MTH 507 Midterm Solutions

1. Let \(X \) be a path connected, locally path connected, and semilocally simply connected space. Let \(H_0 \) and \(H_1 \) be subgroups of \(\pi_1(X, x_0) \) (for some \(x_0 \in X \)) such that \(H_0 \leq H_1 \). Let \(p_i : X_{H_i} \to X \) (for \(i = 0, 1 \)) be covering spaces corresponding to the subgroups \(H_i \). Prove that there is a covering space \(f : X_{H_0} \to X_{H_1} \) such that \(p_i \circ f = p_0 \).

Solution. Choose \(\tilde{x}_0, \tilde{x}_1 \in p^{-1}(x_0) \) so that \(p_i : (X_{H_i}, \tilde{x}_i) \to (X, x_0) \) and \(p_* : (X_{H_i}, \tilde{x}_i) = H_i \) for \(i = 0, 1 \). Since \(H_0 \leq H_1 \), by the Lifting Criterion, there exists a lift \(f : X_{H_0} \to X_{H_1} \) of \(p_0 \) such that \(p_1 \circ f = p_0 \). It remains to show that \(f : X_{H_0} \to X_{H_1} \) is a covering space.

Let \(y \in X_{H_1} \), and let \(U \) be a path-connected neighbourhood of \(x = p_1(y) \) that is evenly covered by both \(p_0 \) and \(p_1 \). Let \(V \subset X_{H_1} \) be the slice of \(p_1^{-1}(U) \) that contains \(y \). Denote the slices of \(p_0^{-1}(U) \) by \(\{V'_z : z \in p_0^{-1}(x)\} \). Let \(C \) denote the subcollection \(\{V'_z : z \in f^{-1}(y)\} \) of \(p_1^{-1}(U) \). Every slice \(V_z \) is mapped by \(f \) into a single slice of \(p_1^{-1}(U) \), as these are path-connected. Also, since \(f(z) \in p_1^{-1}(y) \), \(f(V'_z) \subset V \) iff \(f(z) = y \). Hence \(f^{-1}(V) \) is the union of the slices in \(C \).

Finally, we have that for \(V'_z \in C \), \((p_1|_V)^{-1} \circ (p_0|_{V'_z}) = f|_{V'_z} \). Hence \(f|_{V'_z} \) is a homeomorphism, and \(V \) is an evenly covered neighborhood of \(y \).

2. A homomorphism between two covering spaces \(p_1 : \tilde{X}_1 \to X \) and \(p_2 : \tilde{X}_2 \to X \) is a map \(f : \tilde{X}_1 \to \tilde{X}_2 \) so that \(p_1 = p_2 \circ f \).

(a) Classify all the covering spaces of \(S^1 \) up to isomorphism.

(b) Find all homomorphisms between these covering spaces.

Solution. (a) Let \(x_0 = (1, 0) \), then by Classification of Covering Spaces, the basepoint-preserving isomorphism classes of covering spaces of \((S^1, x_0)\) correspond to the subgroups of \(\pi_1(S^1, x_0) \cong \mathbb{Z} \). Each non-trivial subgroup \(m\mathbb{Z} \leq \mathbb{Z} \) corresponds to the covering space \(p_m : (S^1, \tilde{x}_0) \to (S^1, x_0) \), where \(p_m(z) = z^m \) and \(\tilde{x}_0 \) is an \(m \)th root of unity in \(S^1 \subset \mathbb{C} \). The trivial subgroup corresponds to the universal cover \(p : \mathbb{R} \to S^1 \) given by \(p(s) = e^{i(2\pi s)} \).

(b) Let \(p_m : (S^1, \tilde{x}_0) \to (S^1, x_0) \) and \(p_n : (S^1, \tilde{x}_1) \to (S^1, x_0) \) be covering spaces. Any homomorphism \(f : (S^1, \tilde{x}_0) \to (S^1, \tilde{x}_1) \) must induce a homomorphism \(f_* : \mathbb{Z}_m \to \mathbb{Z}_n \). Such a homomorphism exists iff \(m | n \),
and when \(m \mid n \), \(f_* \) is the natural injection \(\mathbb{Z}_m \hookrightarrow \mathbb{Z}_n \). There can both be no homomorphism between universal cover \(p : \mathbb{R} \to S^1 \) to any of the finite-sheeted covering spaces mentioned above, as its fundamental group is trivial. Finally any homomorphism \(f \) from the universal cover to itself should be an isomorphism (by the Lifting Criterion) which satisfies \(p \circ f = p \). Since \(p(s) = e^{i(2\pi s)} \), \(f \) has to be of the form \(s \mapsto s + k \), where \(k \) is an integer.

3. Let \((X, x_0)\) and \((Y, y_0)\) be topological spaces.

 (a) Show that \(\pi_1(X \times Y, (x_0, y_0)) \cong \pi_1(X, x_0) \times \pi_1(Y, y_0) \). [Hint: Use the projection maps \(p_1 : X \times Y \to X \) and \(p_2 : X \times Y \to Y \).]

 (b) Compute the fundamental group of the solid torus.

Solution. (a) Please see Theorem 60.1 (Page 371) in Munkres.

(b) The solid torus \(X \approx D^2 \times S^1 \). Hence \(\pi_1(X) \approx \pi_1(D^2) \times \pi_1(S^1) \), from part(a). Since \(D^2 \) is simply connected, we have that \(\pi_1(X) \cong \mathbb{Z} \).

4. Find all 2-sheeted covering spaces of the torus \(S^1 \times S^1 \) up to isomorphism.

Solution. By the Classification of Covering Spaces, the isomorphism class of any 2-sheeted covering space will correspond to a subgroup to \(\pi_1(S^1 \times S^1) \cong \mathbb{Z}^2 \) of index 2. The two obvious nontrivial subgroups are \(2\mathbb{Z} \times \mathbb{Z} \) and \(\mathbb{Z} \times 2\mathbb{Z} \), which correspond to the coverings \(z^2 \times w : S^1 \times S^1 \to S^1 \times S^1 \) and \(z \times w^2 : S^1 \times S^1 \to S^1 \times S^1 \) respectively.

There is only one other nontrivial subgroup. Before we describe this subgroup, note that any such subgroup will be isomorphic to the kernel of a homomorphism \(\mathbb{Z}^2 \to \mathbb{Z}_2 \). The third nontrivial subgroup is isomorphic to the kernel of the homomorphism that maps both of the standard generators of \(\mathbb{Z}^2 \) to 1 \(\in \mathbb{Z}_2 \). Explicitly, this subgroup can be described as \(\{(x, y) \in \mathbb{Z}^2 \mid x + y \pmod{2} = 0 \} \). Can you describe the covering space this subgroup corresponds to?

5. Consider the real projective \(n \)-space \(\mathbb{R}P^n \) obtained by identifying each point \(x \in S^n \) with its antipode \(-x \).

 (a) Compute its fundamental group.

 (b) Find all its covering spaces up to isomorphism.
(c) Show that every map from $\mathbb{R}P^2 \to S^1$ is nullhomotopic.

Solution. (a) We know from class that the quotient map $q : S^n \to \mathbb{R}P^n$ for ($n \geq 2$) is a 2-fold universal covering space. (Note that we are assuming here that S^n is simply connected.) Therefore, the lifting correspondence is bijective, and consequently, $\pi_1(\mathbb{R}P^n)$ is a group that has exactly 2 elements. Therefore, $\pi_1(\mathbb{R}P^n) \cong \mathbb{Z}_2$.

(b) Up to isomorphism, any covering space of $\mathbb{R}P^n$ will correspond to a subgroup of \mathbb{Z}_2. As the only subgroups of \mathbb{Z}_2 are itself and the trivial group, they will correspond to the covering spaces of $\text{id} : \mathbb{R}P^2 \to \mathbb{R}P^2$ and $q : S^n \to \mathbb{R}P^n$ (which in this case is the universal cover) respectively.

(c) Suppose that $f : \mathbb{R}P^2 \to S^1$ is a continuous map. Then it induces a homomorphism $h_* : \pi_1(\mathbb{R}P^2) \cong \mathbb{Z}_2 \to \pi_1(S^1) \cong \mathbb{Z}$, which has be trivial. By the Lifting Criterion, f lifts to a map $\tilde{f} : \mathbb{R}P^2 \to \mathbb{R}$ such that $p \circ \tilde{f} = f$, where $p : \mathbb{R} \to S^1$ is the standard universal covering. Since \mathbb{R} is contractible, f has be homotopic (via some H) to a constant map. Hence $p \circ H$ is a homotopy from f to a constant map.

6. Let $r : S^1 \to S^1$ be a reflection of the circle (e.g. $(x, y) \to (-x, y)$ in the plane). The *Klein bottle* K is the quotient space of $[0, 1] \times S^1$ under the following equivalence relation: $(0, z) \sim (1, r(z))$ for all $z \in S^1$, and (t, z) is not equivalent to anything except itself, for $t = 0, 1$.

(a) Explain why K is compact.

(b) Let $C_1 \subset K$ be (the image of) the circle $1 \times S^1$, and let $C_2 \subset K$ be a small embedded circle inside $(\frac{1}{2}, \frac{3}{2}) \times S^1$. There is a continuous map $g : K \to \mathbb{R}^3$ such that $g|_{K-C_1}$ and $g|_{K-C_2}$ are injective. Assuming g exists as described, use Urysohn’s Lemma to construct a continuous map of K into $\mathbb{R}^4 = \mathbb{R}^3 \times \mathbb{R}$, which is an imbedding.

Solution. (a) Since the quotient map is a continuous map, and $[0, 1] \times S^1$ is compact, it follows that K has to be compact.

(b) Since K is Hausdorff and $C_1, C_2 \approx S^1$, they have to be closed sets in K. As K is also compact, it is a normal space. By Urysohn’s Lemma, we obtain a function $f : K \to [0, 1]$ such that $f(C_1) = \{0\}$ and $f(C_2) = \{1\}$. Composing f with the inclusion $[0, 1] \hookrightarrow \mathbb{R}$, we obtain a function $f' : K \to \mathbb{R}$ such that $f'(C_1) = \{0\}$ and $f'(C_2) = \{1\}$.
Now define \(h : K \to \mathbb{R}^3 \times \mathbb{R} \) by \(h(x) = (g(x), f'(x)) \). This map is continuous, as it has continuous coordinate functions. Consider two distinct points \(x, y \in K \). If both \(x \) and \(y \) are in \(C_1 \) and \(C_2 \) then \(f'(x) \neq f'(y) \), and so \(h(x) \neq h(y) \). Without loss of generality, if we assume that \(C_1 \) does not contain \(x \) or \(y \), then \(x, y \in K \setminus C_1 \), and \(g \) is injective on this subset. Hence \(g(x) \neq g(y) \), and so \(h(x) \neq h(y) \).

Finally, \(h \) is a continuous and injective map from a compact space to a Hausdorff space. This implies that \(h \) has to be an imbedding.

7. Let \(h, k : (X, x_0) \to (Y, y_0) \) be continuous maps.

(a) If \(h \simeq k \) (via \(H \)) such that \(H(x_0, t) = y_0 \) for all \(t \), then show that \(h_* = k_* \).

(b) Using (a) show that the inclusion \(j : S^n \to R^{n+1} \setminus \{0\} \) induces an isomorphism of fundamental groups. [Hint: Use the natural retraction map \(r : R^{n+1} \setminus \{0\} \to S^n \)].

Solution. Please see Lemma 58.2 and Theorem 58.2 (Page 360) from Munkres.

8. **[Bonus]** Let \(f : (S^1, x_0) \to (S^1, x_1) \) be a continuous map. Then the induced homomorphism \(f_* : \pi_1(S^1, x_0)(\cong \mathbb{Z}) \to \pi_1(S^1, x_1)(\cong \mathbb{Z}) \) is completely determined by the integer \(d \) given by \(f_*([\alpha_0]) = d[\alpha_1] \), where \([\alpha_i] \) is a generator \(\pi_1(S^1, x_i) \) (for \(i = 0, 1 \)) that represents \(1 \in \mathbb{Z} \). This integer \(d \) is called the **degree** of \(f \) (denoted by \(\text{deg}(f) \)).

(a) Show that if \(f \simeq g \), then \(\text{deg}(f) = \text{deg}(g) \).

(b) Show that if \(f \) is a homeomorphism, then \(\text{deg}(f) = \pm 1 \). In particular, show that \(\text{deg}(a) = -1 \), when \(a \) is the antipodal map.

Solution. (a) Note that \(\text{deg}(f) \) is independent of basepoint, for if we choose a different basepoint \(y_0 \in X \) with \(f(y_0) = y_1 \), then there exists isomorphisms \(\hat{\alpha} : \pi_1(X, x_0) \to \pi_1(Y, y_0) \) and \(\hat{\beta} : \pi_1(X, x_1) \to \pi_1(Y, y_1) \) such that \(f_* \circ \hat{\alpha} = \hat{\beta} \circ f_* \). Since any continuous map \(f : S^1 \to S^1 \) has to be a loop, it follows from 7(a) that \(f_* = g_* \), and consequently \(\text{deg}(f) = \text{deg}(g) \).

(b) To prove (b), we show first that \(\text{deg}(f \circ g) = \text{deg}(f) \cdot \text{deg}(g) \). But this follows directly from the fact that \((f \circ g)_* = f_* \circ g_* \). Also, by definition
\[\deg(id) = 1, \] as it induces the identity homomorphism. Therefore, if \(f \) is a homeomorphism, then \(\deg(f) \cdot \deg(f^{-1}) = 1 \). As \(\deg(f) \) is an integer, we have that \(\deg(f) = \pm 1 \). Finally, since \(a \) is a homeomorphism that is non-homotopic to \(f \), we conclude that \(\deg(a) = -1 \).