 2011.

4. Brenda S. Baker. Approximation algorithms for NP-complete problems on planar
graphs. J. ACM, 41(1):153–180, 1994.

5. Hans L. Bodlaender. A partial k -arboretum of graphs with bounded treewidth.
Theor. Comput. Sci., 209(1-2):1–45, 1998.

6. Tian-Ming Bu, Chen Yuan, and Peng Zhang. Computing on binary strings. The-
oretical Computer Science, 562:122–128, 2015.

7. Pierluigi Crescenzi. A short guide to approximation preserving reductions. In
Proceedings of the Twelfth Annual IEEE Conference on Computational Complexity,
Ulm, Germany, June 24-27, 1997, pages 262–273, 1997.

8. Frank K. H. A. Dehne, Michael R. Fellows, Henning Fernau, Elena Prieto, and
Frances A. Rosamond. NONBLOCKER: parameterized algorithmics for minimum
dominating set. In SOFSEM 2006: Theory and Practice of Computer Science,
32nd Conference on Current Trends in Theory and Practice of Computer Science,
Meŕın, Czech Republic, January 21-27, 2006, Proceedings, pages 237–245, 2006.

9. Erik D. Demaine, Mohammad Taghi Hajiaghayi, and Ken-ichi Kawarabayashi.
Algorithmic graph minor theory: Decomposition, approximation, and coloring. In
46th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2005),
23-25 October 2005, Pittsburgh, PA, USA, Proceedings, pages 637–646, 2005.

10. Jack Edmonds. Paths, trees, and flowers. Canadian Journal of mathematics,
17(3):449–467, 1965.

11. Jukka Suomela (https://cstheory.stackexchange.com/users/74/jukka suomela). Is
the dominating set problem restricted to planar bipartite graphs of maxi-
mum degree 3 NP-complete? Theoretical Computer Science Stack Exchange.
URL:https://cstheory.stackexchange.com/q/2508 (version: 2010-11-01).

12. Richard M Karp. Reducibility among combinatorial problems. Springer, 1972.
13. László Lovász and Michael D Plummer. Matching theory, volume 367. American

Mathematical Soc., 2009.
14. Silvio Micali and Vijay V Vazirani. An O(

√
|V ||E|) algoithm for finding maximum

matching in general graphs. In Foundations of Computer Science, 1980., 21st
Annual Symposium on, pages 17–27. IEEE, 1980.

15. Ojas Parekh. Iterative packing for demand and hypergraph matching. In Integer
Programming and Combinatoral Optimization, pages 349–361. Springer, 2011.

16. Ojas Parekh and David Pritchard. Generalized hypergraph matching via iterated
packing and local ratio. In Approximation and Online Algorithms, pages 207–223.
Springer, 2014.

17. Sartaj Kumar Sahni. On the knapsack and other computationally related problems.
Ph.D. Dissertation, Cornell University, 1973.

18. Alexander Schrijver. Combinatorial optimization: polyhedra and efficiency, vol-
ume 24. Springer Science & Business Media, 2003.

19. F. Bruce Shepherd and Adrian Vetta. The demand matching problem. In Integer
Programming and Combinatorial Optimization, 9th International IPCO Confer-
ence, Cambridge, MA, USA, May 27-29, 2002, Proceedings, pages 457–474, 2002.

20. Peng Zhang. Partial degree bounded edge packing problem. In Frontiers in Al-
gorithmics and Algorithmic Aspects in Information and Management - Joint In-
ternational Conference, FAW-AAIM 2012, Beijing, China, May 14-16, 2012. Pro-
ceedings, pages 359–367, 2012.

