MTH 202: Probability and Statistics HW 3 (due date: 02/02/2015)

Problems for submission

1. Let α be a positive real number and $0 . The negative binomial density with parameters <math>\alpha$ and p is defined as $f(x) = p^{\alpha} \begin{pmatrix} -\alpha \\ x \end{pmatrix} (-1)^{x} (1-p)^{x}$, $x = 0, 1, 2, \cdots$; and f(x) = 0, otherwise. Here $\begin{pmatrix} -\alpha \\ x \end{pmatrix} = \frac{-\alpha(-\alpha-1)\cdots(\alpha-x+1)}{x!}$.

Let X be a random variable with negative binomial density with parameters $\alpha = n$ (where, n is a fixed natural number) and p. Compute the density function of X + r.

2. Let X be a random variable taking finitely many values x_1, \dots, x_n . X is said to be uniformly distributed if $P(X = x_i) = 1/n$, for $i = 1, \dots, n$.

Let X be a uniformly distributed random variable taking values $0, 1, \dots, 200$.

(a) Compute the distribution function of X.

- (b) Compute $P(101 < X \le 200)$.
- 3. Let X be geometrically distributed with parameter p. Compute the density of

(a)
$$X^3$$
.

- (b) X + 4.
- 4. Let X, Y, and Z be independent random variables having Poisson densities with parameters λ_1, λ_2 , and λ_3 , respectively. For non-negative integers, x, y, and z, compute

$$P(X = x, Y = y, Z = z \mid X + Y + Z = x + y + z).$$

5. Suppose in a group of people, 5% have invalid driver's license. Use the Poisson approximation to calculate the probability that at most 2 out of 50 given people will have invalid driver's licenses.

Problems not for submission

- 1. A die is rolled until a 6 appears.
 - (a) What is the probability that at most six rolls are needed?
 - (b) How many rolls are required so that the probability of getting 6 is at least 1/2?
- 2. Let X_1, \dots, X_r be discrete random variables on a probability space (Ω, \mathcal{A}, P) . The joint density function of X_1, \dots, X_r is defined as $f(x_1, \dots, x_r) = P(X_1 = x_1, \dots, X_r = x_r)$.

Suppose 2r balls are distributed at random into r boxes. Let X_i denote the number of balls in box i.

- (a) Find the joint density of X_1, \dots, X_r .
- (b) Find the probability that each box contains exactly 2 balls.
- 3. Let X and Y be two uniformly distributed random variables on the set $0, 1, \dots, N$. Compute the density of X + Y.
- 4. There are N tickets numbered $1, 2, \dots, N$ from which n tickets are chosen. Let X denotes the smallest numbers on the n tickets drawn. Find the density and distribution function of X.
- 5. Give an example of two random variables X and Y that are not independent, but the random variables X^2 and Y^2 are independent.