HW 3 (due date: 02/02/2015)

Problems for submission

1. Let α be a positive real number and $0<p<1$. The negative binomial density with parameters α and p is defined as $f(x)=p^{\alpha}\binom{-\alpha}{x}(-1)^{x}(1-p)^{x}, x=0,1,2, \cdots$; and $f(x)=0$, otherwise. Here $\binom{-\alpha}{x}=\frac{-\alpha(-\alpha-1) \cdots(\alpha-x+1)}{x!}$.
Let X be a random variable with negative binomial density with parameters $\alpha=n$ (where, n is a fixed natural number) and p. Compute the density function of $X+r$.
2. Let X be a random variable taking finitely many values x_{1}, \cdots, x_{n}. X is said to be uniformly distributed if $P\left(X=x_{i}\right)=1 / n$, for $i=1, \cdots, n$.
Let X be a uniformly distributed random variable taking values $0,1, \cdots, 200$.
(a) Compute the distribution function of X.
(b) Compute $P(101<X \leq 200)$.
3. Let X be geometrically distributed with parameter p. Compute the density of (a) X^{3}.
(b) $X+4$.
4. Let X, Y, and Z be independent random variables having Poisson densities with parameters λ_{1}, λ_{2}, and λ_{3}, respectively. For non-negative integers, x, y, and z, compute

$$
P(X=x, Y=y, Z=z \mid X+Y+Z=x+y+z)
$$

5. Suppose in a group of people, 5% have invalid driver's license. Use the Poisson approximation to calculate the probability that at most 2 out of 50 given people will have invalid driver's licenses.

Problems not for submission

1. A die is rolled until a 6 appears.
(a) What is the probability that at most six rolls are needed?
(b) How many rolls are required so that the probability of getting 6 is at least $1 / 2$?
2. Let X_{1}, \cdots, X_{r} be discrete random variables on a probability space (Ω, \mathcal{A}, P). The joint density function of X_{1}, \cdots, X_{r} is defined as $f\left(x_{1}, \cdots, x_{r}\right)=P\left(X_{1}=x_{1}, \cdots, X_{r}=x_{r}\right)$.
Suppose $2 r$ balls are distributed at random into r boxes. Let X_{i} denote the number of balls in box i.
(a) Find the joint density of X_{1}, \cdots, X_{r}.
(b) Find the probability that each box contains exactly 2 balls.
3. Let X and Y be two uniformly distributed random variables on the set $0,1, \cdots, N$. Compute the density of $X+Y$.
4. There are N tickets numbered $1,2, \cdots, N$ from which n tickets are chosen. Let X denotes the smallest numbers on the n tickets drawn. Find the density and distribution function of X.
5. Give an example of two random variables X and Y that are not independent, but the random variables X^{2} and Y^{2} are independent.
