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1. introduction

It is a well known fact that measured foliations and measured laminations
are basically the same objects. Measured foliations are more closely related
to analysis since they arise naturally in complex analysis, from quadratic
differentials. Measured laminations are more topological and more trans-
parently a completion of weighted curve systems. In this project, we prove
that there is a bijective correspondence between space of measured foliations
MF(S) and the space of measured laminations ML(S). Consequently, the
spaces are homeomorphic as topological spaces.

Let S be a orientable hyperbolic surface.

Definition 1.1. A foliation F of S is a local product structure. That is, at
each X there exists a neighbourhood U and a diffeomorphism U → Rk ×Rℓ

such that the overlap maps take each p× Rℓ to some q × Rℓ.

The equivalence classes generated by the relation of lying in the same
p× Rℓ are the leaves of the foliation.

Definition 1.2. A singular foliation of S is a foliation with 1-dimensional
leaves except at isolated singular points of valency p ≥ 3.

p = 3

p = 4

Figure 1. Singular foliations on the surface S

Example 1.3. We obtain a singular foliation of the hyperbolic polygon, by
joining its center to the vertices with edges. This triangulates the polygon

1



2 KASHYAP RAJEEVSARATHY

into triangular regions. Now, in each triangular region, we join its center
to the vertices with vertices with edges. This divides the polygonal region
to polygonal subregions. Finally, we foliate each subtriangular region so
that the leaves of the foliation are parallel to the edge of the polygon in the
triangle. It is important to note at this point that there might be different
ways of triangulating and foliating the polygonal regions. However, all the
resulting foliations are Whitehead equivalent.

Figure 2. A foliated triangular region

Example 1.4. We obtain a foliation with compact leaves on the annulus in
the following manner.

Figure 3. A foliated annulus

Example 1.5. We obtain a singular foliation on the pair of pants in the
following manner.

G

Figure 4. A foliated pair of pants

We introduce a graph G (a singular set) whose complement is union of
three annular regions. We foliate each annular region with leaves parallel to
the boundary.
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Definition 1.6. A measured foliation (F , µ) of S is a singular foliation F
with an invariant measure µ that is nonzero on transverse arcs. That is, a
measure µ that :

(1) Assigns a nonnegative real number for each arc that is additive for
unions of arcs.

(2) Assigns 0 to an arc if and only if the arc lies in a leaf.
(3) Remains invariant if a transverse arc is moved, keeping it transverse

and keeping its endpoints in the same leaves.

b

a

Figure 5. Think of the leaves as the lines y = c. Then the
measure of the transverse arc is |b− a|.

Definition 1.7. Two measured foliations are called Whitehead equivalent
if they are related by a sequence of

(a) isotopies, and
(b) collapses or expansions of this type.

Figure 6. Whitehead move on a singular foliation

We will denote by MF(S) the topological space of all measured foliations
of S modulo Whitehead equivalence.

Remark 1.8. Thurston showed that [2]MF(S) is homeomorphic to S2m−1×
(0,∞) where the Teichmüller space of S denoted by T (S) is homeomorphic
to R2m.

Definition 1.9. A lamination L of S is a closed subset A of S with a
product structure for A.

Remark 1.10. A lamination is like a foliation of a closed subset of S.
Leaves of a lamination are defined just as for a foliation.
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Definition 1.11. A measured lamination (L, µ) of S is a lamination with
an invariant measure µ that is nonzero on transverse arcs.

Definition 1.12. A geodesic lamination L is said to be complete if every
connected component of S \ L is isometric to the interior of a hyperbolic
ideal triangle.

A measured lamination whose leaves are geodesics is a called a measured
geodesic lamination. We will denote by ML(S) the space of all measured
geodesic laminations on S that are equivalent up to isotopy.

Definition 1.13. Suppose that µ is a measure coming from a measured
foliation or a measured lamination on S. Then, for an isotopy class α of
imbedded loops in S, we define the measure of α under µ to be the positive
number Lµ(α) defined by Lµ(α) = inf

c∈α
Lµ(α).

Definition 1.14. A weighted train track [3] is a 1-complex in S with

(1) All vertices are of valency ≥ 3.
(2) All edges share a tangent direction at each vertex.
(3) The edges have an assignment of positive weights that satisfy the

switch condition, that is the sums of the weights in the two directions
in each vertex are equal.

a

b

c

u

v

Figure 7. The switch condition in this train track is u+v =
a+ b+ c

Definition 1.15. Let d1, . . . , dn be disjoint nonisotopic curves in S with
assigned real weights w1, . . . , wn. Then Dw = {(d1, w1), . . . , (dn, wn)} is
called a weighted curve system on S.

Remark 1.16. A weighted curve system Dw = {(d1, w1), . . . , (dn, wn)} de-
termines a measures geodesic lamination (L, µ) of S by choosing the corre-
sponding geodesic representatives from the classes of wi instead of wi.

Definition 1.17. Suppose that Dw = {(d1, w1), . . . , (dn, wn)} is a weighted
curve system in S. Then, for an isotopy class α of embedded loops in S, we
define the length of α under Dw as the positive number LDw(α) defined by

LDw(α) =
n∑

i=1

wi · i(α, di), where i(α, di) is the minimum of the intersection

numbers of curves c in α with ∪di.
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Notation 1.18. We will denote the real number

n∑
i=1

wi ·i(α, di) by i(α,Dw).

Lemma 1.19. Every measured foliation (F , µ) on S with compact leaves
determines a weighted curve system Dw with Lµ(α) = i(α,Dw) for every
isotopy class of curves α. Conversely, every weighted curve system Dw in
S determines a foliation measured foliation (F , µ) with compact leaves with
Lµ(α) = i(α,Dw).

Proof. Suppose that (F , µ) is a measured foliation with compact leaves of S.
We start splitting apart along singular leaves. Since the leaves are compact,
each singular leaf has both end points at singular points, so the splitting
process ends with foliated submanifolds of S with no singular points. That
is, a true foliation by circles. Since S is orientable, the submanifolds are tori
or annuli.

If the submanifold is a torus, it can have no singular leaves. If the leaf is a
(p, q) curve Cp,q, then Lµ(α) = w·i(α,Cp,q) = i(α, {(Cp,q, w)}) where w is the
measure of a transverse circle that crosses Cp,q once and {(Cp,q, w)} ⊆ Dw.

If the submanifold is an annulus, for each isotopy class of a leaf, add
up the transverse measure of the leaves in that isotopy class. This gives a
(di, wi) ∈ Dw where di can be taken to be any curve in the isotopy class of
the leaf.

Conversely, suppose that we have a weighted curve system Dw = {(d1, w1), . . . , (dn, wn)}
in S. We start with foliated annular neighborhoods of di with transverse
measure wi. We obtain a partial foliation (F′, µ0) on a union of annuli in S
with Lµ0(α) =

∑n
i=1wi · i(α, di) = i(α,Dw).

Now just expand these annuli. When they meet, they fuse into singular
leaves giving a singular foliation F of S up to Whitehead equivalence. To
define the measure on this foliation we take any transverse arc α. Suppose
the p and q are the end points of the arc α that lie on leaves l and m. We
consider the projection of the annulus to the close interval [0, 1] by sending
each leaf of the foliation to a point. Consider the subannulus determined by
union of the the leaves between l and m. This is sent under the projection
to a subinterval [l,m].

αp q

l m

Subannulus

Figure 8. The subannulus determined by the end points of
arc α
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We define the measure of the arc α to be the measure of the interval [l,m],
that is |l−m|. This defines an invariant measure µ on the singular foliation
F .

�
Definition 1.20. A weighted train track carries a measures lamination if
there is a suitable set of weights that produces the measured lamination

Lemma 1.21 (Thurston, [1]). Every measured lamination in S is carried
by a suitable train track.

Remark 1.22. Rationally related weights correspond to measured geodesic
laminations with all leaves compact, that is a weighted curve system. Irra-
tionally related weights give a measured geodesic lamination with noncom-
pact leaves.

2. the main theorem

Theorem 2.1. Let S be a orientable hyperbolic surface. Then, there is
a bijective correspondence between MF(S) and ML(S). Consequently,
MF(S) ∼= ML(S).

Proof. Suppose that we have a measured foliation (F , µ) of S. If the leaves
of the foliation are compact, then by Lemma 1.19 the foliation (F , µ) deter-
mines a weighted curve system and hence a geodesic measured lamination
F , µ with compact leaves by Remark 1.16.

If the leaves are not noncompact, then we can collapse the singular folia-
tion to a weighted train track. By Remark 1.22 we get a measured geodesic
lamination (L, µ) carried by the train track.

Conversely, suppose that we have a measured geodesic lamination (L, µ)
of S. If L is a finite union of closed geodesics with compact leaves, then it
forms weighted curve system under the measure µ. By Lemma 1.19 we have
a corresponding measured foliation (F , µ) and we are done.

Suppose that L does not form a weighted curve system. Then S \ L is a
finite disjoint union of connected regions.

If one of the complementary regions is a hyperbolic subsurface, then add
singular sets (or graphs) as in the foliation of the pair of pants in Example 1.5
to obtain a foliation on the complements of the graphs (which are annuli).
The measure on each annulus is defined as in proof of Lemma 1.19. Therefore
we obtain a measured foliation (F , µ) on the entire surface.

If the region is a hyperbolic triangle, we consider the thickened weighted
train track that carried the measured lamination (L, µ). We employ a similar
technique to the one used in Example 1.3 to foliate the triangle so that the
leaves are parallel to the weighted edges of the train track as shown in the
figure below.

Thus, we obtain a foliation F on the entire surface S. To define a measure
on F , we consider a transverse arc α. We consider a map from the subtri-
angular region containing α to an interval [0, z] of taking each singular leaf
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Figure 9. Foliaiton of the triangle with leaves parallel to
the edges of the train trackL

to a point. Suppose the p and q are the end points of the arc α that lie on
leaves l and m. Then the union of the leaves between l and m is mapped

to a subinterval of length |l−m|
z . We define the measure of the arc α to be

the measure of the interval [l,m], that is |l−m|
z . This defines an invariant

measure µ on the singular foliation F .
In general, if the complementary region is a hyperbolic polygon, we can

consider the train track that carries the lamination. We use a similar pro-
cedure to the one used in the triangular case to obtain a measured foliation
on the surface S.

�
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