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ABSTRACT

A family (Gn)n∈N of finite connected d-regular graphs is said to be expander if
the sequence {h(Gn)}n∈N, where h(Gn) denotes the isoperimetric constant of the
graph (Gn), is uniformly bounded away from zero. In this project, we study the
various aspects of spectral graph theory from the viewpoint of expander graphs. We
begin by discussing some of the basic facts of expander graph theory [8], and proof
of the Alon-Boppana theorem. We go on to understand the relation between three
graph invariants, namely the isoperimetric constant, the second largest eigenvalue,
and the diameter, and which leads to the fact that sequences of finite abelian groups
cannot yield expander families of Cayley graphs. Further, we study the notion of
graph coverings and prove the classic result that sequences of solvable groups with
bounded derived length do not yield expander families. We then use basic results
from representation theory of finite groups to understand the spectrum of Cayley
graphs and computed an explicit formula to calculate the spectrum of Cayley graphs
on abelian groups. Finally, we study random lifts of graphs and the proof of the
existence of infinite families of regular bipartite Ramanujan graphs of every degree
bigger than 2, which uses the method of interlacing polynomials [9].
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Chapter 1

Introduction

The origins of graph theory can be traced back to Euler’s solution to the Konigsberg
bridge problem from the 18th century, which asked if there was a way to walk on
all the seven bridges of the Konigsberg city, exactly once, in a single trip, with
the condition that the trip ended at the same place it began. Since then, the
subject has evolved tremendously and has now become an important branch of pure
mathematics, as well as applied mathematics, owing to its wide range of applications
in science, engineering and technology. One such application is in the analysis and
design of efficient communication networks.

A typical communication network can be modeled by a graph, where the vertices
represent the entities that wish to communicate and edges represent the connections
between these entities. Now, given a fixed set of vertices, the goal is to design a
network that is better in terms of reliability, speed, and the cost-effectiveness. It
is known that this is tantamount to determining whether the network has a large
isoperimetric constant. There are no efficient algorithms available to explicitly
compute the isoperimetric constant of an arbitrary graph, as this is known to be an
NP-hard problem. However, some bounds have been derived for the isoperimetric
constant (or, the Cheeger constant) of regular graphs in terms of the other graph
invariants such as the diameter, and the second largest eigenvalue of the adjacency
matrix associated to a graph.

In this chapter, we discuss some basic definitions, standard notations, and some
results from graph theory that we will be using extensively in subsequent chapters.
This chapter is based on [6, 8, 10].

1.1 Preliminaries

Definition 1.1.1. An undirected graph G is a pair (V,E), where V is a nonempty
set, called the set of vertices, E is called the set of edges. Formally, if V =
{v1, v2, ..., vn}, then E ⊆ {{vi, vj} : vi, vj ∈ V }.

When there is more than one graph in discussion, to avoid any confusion we denote
the vertex set of a graph G by V (G), and edge set by E(G).
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Example 1.1.2. Let G = (V,E) be a graph with V = {1, 2, 3, 4, 5} and E =
{{1, 2}, {2, 3}, {3, 1}, {3, 4}, {3, 5}}. Figure 1.1 gives the pictorial representation of
G.

Figure 1.1: An undirected graph on 5 vertices.

A graph is finite if both its vertex set and edge set are finite. If E = φ, then the
graph is called a null graph, and if E = {{vi, vj} : vi, vj ∈ V, i 6= j}, then the graph
is called a complete graph, denoted by Kn.

(a) K4
(b) K6

Figure 1.2: The graphs K4 and K6.

Remark 1.1.3. Let G = (V,E) be a graph, and let u, v ∈ V . Then u, v are called
adjacent to each other if {u, v} ∈ E. That is, if u, v are the endpoints of the same
edge of the graph.

Definition 1.1.4. A graph H is said to be a subgraph of another graph G if V (H) ⊆
V (G) and E(H) ⊆ E(G). If V (H) = V (G), then the graph H is called a spanning
subgraph of G. A subgraph H is called an induced subgraph of G if any edge
e ∈ E(H) if and only if e ∈ E(G).

Example 1.1.5. Consider the graph G as shown in Figure 1.3a. Observe that the
graph H shown in Figure 1.3b is an induced subgraph of G. We note that H is not
a spanning subgraph as V (H) ⊂ V (G).
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(a) G
(b) H

Figure 1.3: A graph G and its induced subgraph H.

Remark 1.1.6. The graph shown in Figure 1.3a is known as the Petersen Graph,
named after the mathematician Julius Petersen.

Definition 1.1.7. An edge with equal endpoints is called a loop. Edges with the
same pair of endpoints are called multiple edges.

Definition 1.1.8. A graph having no loops or multiple edges is called a simple
graph.

Example 1.1.9. Consider the graph shown in Figure 1.4. It is not a simple graph
as it has multiple edges and a loop. The edge in red color is a loop, and the green
edges are multiple edges.

Figure 1.4: A multigraph on 3 vertices.

Remark 1.1.10. Throughout this thesis, we will assume graphs to be finite, undi-
rected, and simple, unless stated otherwise.

Definition 1.1.11. The order of a graph G = (V,E), denoted by |G|, is the
cardinality of its vertex set V.

Definition 1.1.12. The degree of a vertex v ∈ V , denoted by deg(v), is the number
of vertices in V that are adjacent to it.
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Definition 1.1.13. A graph G = (V,E) is d-regular if deg(v) = d, for all v ∈ V.

Example 1.1.14. The graph depicted in Figure 1.5 is a 19-regular graph on 20
vertices K20.

Figure 1.5: The complete graph K20.

Lemma 1.1.15. Let G = (V,E) be a graph. Then∑
v∈V (G)

deg(v) = 2|E(G)|.

Proof. For any vertex v ∈ V , we know that

deg(v) = |{e ∈ E | e = {u, v};u ∈ V }|.

Since, each edge e ∈ E has two endpoints, it contributes +2 to the sum. Thus,∑
v∈V (G)

deg(v) = 2|E(G)|.

Definition 1.1.16. Let G = (V,E) be a graph. A subset S of V is called an
independent set if no two vertices of S are adjacent to each other.

Definition 1.1.17. A graph G = (V,E) is called bipartite if its vertex set V can
be partitioned into two independent sets. Similarly, G is called r-partite if V can
be partitioned into r independent sets.

Example 1.1.18. Figure 1.6 below illustrates the graph K3,8, which is the complete
bipartite graph with independent sets of order 3 (red vertices) and 8 (blue vertices).
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Figure 1.6: The graph K3,8.

Definition 1.1.19. Let G = (V,E) be a graph.

(i) A walk in G is a sequence v0, e1, v1, ..., ek, vk of vertices vi and edges ei such
that for 1 ≤ i ≤ k, the edge ei has endpoints vi−1 and vi. The number of edges
in the sequence is called the length of the walk.

(ii) A walk is called a closed walk if v0 = vk.

(iii) A path is a walk with no repeated vertex. A closed path is called a cycle

(iv) A trail is a walk with no repeated edges. A closed trail is called a circuit.

Example 1.1.20. Consider the Petersen graph in Figure 1.3a. The sequence

1, {1, 6}, 6, {6, 10}, 10, {6, 10}, 6

is a walk in the graph starting from vertex 1 to vertex 6. But, note that it is not a
path as 6 is the repeated vertex.

Definition 1.1.21. The distance between any two vertices u, v, denoted by dist(u, v),
is the length of a shortest path joining u and v in the graph, where dist(u, v) = 0 if
and only if u = v.

Remark 1.1.22. We note that the defined notion of distance between two vertices
from Definition 1.1.21 above defines a metric on G called the path metric.

Definition 1.1.23. The diameter of a graph G, denoted by diam(G), is defined as

diam(G) = max{dist(u, v) : u, v ∈ V (G)}.

Definition 1.1.24. A graph is called connected if for any two vertices of the graph
there is a walk in the graph joining them. Otherwise, the graph is called discon-
nected.

Definition 1.1.25. Let G,H be graphs. A map φ : V (G)→ V (H) is said to be a
graph homomorphism if {φ(v), φ(u)} ∈ E(H), whenever {v, u} ∈ E(G).

Definition 1.1.26. Two graphs G and H are isomorphic if there exists a bijective
map φ : V (G)→ V (H) such that {φ(v), φ(u)} ∈ E(H) if and only if {v, u} ∈ E(G).

Example 1.1.27. Consider the graphs G,H as shown in Figure 1.7. Both G and
H are connected and 2-regular graphs of order 20. Hence, they are isomorphic.
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(a) G (b) H

Figure 1.7: Isomorphic graphs of order 20.

1.2 Adjacency Matrix

Definition 1.2.1. Let G = (V,E) be a graph with |V | = n. The adjacency matrix
of G, A(G) = (aij)n×n, where

aij =

{
1, if {i, j} ∈ E, and

0, otherwise.

Remark 1.2.2. Note that A(G) is a real and symmetric matrix. Hence, by Spectral
Theorem, we know that all of its eigenvalues are real.

Example 1.2.3. Consider the complete graph on 4 vertices K4. Then

A(K4) =


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

 .

Definition 1.2.4. The characteristic polynomial of a graph G is defined to be the
characteristic polynomial of A(G). The spectrum of G is defined to be the multiset
of eigenvalues of A. We write the spectrum of G as

Spec(G) =

(
λ0 λ1 · · · λk
n0 n1 · · · nk

)
,

where for each 0 ≤ i ≤ k, λi are distinct eigenvalues of A, and
∑k

i=0 ni = n.

Example 1.2.5. Consider the complete graph on n verticesKn. Note that A(Kn) =
J − In, where J is an n × n matrix with all of its entries equal to 1, and In
denotes the identity matrix of order n. Since, J is real and symmetric, by Spectral
Theorem we know that it is diagonalisable and has n real eigenvalues. But, note
that rank(J) = 1, so it has only one non-zero eigenvalue. Consider the vector
v = (1, 1, · · · , 1) ∈ Rn. Clearly, Jv = nv, which implies the n is an eigenvalue of J .
So,

Spec(J) =

(
n 0
1 n− 1

)
.
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We also note that if (λ, v) is an eigenpair of J , then Av = (J − In)v = Jv − Inv =
λv − v = (λ− 1)v. Thus, we get

Spec(A) =

(
n− 1 −1

1 n− 1

)
.

Remark 1.2.6. Relabelling the vertices of a graph G yields an adjacency matrix
B, which is similar of A(G), and hence has the same spectrum as G. Thus, the
spectrum of a graph does not depend on its labelling. More generally, we have the
following theorem, which we state without proof.

Theorem 1.2.7. Let X and Y be two graphs of order n, and let A(X) and A(Y )
be their corresponding adjacency matrices, respectively. Then X ∼= Y if and only if
there exists a permutation matrix P ∈Mn(R) such that

PA(X)P T = A(Y ).

Theorem 1.2.8. Let G be a d-regular graph of order n with the spectrum λn−1 ≤
· · · ≤ λ1 ≤ λ0. Then

(i) λ0 = d,

(ii) |λi| ≤ d for all 0 ≤ i ≤ n− 1, and

(iii) |λ1| < d if and only if X is connected.

Proof. Since G is d-regular, sum of the entries of any row of its adjacency matrix
A is equal to d. Let v = (1, 1, · · · , 1)t ∈ Rn. Then

A


1
1
·
·
·
1

 = d


1
1
·
·
·
1

 .

Thus, d is an eigenvalue of A. Now, let v = (v1, v2, · · · , vn)t ∈ Rn be an eigenvector
corresponding to some eigenvalue λ of A, and let 1 ≤ i ≤ n be such that

|vi| = max{|vj| | 1 ≤ j ≤ n}.

Then

|λ||vi| = |λvi| = |
n∑
j=1

ai,jvj| ≤
n∑
j=1

|ai,jvj| =
n∑
j=1

ai,j|vj| ≤
n∑
j=1

ai,j|vi| = d|vi|.

Since |vi| is non-zero, we get |λ| ≤ d.
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Suppose that G is connected. We want to show that |λ1| < d. Let v =
(v1, v2, · · · , vn)t ∈ Rn be an eigenvector corresponding to d. Again, let 1 ≤ i ≤ n
be such that

|vi| = max{|vj| | 1 ≤ j ≤ n}.
Replacing v by −v if necessary, assume that vi is positive. Then we have

dvi =
n∑
j=1

ai,jvj =⇒ vi =
n∑
j=1

ai,j
d
vj.

This implies vi is a convex linear combination of vj, 1 ≤ j ≤ n. Since for each j,
|vj| ≤ vi, we get vj = vi for all j such that ai,j = 1. Since G is connected, any
two distinct vertices are connected by a walk, which eventually gives vj = vi for
all j. Hence, v is a scalar multiple of (1, 1, · · · , 1)t, which implies eigenvalue d has
multiplicity one.

To prove the converse, suppose that G is disconnected. Let v ∈ V (G), and
let V1 be the set of all vertices w ∈ V (G) such that there exists a walk in G
connecting v and w. We note that, if w ∈ V is adjacent to a vertex in V1, then
w ∈ V1. Since, V \V1 6= φ, G splits into two d-regular graphs with vertex sets V1

and V2 = V \V1, respectively. Hence, d is an eigenvalue of both these graphs, which
implies λ1(G) = d. This completes the proof.

Definition 1.2.9. For a d-regular graph, the eigenvalue λ0 = d is called its trivial
eigenvalue.

Theorem 1.2.10. Let G be a d-regular bipartite graph of order n. Then the spec-
trum of G is symmetric about 0, that is, if λ ∈ Spec(G). then −λ ∈ Spec(G).

Proof. Let A(G) be the adjacency matrix of G. Let V (G) = XtY , where X and Y
are independent subsets such with |X| = r < n/2. We add n− 2r isolated vertices
to the independent set X to make the size of both the partite sets equal. We note
that doing this adds rows and columns of zeros to A(G) transforming it to a matrix
A′.

We observe that we can permute the rows and columns of A′ to obtain a matrix
of the form [

0 B
BT 0

]
,

where B is an (n−r)× (n−r) square matrix. If λ is an eigenvalue with eigenvector
(x, y)t, then

A′
(
x
y

)
=

[
0 B
BT 0

](
x
y

)
=

(
By
BTx

)
=

(
λx
λy

)
=⇒ By = λx and BTx = λy.

Let v′ = (x,−y)T . Then

A′
(
x
−y

)
=

[
0 B
BT 0

](
x
−y

)
=

(
−By
BTx

)
= −λ

(
x
−y

)
.

Thus, v′ is an eigenvector with eigenvalue −λ.
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1.3 Cayley Graphs

Cayley graphs are graphs that capture the abstract structures of groups. Given a
group and a subset of that group, we can construct a Cayley Graph with respect to
the subset. Using the properties of the group we can derive properties of its Cayley
graph.

Definition 1.3.1. Let G be a group and Γ ⊆ G. We say that Γ is a symmetric
subset of G if whenever γ is an element of Γ, then γ−1 is an element of Γ.

Example 1.3.2. Consider the group D8. Let Γ1 = {1, r, r2}, and Γ2 = {1, r, r3}
be two subsets of D8. Then Γ1 is not symmetric because r−1 6∈ Γ1, whereas Γ2 is
symmetric, since r · r3 = 1.

Definition 1.3.3. Let G be a finite group and Γ ⊆ G be symmetric. The Cayley
graph on G with respect to Γ is defined by Cay(G,Γ) := (V,E), where

(i) V = G, and

(ii) for x, y ∈ G, {x, y} ∈ E if and only if y−1x ∈ Γ.

Example 1.3.4. Let G = Zn, and let Γ = {1,−1}. Then Cay(G,Γ) = Cn.

Proposition 1.3.5. Let G be a finite group and Γ ⊆ G be symmetric. Then:

(i) Cay(G,Γ) is |Γ|-regular, and

(ii) Cay(G,Γ) is connected if and only if Γ generates G.

Proof. (i) For a vertex g of the graph Cay(G,Γ), let Eg denote the set of edges
incident to g. By definition, it is clear that

Eg = {{g, gγ} | γ ∈ Γ} =⇒ |Eg| = |Γ|.

(ii) Suppose Cay(G,Γ) be connected. Then for any two vertices a, b ∈ G, there
is a path in Cay(G,Γ) joining them. That is, there exists γ1, γ2, · · · , γr ∈ Γ
such that

a = bγ1γ2 · · · γr =⇒ b−1a = γ1γ2 · · · γr.

Since the vertices chosen were arbitrary, it proves that Γ generates G. Con-
versely, suppose Γ generatesG. Then for any g ∈ G, there exists γ1, γ2, · · · , γr ∈
Γ such that g = γ1γ2 · · · γr. This implies that all the vertices are connected to
the identity element of G, which proves the assertion.

Example 1.3.6. Consider the symmetric group on three symbols S3. Let Γ =
{(1 2), (1 3), (2 3)}. As Γ generates S3, therefore by Proposition 1.3.5, the Cayley
graph X = Cay(S3,Γ) is connected and 3-regular. From Figure 1.8, it is apparent
that X is also a bipartite graph with independent sets A = {e, (1 2 3), (1 3 2)} and
B = {(1 2), (1 3), (2 3)}.
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Figure 1.8: A Cayley graph on S3.

Example 1.3.7. Consider the Petersen graph X as shown in the Figure 1.3a. We
claim that X is not a Cayley graph. We know that D10 and Z10 are the only groups
of order 10 up to isomorphism. So, if X = Cay(D10,Γ), then Γ must be a symmetric
generating subset of D10 with |Γ| = 3. Then at least one element of Γ, say x, must
have order 2, which implies x = sri where 0 ≤ i ≤ 4. If there is an element of order
5, say y = rj, 1 ≤ j ≤ 4, in Γ, then (xy)2 = (srirj)2 = (sri+j)2 = 1. This gives a
cycle of length 4 in the graph, which is a contradiction, as X has no cycle of length
4. If all the elements of Γ have order 2, then there is no product of 5 elements of
Γ equal to the identity, which is again a contradiction, as X has 5-cyclces. Thus,
X 6= Cay(D10,Γ).

Now, suppose that X = Cay(Z10,Γ). Note that for any two elements x, y ∈ Γ,
x−1y−1xy gives a cycle of length of 4, which is a contradiction.
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Chapter 2

Expander Families

We say that a good communication network is one which is fast, reliable, and cost-
effective. A natural question that arises in this context is given two communication
network models (graphs), how does one tell which one is better? In other words,
can one quantify the above mentioned properties? We answer this question in this
chapter. In Sections 2.2-2.3, we discuss the adjacency and the Laplacian linear
operators associated with a graph, and their relation to the graph spectrum. In
Section 2.4, we prove the Rayleigh-Ritz Theorem, which provides a method to
calculate the second-largest eigenvalue of a graph. Finally, we study the connection
between h(G) and λ1(G) of a graph G, which motivates the field of Spectral Graph
Theory. This chapter is based on Chapter 1 of [8].

2.1 The Isoperimetric Constant

The speed of a network is roughly measured by the minimum number of edges that
one needs to traverse to get from one vertex to another. So, smaller the diameter
of the network, the faster it is. The reliability of a network is measured by the
minimum number of edge cuts needed to disconnect the network. In other words,
the edge-connectivity of a network is a measure of its reliability.

The isoperimetric constant of a network (graph) gives information about both
the speed and the reliability of a communications network. Roughly speaking,
the isoperimetric constant of a graph measures how quickly information can flow
through the graph.

Definition 2.1.1. Let G = (V,E) be a graph of order n, and let S ⊂ V . Then the
boundary δS of S is defined by

δS := {{u, v} ∈ E | u ∈ S and v ∈ V \S}.

Note that δS = δ(V \S).

Definition 2.1.2. The isoperimetric constant h(G) of a graph G = (V,E) is defined
by

h(G) = min

{
|δS|
|S|

: S ⊂ V and |S| ≤ 1

2
|V |
}
.
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Remark 2.1.3. Note that as in Definition 2.1.1, it is redundant to consider subsets
of cardinality greater than |V |/2, as δ(S) = δ(V/S).

Example 2.1.4. Consider the graph in Figure 2.1. When S = {A}, we have.

|δS| = 2, and |δS|
|S| = 2

1
= 2, and when S = {A,B}, we have |δS| = 2, and so

|δS|
|S| = 2

2
= 1. Thus, we get that the isoperimetric constant h(C4) ≤ 1. Finally, when

S = {A,C}, we have |δS| = 4, and so |δS||S| = 4
2

= 2. Since the graph is symmetric,

we have considered all the possibilities. Therefore, h(C4) = 1.

Figure 2.1: C4

Remark 2.1.5. The isoperimetric constant goes by many other names. It is also
called the Cheeger constant, the expansion constant, the edge expansion constant,
or the conductance.

Remark 2.1.6. The isoperimetric constant of a graph captures the worst case
scenario, in the sense that if h(G) = |δS|

|S| , then it means that every other subset of

V (G) has a larger boundary, relative to its size, when compared with S.

Proposition 2.1.7. Let G = (V,E) be a d-regular graph, then h(G) ∈ [0, d].

Proof. Firstly, it is clear by the definition that h(G) is always non-negative. Further,
when G is disconnected, S can be taken to be one of the disconnected components,
for which |δS| = 0. Thus, we have h(G) ≥ 0.

Finally, when G is connected, taking S = {v}, for some v ∈ V , we have

|δS|
|S|

=
d

1
= d =⇒ h(G) ≤ d.

Proposition 2.1.8. Let G be a d-regular graph with h(G) = d. Then G is either
K2 or K3.
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Proof. Let G be a d-regular graph (other than K2 and K3) with h(G) = d. Suppose
S = {v1, · · · , vr} ⊂ V (G) such that

h(G) =
|δS|
|S|

=⇒ d · |S| = |δS|.

This implies the set S is an independent set. For v ∈ G, let Ev denotes the
set of edges of G that are incident to v. Consider the set Ŝ = {v, v1, v2, · · · , vr−1},
where v ∈ Ev1 . Clearly,

|δŜ| ≤ (d− 1)r =⇒ h(G) ≤ (d− 1),

which contradicts our assumption.

Example 2.1.9. Let G = Kn, and let S ⊂ V = V (Kn). Then

|δS|
|S|

=
(|V | − |S|)|S|

|S|
= |V | − |S| = n− |S|.

So, we have

h(Kn) =

{
n
2
, if n is even, and

(n+1)
2
, if n is odd.

This tells us that h(Kn) grows as n grows. While, Kn has the best edge-connectivity
among graphs of order n, it has the least cost-effectiveness.

This leads us to the definition of exander family. Roughly speaking, expanders are
highly connected, yet sparse graphs.

Definition 2.1.10. A family (Gn)n∈N of non-empty connected d-regular graphs is
an expander family, if:

(i) |V (Gn)| → ∞ as n→∞, and

(ii) lim inf
n→∞

{h(Gn)} > 0, that is, the sequence {h(Gn)} is uniformly bounded away

from 0.

Example 2.1.11. Consider (Cn)n∈N, an infinite family of 2-regular graphs. Take
S to be the set of bottom half (white) vertices as shown in the figure below. Then

• •

• •

◦ ◦

◦ ◦
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|δF |
|F |

=
2

n/2
=

4

n
, and so we have

h(Cn) ≤ 4

n
=⇒ h(Cn)→ 0 as n→∞.

Thus, (Cn)n∈N is not an expander family.

2.2 Adjacency Operator

Definition 2.2.1. Let S be a finite set. We define the complex vector space L2(S)
by

L2(S) = {f : S → C}.

Given f, g ∈ L2(S), x ∈ S, and α ∈ C, the sum in L2(S) is given by

(f + g)(x) = f(x) + g(x), and

scalar multiplication is given by

(αf)(x) = αf(x).

The standard inner product and norm in L2(S) are given by

〈f, g〉2 =
∑
x∈S

f(x)g(x) and ‖f‖2 =
√
〈f, f〉2, respectively.

Remark 2.2.2. If S = {x1, x2, · · · , xn}. Then L2(S) is a complex n-dimensional
vector space with standard basis B = {δx1 , δx2 , · · · , δxn} of Kronecker delta func-
tions.

Let G be a finite graph of order n. Let v1, v2, . . . , vn be an ordering of vertices in
V , and let A(G) be the adjacency matrix associated with respect to this ordering.
Given an f ∈ L2(V ), we may think of f as a vector (f(v1), f(v2), · · · , f(vn))t ∈ Cn.

Af =


A1,1 A1,2 · · · A1,n

A2,1 A2,2 · · · A2,n

· · ·
· · ·
· · ·

An,1 An,2 · · · An,n




f(v1)
f(v2)
·
·
·

f(vn)

 =



∑j=n
j=1 A1,jf(vj)∑j=n
j=1 A2,jf(vj)

·
·
·∑j=n

j=1 An,jf(vj)


Therefore, we may think of A as a linear transformation from L2(V ) to L2(V ) given
by the formula

(Af)(v) =
∑
w∈V

Av,wf(w). (2.2.1)

Definition 2.2.3. The linear operator A : L2(V ) → L2(V ) defined by Equation
2.2.1 is called the adjacency operator of G.
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Remark 2.2.4. Considering A as an adjacency operator, the adjacency matrix is
the matrix associated to the adjacency operator, with respect to the standard basis
of L2(V ).

Example 2.2.5. Consider the cycle graph C4. Fix a cyclical ordering of the vertices
as v1, v2, v3, v4. Define the function f : V (C4)→ C by

f(v) =

{
−1, if v = v1 or v = v3, and

1, if v = v2 or v = v4.

We may think of the f as vector (f(v1), f(v2), f(v3), f(v4))t = (−1, 1,−1, 1)t. If A
is the adjacency matrix associated with this ordering, then

Af =


0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0



−1
1
−1
1

 =


2
−2
2
−2

 = −2f.

Thus, f is an eigenfunction of A associated with the eigenvalue -2.

2.3 The Laplacian

In this section, we will discuss another linear operator associated to a graph, called
the Laplacian. The Laplacian on a graph is the discrete analogue of the Laplacian
∆ = div(grad(f)) from multivariable calculus.

Let G = (V,E) be a graph with oriented edges. That is, for each edge e ∈ E,
label one endpoint as e+ and other as e−. We call e− the origin, and e+ the extrem-
ity of the edge e.

•e− •e+e

Definition 2.3.1. For a function f ∈ L2(V,R), the analog of the gradient operator
d in the graph theory measures the change of f along the edge of the graph. For-
mally, d : L2(V )→ L2(E) defined as df(e) = f(e+)− f(e−).

Definition 2.3.2. We define d∗ : L2(E) → L2(V ), the finite analog of the diver-
gence operator, by

d∗f(v) :=
∑

e∈E;v=e+

f(e)−
∑

e∈E;v=e−

f(e).

That is, if we think of the function f as a flow on the edges of the graph G, then
(d∗f)(v) measures the total inward flow at the vertex v.
From the above definitions, it appears that both d and d∗ depend on the orientation
given to the edges. However, we will see in the following Lemma that the Laplacian
is independent of the orientation of the edges.
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Lemma 2.3.3. Let G = (V,E) be a k-regular graph and let A be the associated
adjacency operator. Then 4 = kI − A.

Proof. Let f ∈ L2(V,R), and v ∈ V . Then

(4f)(v) = (d∗(df))(v)

=
∑

e∈E;v=e+

(df)(e)−
∑

e∈E;v=e−

(df)(e)

=

 ∑
e∈E;v=e+

f(v)−
∑

e∈E;v=e+;u=e−

f(u)

−
 ∑
e∈E;v=e−;u=e+

f(u)−
∑

e∈E;v=e−

f(v)


= kf(x)−

∑
u∈V

Av,uf(u)

= ((kI − A)f)(v).

Remark 2.3.4. As A is a linear operator, by Lemma 2.3.3, we get that Laplacian
is also a linear operator.

Theorem 2.3.5. Let G = (V,E) be a k-regular graph of order n with an orientation
on the edges in E. Then

(i) If λ0 ≥ λ1 ≥ · · · ≥ λn−1 is the spectrum of the associated adjacency operator
A, then the eigenvalues of the associated Laplacian operator is given by

0 = k − λ0 ≤ k − λ1 ≤ · · · ≤ k − λn−1.

(ii) Let f ∈ L2(V ), and g ∈ L2(E). Then 〈df, g〉2 = 〈f, d∗g〉2, and

〈4f, f〉2 =
∑
e∈E

|f(e+)− f(e−)|2.

Proof. If f is an eigenfunction of A corresponding to eigenvalue λ, then

4f = (kI − A)f = kIf − Af = (k − λ)f,

which proves (i). For showing (ii), we note that

〈df, g〉2 =
∑
e∈E

(df)(e)g(e) =
∑
e∈E

(
f(e+)− f(e−)

)
g(e)

=
∑
e∈E

f(e+)g(e)−
∑
e∈E

f(e−)g(e)

=
∑
v∈V

f(v)
∑

e∈E;v=e+

g(e)−
∑
v∈V

f(v)
∑

e∈E;v=e−

g(e)

=
∑
v∈V

f(v)(d∗g)(v)

= 〈f, d∗g〉2.
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Thus,

〈4f, f〉2 = 〈d∗df, f〉2 = 〈f, d∗df〉2 = 〈df, df〉2,

and

〈df, df〉2 =
∑
e∈E

(
f(e+)− f(e−)

)
(f(e+)− f(e−)) =

∑
e∈E

|f(e+)− f(e−)|2.

2.4 The Rayleigh-Ritz Theorem

In this section, we will discuss the relationship between h(G) and λ1(G) of a graph
G. The main result of this section states that a sequence (Gn) of d-regular graphs
forms an expander family if and only if the sequence (d − λ1(Gn)) is uniformly
bounded away from zero.

Definition 2.4.1. Let X be a finite set and f0 be the function that takes the
constant value 1 on X. Define

L2(X,R) = {f : X → R}, and

L2
0(X,R) = {f ∈ L2(X,R) | 〈f, f0〉2 = 0} = {f ∈ L2(X,R) |

∑
x∈X

f(x) = 0}.

Theorem 2.4.2. (Rayleigh-Ritz). Let G be a d-regular graph with vertex set V and
adjacency matrix A. Then

λ1 = max

{
〈Af, f〉2
‖f‖2

2

: f ∈ L0
2(V,R)

}
.

Equivalently,

d− λ1 = min

{
〈4f, f〉2
‖f‖2

2

: f ∈ L0
2(V,R)

}
.

Proof. Let |V | = n, and let f0 = f0
‖f0‖2

. Since A is a n×n real symmetric matrix, we

know that there exists an orthonormal basis {f ′0, f1, · · · , fn−1} for L2(X,R), where
each fi is a real-valued eigenfunction of A associated with the eigenvalue λi. Let
f ∈ L2

0(X,R) with ‖f‖2 = 1. Then f = c0f
′
0 + c1f1 + · · ·+ cn−1fn−1 for some scalars

ci ∈ R. Note that

〈f, f0〉2 = 0 = c0〈f ′0, f0〉2 + · · ·+ 〈fn−1, f0〉2 = c0.
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This implies c0 = 0 and f = c1f1 + · · ·+ cn−1fn−1. Now,

〈Af, f〉2 = 〈A
n−1∑
i=1

cifi,

n−1∑
i=1

cifi〉
2

= 〈
n−1∑
i=1

ciλifi,

n−1∑
i=1

cifi〉
2

=
n−1∑
i=1

n−1∑
j=1

cicjλi〈fi, fj〉2 =
n−1∑
i=1

c2
iλi

≤ λ1

n−1∑
i=1

c2
i = λ1‖f‖2 = λ1.

Therefore,

λ1 ≥ max

{
〈Af, f〉2
‖f‖2

2

: f ∈ L0
2(V, IR)

}
.

But, for f1 we have
〈Af1, f1〉2 = 〈λ1f1, f1〉2 = λ1.

Thus,

λ1 = max

{
〈Af, f〉2
‖f‖2

2

: f ∈ L0
2(V, IR)

}
.

The equivalent statement follows from Lemma 2.3.3.

Proposition 2.4.3. Let G = (V,E) be a d-regular graph. Then

d− λ1

2
≤ h(G).

Proof. Let us fix an orientation of the edges. Let F ⊂ V such that h(G) = |δF |
|F | .

Let a = |V \F |, and let b = |F |. Define g : V → R as

g(x) =

{
a, if x ∈ F , and

−b, if x 6∈ F .

Since, ∑
v∈V

g(v) =
∑
v∈F

a−
∑
v 6∈F

(−b) = ab− ba = 0,

we have g ∈ L2
0(V,R). We know that

〈4g, g〉2 =
∑
e∈E

|g(e+)− g(e−)|2 =
∑
e∈δF

(b+ a)2 = |δF |(b+ a)2.

Also,

〈g, g〉2 =
∑
v∈F

a2 +
∑
v 6∈F

(−b)2 = a2b+ b2a = ab(a+ b).
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Since, b = |F | ≤ 1
2
|V |, we have b ≤ a. Thus,

〈4g, g〉2
〈g, g〉2

=
|δF |(b+ a)

ba
=

(
1 +

b

a

)
h(G) ≤ 2h(G).

Finally, by the Rayleigh-Ritz Theorem we have

d− λ1(G) ≤ 〈4g, g〉2
〈g, g〉2

≤ 2h(G),

from which the assertion follows.

Definition 2.4.4. If G is a connected d-regular graph, then d−λ1(G) is called the
spectral gap of G.

Corollary 2.4.5. Let (Gn) be a sequence of d-regular graphs with |Gn| → ∞ as
n→∞. Then (Gn) is a family of expanders if and only if the sequence (d−λ1(Gn))
is uniformly bounded away from zero.

Example 2.4.6. Consider the sequence of cycle graphs (Cn). We know that
λ1(Cn) = 2 cos 2π

n
. Note that the spectral gap 2− 2 cos 2π

n
→ 0 as n→∞. This im-

plies that h(Cn)→ 0 as n→∞, which reaffirms the fact that (Cn) is not expander.

As calculating isoperimetric constant for graphs directly is quite difficult, this
relationship between the second largest eigenvalue and the isoperimetric constant
provides more traction. So, from now on, in our study for expander families, we will
focus almost exclusively on graph spectra with particular attention on the second
largest eigenvalue. In the following chapters, we will see many techniques to find out
the spectrum of a graph. For example, in Chapter 6, we will use representations of
finite groups to explicitly calculate the spectrum of Cayley graphs on those groups.
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Chapter 3

The Alon-Boppana Theorem

Let G be a d-regular graph. In the previous chapter, we saw that h(G) is large when
d− λ1(G) is large. So, to construct a fast and reliable communication network, we
need to find graphs with small λ1(G) relative to d. A natural question that arises in
this direction is how small can λ1(G) be? We answer this question in this chapter,
which is based on Chapter 3 of [8].

The following proposition gives a lower bound for λ1(G) in terms of d and diam(G).

Proposition 3.0.1. Let G = (V,E) be a connected d-regular graph. If diam(G) ≥
4, then

λ1(G) > 2
√
d− 1− 2

√
d− 1− 1

b1
2
diam(G)− 1c

.

Proof. Let b = b1
2
diam(G)− 1c, and let q = d− 1. Let v1, v2 ∈ V such that

dist(v1, v2) ≥ 2b+ 2 =

{
diam(G), if diam(G) is even, and

diam(G)− 1, otherwise.

Define

Ai = {v ∈ V | dist(v, v1) = i},
Bi = {v ∈ V | dist(v, v2) = i}, 0 ≤ i ≤ b.

Let x ∈ Ai ∩Bj, for 0 ≤ i, j,≤ b. Then we have

dist(v1, v2) ≤ dist(v1, x) + dist(x, v2)

=⇒ dist(v1, v2) ≤ 2b < 2b+ 2,

which is not possible. Hence, we have that Ai ∩Bj = φ.

Let A =
⋃b
i=0Ai, and B =

⋃b
j=0Bj. Suppose x ∈ A and y ∈ B are adjacent.

Then

dist(v1, v2) ≤ dist(v1, x) + dist(y, v2) + dist(x, y)

≤ 2b+ 1 < 2b+ 2,
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which is impossible. This implies no vertex in A is adjacent to any vertex in B.

Now, let α ∈ R. We define f ∈ L2
0(V,R) as

f(x) =



α, if x ∈ A0,

αq−
(i−1)

2 , if x ∈ Ai, i ≥ 1,

1, if x ∈ B0,

q−
(i−1)

2 , if x ∈ Bi, i ≥ 1, and

0, otherwise.

Since f0(x) = 1 for all x ∈ V , we have

〈f, f0〉2 =
∑
x∈V

f(x)f0(x)

=
∑
x∈V

f(x)

= α

(
1 +

b∑
i=1

|Ai|q−
(i−1)

2

)
+ 1 +

b∑
i=1

|Bi|q−
(i−1)

2

= αC0 + C1,

where C0 =
(

1 +
∑b

i=1 |Ai|q−
(i−1)

2

)
and C1 = 1 +

∑b
i=1 |Bi|q−

(i−1)
2 . Let α = −C0

C1
.

Then 〈f, f0〉2 = 0. Moreover,

〈f, f〉2 =
∑
x∈V

f(x)f(x)

=
b∑
i=0

∑
x∈Ai

f(x)f(x) +
b∑
i=0

∑
x∈Bi

f(x)f(x)

= α2

(
1 +

b∑
i=1

|Ai|q−(i−1)

)
+ 1 +

b∑
i=1

|Bi|q−(i−1)

= SA + SB,

where SA = α2
(

1 +
∑b

i=1 |Ai|q−(i−1)
)

and SB = 1 +
∑b

i=1 |Bi|q−(i−1).

We now orient the edges of G such that for each edge e ∈ E, one endpoint
is labelled as e+ and the other is labelled as e−. Since the Laplacian of G is
independent of orientation, we have

〈4f, f〉2 = CA + CB,

where
CA =

∑
e∈E; e+ or e−∈A

(
f(e+)− f(e−)

)2
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and
CB =

∑
e∈E; e+ or e−∈B

(
f(e+)− f(e−)

)2
.

Since, when both the end points are outside of A and B, we have f(e+) = f(e−) =
0 =⇒ (f(e+)− f(e−))

2
= 0. Since no vertex in A is adjacent to any vertex in B,

we have

CA =
b−1∑
i=0

∑
x∈Ai

∑
y∈Ai+1

Ax,y (f(x)− f(y))2 +
∑
x∈Ab

∑
y 6∈A

Ax,y (f(x)− 0)2 .

For each x ∈ Ai, there are at most q elements y ∈ Ai+1 that are adjacent to x.
Therefore,

CA ≤
b−1∑
i=1

q|Ai|
(
q−

(i−1)
2 − q

−i
2

)2

α2 + q|Ab|q−(b−1)α2.

Note that
(
q−

(i−1)
2 − q−i2

)2

= (
√
q − 1)2q−i and q = (

√
q − 1)2 + 2

√
q − 1. So, we

have

CA ≤
b−1∑
i=1

q|Ai|(
√
q − 1)2q−iα2 +

(
(
√
q − 1)2 + 2

√
q − 1

)
|Ab|q−(b−1)α2

= (
√
q − 1)2α2

(
b∑
i=1

|Ai|q−(i−1)

)
+ α2(2

√
q − 1)|Ab|q−(b−1).

As SA − α2 = α2
(∑b

i=1 |Ai|q−(i−1)
)
, we have

CA ≤ (
√
q − 1)2(SA − α2) + α2 (2

√
q − 1)

b
b|Ab|q−(b−1).

If x ∈ Ai where 1 ≤ i ≤ b − 1, then there is at least one vertex from Ai−1 that
is adjacent to x, and at most q vertices from Ai+1 that are adjacent to x. Hence,
|Ai+ 1| ≤ q|Ai| for 1 ≤ i ≤ b− 1. Similarly, |Bi+ 1| ≤ q|Bi|, for 1 ≤ i ≤ b− 1. So

|A1| ≥ q−1|A2| ≥ q−2|A3| ≥ · · · ≥ q−(b−1)|Ab|.

In particular,

α2b|Ab|q−(b−1) = α2

b∑
i=1

|Ab|q−(b−1) ≤ α2

b∑
i=1

|Ai|q−(i−1) = SA − α2.

Since G is connected and diam(G) ≥ 4, we have that d ≥ 2 and (2
√
q − 1)/b > 0.

Also, 0 < (
√
q − 1)2 = q + 1− 2

√
q. Thus, we have

CA ≤
(

(
√
q − 1)2 +

(2
√
q − 1)

b

)
(SA − α2)

=

(
(q + 1 + 2

√
q +

(2
√
q − 1)

b

)
(SA − α2)

<

(
(q + 1 + 2

√
q +

(2
√
q − 1)

b

)
SA.
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Similarly,

CB <

(
(q + 1 + 2

√
q +

(2
√
q − 1)

b

)
SB.

Therefore,

〈4f, f〉2 = CA + CB <

(
(q + 1 + 2

√
q +

(2
√
q − 1)

b

)
(SA + SB).

Applying the Rayleigh-Ritz theorem, we have

d− λ1(G) = min
g∈L2

0(V,R)
〈4g, g〉2

≤ 〈4f, f〉2
〈f, f〉2

=
CA + CB
SA + SB

< q + 1 + 2
√
q +

(2
√
q − 1)

b

= d− 2
√
d− 1 +

2
√
d− 1− 1

b
,

from which the assertion follows.

Remark 3.0.2. From Proposition 3.0.1, we get an upper bound on the spectral
gap of a d-regular graph

d− λ1(G)

2
<
d

2
−
√
d− 1 +

2
√
d− 1− 1

2b1
2
diam(G)− 1c

.

The following proposition provides the key ingredient to prove the main result
in this chapter.

Proposition 3.0.3. If (Gn) is a sequence of connected d-regular graphs with |Gn| →
∞ as n→∞, then

lim inf
n→∞

λ1(Gn) ≥ 2
√
d− 1.

That is, for all ε > 0, there exists an N > 0 such that λ1(Gn) > 2
√
d− 1− ε for all

n > N.

Proof. Let G be a finite d-regular graph, and let v ∈ V (G). Note that the number
of walks of length 1 starting from v in G is d. Similarly, the number of non-
backtracking (trek) walks of length 2 starting from v is d2. In general, the number
of non-backtracking walks of length k starting from v is dk, where each walk con-
tains at most k + 1 vertices.

Note that, we can cover the entire graph by taking all walks of length diam(G)
from the fixed vertex v. There are ddiam(G) such walks, each containing at most
diam(G) + 1 distinct vertices. Hence,

|G| < (diam(G) + 1)ddiam(G). (3.0.1)

32



Now, let (Gn) be a sequence of connected, d-regular graphs such that |Gn| → ∞
as n → ∞. Then, by Equation 3.0.1, we get diam(Gn) → ∞ as n → ∞. Also, by
Proposition 3.0.1, we have

λ1(Gn) > 2
√
d− 1− 2

√
d− 1− 1

b1
2
diam(Gn)− 1c

.

Since |λ1(Gn)| < d, and 2
√
d− 1 − 2

√
d−1−1

b 1
2

diam(Gn)−1c are bounded sequences, we can

take lim inf on both sides. Therefore, we have

lim inf
n→∞

λ1(Gn) ≥ lim inf
n→∞

(
2
√
d− 1− 2

√
d− 1− 1

b1
2
diam(Gn)− 1c

)
= 2
√
d− 1 + lim inf

n→∞

(
− 2

√
d− 1− 1

b1
2
diam(Gn)− 1c

)
= 2
√
d− 1 + lim

n→∞

(
− 2

√
d− 1− 1

b1
2
diam(Gn)− 1c

)
= 2
√
d− 1− lim

n→∞

(
2
√
d− 1− 1

b1
2
diam(Gn)− 1c

)
= 2
√
d− 1.

The proposition tells us that the spectral gap of a d-regular graph is bounded above
by d−

√
d− 1.

Recall, for a d-regular graph, d is called its trivial eigenvalue, and for a d-regular
bipartite graph, both d and −d are called its trivial eigenvalues.

Definition 3.0.4. Let G be a d-regular graph. We define

λ(G) = max{|λ| | λ is a non trivial eigenvalue of G}.

By definition, λ(G) ≥ λ1(G), and so the main theorem of this chapter will now
follow from Proposition 3.0.3.

Theorem 3.0.5. (Alon-Boppana) Let (Gn) be a sequence of connected d-regular
graphs with |Gn| → ∞ as n→∞, then

lim inf
n→∞

λ(Gn) ≥ 2
√
d− 1.

Since d− λ(G) ≤ d− λ1(G), the Alon-Boppana theorem asserts that the strongest
upper bound for λ(G) is 2

√
d− 1. So, a natural question that arises in this context

is whether there exist graphs with λ ≤ 2
√
d− 1? This motivates the following

definition.

Definition 3.0.6. We say that a d-regular graph G is Ramanujan if λ(G) ≤
2
√
d− 1.
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Remark 3.0.7. Note that a d-regular Ramanujan graph must be connected, for
otherwise λ(G) = d.

Example 3.0.8. Consider the Petersen graph P . It can be shown that

Spec(P ) =

(
3 1 −2
1 5 4

)
.

So, λ = 2 < 2
√
d− 1 = 2

√
3− 1 = 2.828. Thus, the Petersen graph is Ramanujan.

Example 3.0.9. The cycle graph Cn is a Ramanujan graph for n ≥ 3. It is known
that

λ1(Cn) = 2 cos
2π

n
≤ 2
√

2− 1 = 2.

Example 3.0.10. The complete graph Kn is a Ramanujan graph for n ≥ 3. Its
spectrum is given by

Spec(Kn) =

(
n− 1 −1

1 n− 1

)
.

Since, Kn is n − 1 regular, (n − 1) is the trivial eigenvalue of Kn. Therefore,
λ(Kn) = 1 < 2

√
n− 2 for n ≥ 3.

Remark 3.0.11. Since for all d ≥ 3, d ≥ 2
√
d− 1, we have

h(G) ≥ d− λ1(G)

2
≥ d− λ(G)

2
≥ d− 2

√
d− 1

2
> 0.

This tells us that for d ≥ 3, any sequence of d-regular Ramanujan graphs is an
expander family. But, for d < 3 this is not true, since (Cn) forms a family of
2-regular cycle that is not an expander family.

The proof of the following proposition is analogous to the Rayleigh-Ritz theorem.

Proposition 3.0.12. Let G = (V,E) be a non-bipartite, d-regular graph. Let A be
the adjacency operator for G. Then

λ(G) = max

{
|〈Af, f〉|2
‖f‖2

2

: f ∈ L0
2(V, IR)

}
.

Remark 3.0.13. If the graph G is d-regular and bipartite, then

λ(G) ≤ max

{
|〈Af, f〉|2
‖f‖2

2

: f ∈ L0
2(V, IR)

}
= d,

since λn−1 = −d. The equality holds if and only if G is disconnected.
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Chapter 4

Diameter of Cayley Graphs and
Expander Families

In this chapter, we discuss another graph invariant, diameter, and its connection
with the isoperimetric constant for regular graphs. In Section 4.1, we prove that an
expander family has logarithmic diameter. As of now, there are no necessary and
sufficient conditions known that a sequence of finite groups must satisfy in order
to yield an expander family. So, answering this question completely is not easy.
However, we can answer it partially by identifying some of those families of finite
groups that never yield expander families. One such family is the family of abelian
groups. In Section 4.3, we show that a sequence Cayley graphs on abelian groups
can never be an expander family. This chapter is based on Chapter 4 of [8].

4.1 Diameter of an Expander Family

The natural path metric on a graph yields the following discrete analogs of the
notion of a closed ball and a sphere in the graph-theoretic setting.

Definition 4.1.1. Let G = (V,E) be a graph and let w ∈ V . Let r be a non-
negative integer. Define closed ball of radius r centred at w, denoted as Br[w],
by

Br[w] = {v ∈ V | d(v, w) ≤ r},

and sphere of radius r centred at w, denoted as Sr[w], by

Sr[w] = {v ∈ V | d(v, w) = r}.

Remark 4.1.2. We note that if the |Br[w]| grows quickly as a function of r, then it
means that we can reach more vertices in fewer steps from w, and since the choice
of w was arbitrary, this implies that the graph has small diameter. On the other
hand, if |Br[w]| grows slowly as a function of r, then the graph has large diameter.

Remark 4.1.3. We claim that for a finite graph G, and a vertex w of G, if |Br[w]| ≤
r2, then diam(G) ≥ |G|1/2. As this holds trivially when G is disconnected, we
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consider the case when G is connected. Denoting diam(G) by k, we have |G| =
|Bk[w]|, and

|Bk[w]| ≤ k2 ⇒ |G|1/2 ≤ k.

Lemma 4.1.4. Let G = (V,E) be a finite d-regular graph with d ≥ 3 and
diam(X) ≥ 3. Then diam(X) ≥ logd |G|.

Proof. We know that |S0[v]| = 1 and |S1[v]| ≤ d. Moreover, for j ≥ 2, and a vertex
w ∈ Sj[v], at least one edge incident to w is also incident to a vertex in Sj−1[v].
Consequently, at most (d− 1) edges that are incident to w are incident to vertices
in Sj+1[v]. So, we have

|Sj+1[v]| = (d− 1)|Sj[v]|.

Similarly, |Sj[v]| ≤ (d− 1)|Sj−1[v]| and so on. Thus, we have |Sj[v]| ≤ d(d− 1)j−1,
and so we have

Br[v] = S0[v] + · · ·+ Sr[v]

≤ 1 +
r−1∑
j=0

d(d− 1)j

≤ 1 + d
(d− 1)r − 1

d− 2

=
d(d− 1)r − 2

d− 2
. (4.1.1)

It now suffices to show that |Br[v]| ≤ dr, as the assertion would them follow
from Remark 4.1.3. Since (d− 1)3 = d2(d− 2)− (d2 − 3d+ 1) and d2 − 3d+ 1 ≥ 0,
for all d ≥ 3, we have

(d− 1)r ≤ d2(d− 2)(d− 1)r−3

≤ d2(d− 2)(d)r−3

= dr−1(d− 2).

So, d(d− 1)r − 2 ≤ d(d− 1)r ≤ dr(d− 2). (4.1.2)

Therefore, from Equation 4.1.1 and 4.1.2 , we get |Br[v]| ≤ dr.

Lemma 4.1.5. Let G be a connected graph and let a > 1. Suppose that for any
vertex v ∈ V (G), we have that |Br[v]| ≥ ar whenever |Br−1[v]| ≤ 1

2
|G|. Then

diam(G) ≤
(

2

log a

)
log |G|.

Proof. Let u, v ∈ V (G). Let r1 be the smallest integer such that |Br1 [u]| > 1
2
|G|, and

let r2 be the smallest integer such that |Br2 [v]| > 1
2
|G|. Since, r1−1 < r1 and r2−1 <

r2, we have |Br1 [u]| ≥ ar1 and |Br2 [v]| ≥ ar2 . Also, we get |Br1 [u]|+ |Br2 [v]| > |G|,
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which implies that the two closed balls Br1 [u], Br2 [v] are not disjoint. That is, there
exists a vertex w ∈ Br1 [u]

⋂
Br2 [v]. Since, dist(u,w) ≤ r1 and dist(v, w) ≤ r2, by

the triangle inequality we have

dist(u, v) ≤ r1 + r2

≤ log |Br1 [u]|
log a

+
log |Br2 [v]

log a

≤ 2

log a
log |G|.

Since this is independent of the choice of vertex, it follows that diam(G) ≤
(

2
log a

)
log |G|.

The following proposition establishes the existence and uniqueness of the constant
a from Lemma 4.1.5.

Proposition 4.1.6. Let G be a connected finite d-regular graph. Let a = 1 + h(G)
d

.
Then

diam(G) ≤
(

2

log a

)
log |G|. (4.1.3)

Proof. Let v ∈ V (G). Suppose that |Br−1[v]| ≤ 1
2
|G| for some non-negative integer

r. Then by definition of h(G), we have

h(G)|Br−1[v]| ≤ |δBr−1[v]|.

We know that any edge in δBr−1[v]| must be incident to a vertex in Sr[v]. Moreover,
two edges in δBr−1[v]| can be incident at the same vertex in Sr[v]. So, we have that
|δBr−1[v]| ≥ |Sr[v]| As G is d−regular, we have

|Sr[v]| ≥ |δBr−1[v]

d
≥ h(G)|Br−1[v]|

d
.

Note, Br[v] is disjoint union of Br−1[v] and Sr[v]. So,

|Br[v]| = |Br−1[v]|+ Sr[v] ≥ |Br−1[v]|+ h(G)|Br−1[v]|
d

= a|Br−1[v]|.

Therefore, by induction, we have that, |Br[v]| ≥ ar, whenever |Br−1[v]| ≤ 1
2
|G|.

The assertion now follows directly from Lemma 4.1.5.

Proposition 4.1.6 tells us that if the isoperimetric constant of a sequence (Gn) of
d-regular graphs is bounded away from zero, then the diameters of the graphs grow
at most logarithmically as a function of |Gn|.

Definition 4.1.7. Let (Gn)n∈N be a family of graphs. We say (Gn) has logarithmic
diameter if diam(Gn) = O(log |Gn|), that is, there exists a N ∈ N and C > 0 such
that diam(Gn) ≤ C log |Gn|, for all n > N .
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Corollary 4.1.8. If (Gn) is a family of d-regular expanders, then (Gn) has loga-
rithmic diameter.

Proof. Since (Gn) is an expander family, there exists an ε > 0 such that h(Gn) ≥ ε

for all n. Let Cn = 1 + h(Gn)
d

and let C = 1 + ε
d
. Since, h(Gn) ≥ ε, we have

2

logCn
≤ 2

logC
.

Therefore, diam(Gn) ≤ 2

logCn
log |Gn| ≤

(
2

logC

)
log |Gn|,

from which our assertion follows.

Remark 4.1.9. Corollary 4.1.8 asserts that if a sequence of graphs does not have
logarithmic diameter, then it cannot be an expander family. But, note that the
converse of this is not true.

4.2 Diameter of Cayley Graphs

Definition 4.2.1. Let (Gn) be a sequence of finite groups. We say that (Gn) has
logarithmic diameter if for some positive integer d, there exists a sequence (Γn),
where for each n we have that Γn is symmetric subset of Gn with |Γn| = d, so that
the family of Cayley graphs (Cay(Gn,Γn)) has logarithmic diameter.

Definition 4.2.2. A word of length n in a set Γ is an element of the Cartesian
product Γ× Γ× · · · × Γ = Γn.

Definition 4.2.3. Let G be a group , and let Γ ⊂ G.

(i) Let w = (w1, ..., wn) is a word in Γ, then w evaluates to g (or, g can be
expressed as w) if g = w1w2 · · · wn.

(ii) Let g ∈ G such that g can be expressed as a word in Γ. Then the word norm
of g is the minimal length of any word in τ which evaluates to g.

Example 4.2.4. Let G = Z10 and let Γ = {−1, 1, 2, 5}. Then w1 = (2, 1) is a word
of length 2, and w2 = (1−, 5,−1) is a word of length 3. Notice that both words w1

and w2 evaluate to 3, but the word norm of 3 in Γ is 2, as 2 is the minimum length
of any word in Γ that evaluates to 3.

Remark 4.2.5. The standard convention is that the word of length 0 evaluates to
the identity element of the group.

Proposition 4.2.6. Let G be a finite group and Γ be a symmetric subset of G. Let
X = Cay(G,Γ).

(i) X is connected if and only if every element of G can be expressed as a word
in Γ.
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(ii) If a, b ∈ G and there is a walk in X from a to b, then distance from a to b is
the word norm of a−1b in Γ.

(iii) The diameter of X equals the maximum of the word norms in Γ of the elements
of G.

Proof. (i) It follows from Proposition 1.3.5.

(ii) Let (g0, g1, · · · , gn) be a walk of length n from a to b. That is, g0 = a and
gn = b. Since, gi−1, gi are adjacent, there exists a γi ∈ Γ such that gi−1γi = gi.
So, (γ1, · · · , γn) is a word of length n that evaluates to a−1b. Also, given a
word in Γ of length n in Γ which evaluates to a−1b, we have a walk of length
n in G from a to b. Thus, by Definition 1.1.21, the assertion follows.

(iii) It follows from (ii) and Definition 1.1.23.

Example 4.2.7. Consider the dihedral group D8 = 〈r, s | r4 = s2 = 1〉. Let
Γ = {s, r, r3}. Since the s, r are the generators of the group, Γ generates the group.
Hence, the Cayley graph X = Cay(D8,Γ) is connected. As the word norm of any
element of D8 in Γ ≤ 3, we get diam(X) = 3.

4.3 Abelian groups never yield expander families

In this section, we prove that no sequence of Cayley graphs on abelian groups has
logarithmic diameter. Then, by Corollary 4.1.8, we conclude that no sequence of
abelian groups yields an expander family.

Lemma 4.3.1. If a, b ∈ N with b ≤ a , then(
a

b

)
≤ (a− b+ 1)b.

Proof. First, observe that 0 ≤ q ≤ p, then p+1
q+1
≤ p

q
. Since p ≥ q ≥ 0, we have

p− q ≥ 0

⇒ p− q + pq − pq ≥ 0

⇒ p(1 + q)− q(1 + p) ≥ 0

⇒ p(1 + q) ≥ q(1 + p)

⇒ p

q
≥ (1 + p)

(1 + q)
.

Therefore,
a

b
≤ a− 1

b− 1
≤ · · · ≤ a− b+ 1

1
.

Thus, (
a

b

)
=
(a
b

)(a− 1

b− 1

)
· · ·
(
a− b+ 1

1

)
≤ (a− b+ 1)b.
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We state the following elementary lemma from combinatorics without proof.

Lemma 4.3.2. The number of solutions to the equation a1 + · · · + an = k, where
the ai are non-negative integers, is

(
n+k−1

k

)
.

Proposition 4.3.3. No sequence of finite abelian groups has logarithmic diameter.

Proof. Let G be a finite abelian group and let Γ = {γ1, γ2, ..., γd} be a symmetric
subset of G. Let X = Cay(G,Γ) with diam(X) = k. If Γ does not generate G, then
the graph X is disconnected, which implies diam(X) =∞.

Now, suppose that Γ generates G. Since X is connected, for any two vertices
a, b of X, there is a path joining them. So, we have

a = bγa11 · · · γ
ad
d .

In particular, let b = e. Then

a = ea0γa11 · · · γ
ad
d ,

where e is the identity of G and Σi=d
i=0 ai = k, each ai being a non-negative integer.

By Lemma 4.3.2, the number of solutions of Σi=d
i=0 ai = k is

(
k+d
k

)
. Therefore, by

Lemma 4.3.1, we get

|X| ≤
(
k + d

k

)
=

(
k + d

d

)
≤ (k + 1)d,

=⇒ diam(X) ≥ |X|1/d − 1.

So, for any sequence (Xn) of d-regular Cayley graphs on abelian groups, we have
diam(Xn) ≥ |Xn|1/d−1. Since, root functions grow faster than logarithmic functions,
we get diam(Xn) 6= O(log |Xn|).

Proposition 4.3.3 together with Corollary 4.1.8 yields the following.

Corollary 4.3.4. No sequence of abelian groups yields an expander family.

Example 4.3.5. Since, Cay(Zn,Γ = {1,−1}) = Cn. Corollary 4.3.4 above yields
yet another proof of the fact that (Cn) is not an expander family.

40



Chapter 5

Graph Coverings And Coset
Graphs

In this chapter, we continue our discussion on the sequences of groups that do not
yield expander families. In Section 5.1, we discuss the covering of a graph and show
that if K is a subgroup or quotient of a group G, then the isoperimetric constant of
a Cayley graph on G is bounded by the isoperimetric constant of a certain related
Cayley graph on K. Using this, we prove that if a sequence (Gn) of finite groups
admits a nonexpanding sequence of quotients or bounded-index subgroups, then
(Gn) does not yield an expander family. By applying this result, in Section 5.5, we
show that Cayley graphs on a sequence of solvable groups with bounded derived
length do not form an expander family, which is the main result of this chapter.
This chapter is based on Chapters 2 and 4 of [8], and Section 2 of [9].

5.1 Graph Covering

Let G = (V,E) be a graph, not necessarily simple. For a vertex v ∈ V , we denote
Ev to be the set of edges incident to v. Recall that if φ : G → H is a graph
homomorphism, then φ maps Ev to Eφ(v).

Definition 5.1.1. Let φ : Ĝ→ G be a graph homomorphism.

(i) For a vertex v ∈ V (Ĝ), we say φ is bijective at v if φ maps Ev to Eφ(v)

bijectively.

(ii) We say φ is locally bijective if it is bijective at each vertex of Ĝ.

(iii) We say φ is a covering from Ĝ to G if φ is surjective and locally bijective. If

φ : Ĝ→ G is a covering, then we say Ĝ covers G.

Remark 5.1.2. Suppose that Ĝ covers G. Then Ĝ is d-regular if and only if G is
d-regular.
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Example 5.1.3. Let Ĝ and G be the graphs shown in Figure 5.1. Let φ : Ĝ→ G
be a graph homomorphism such that

φ(A) = φ(C) = 1 and φ(B) = φ(D) = 2.

Then φ is a covering.

(a) Ĝ

(b) G

Figure 5.1: A cover Ĝ of the 2-cycle graph G.

Example 5.1.4. Let Ĝ, G be the graphs depicted in Figure 5.2. Let φ : Ĝ→ G be
a graph homomorphism such that

φ(A) = φ(D) = 3,

φ(C) = φ(F ) = 2, and

φ(E) = φ(B) = 1.

Then φ is a covering.

(a) Ĝ
(b) G

Figure 5.2: A 2-cover Ĝ of graph G.

Lemma 5.1.5. If Ĝ covers G and Ĝ is connected, then G is connected.

Proof. Let φ : Ĝ → G be a covering, and let a, b ∈ V (G). If they are adjacent
in G, then there is nothing to do. Suppose that they are not adjacent. As φ is
surjective, there exists c, d ∈ V (Ĝ) such that φ−1(a) = c and φ−1(b) = d. Since, Ĝ
is connected, there is a path (c = v1, e1, v2, e2, · · · , en, vn+1 = d). As φ is a graph
homomorphism, it follows that the sequence of edges φ(e1), · · · , φ(en) define a path
in G joining a and b.
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Definition 5.1.6. Let φ : Ĝ→ G be a covering, and let w ∈ V (G). Then the fibre

φ−1(w) of φ at w is the set of all vertices v of Ĝ such that φ(v) = w.

Lemma 5.1.7. Suppose that φ : Ĝ→ G is a covering. If G is connected, then

|φ−1(w1)| = |φ−1(w2)|

for all vertices w1, w2 of G.

Proof. Let w1, w2 be two distinct vertices of G. Clearly φ−1(w1) and φ−1(w2) are
disjoint. We break our argument into two cases.

Case 1: w1 and w2 are adjacent vertices.
Let v1 ∈ φ−1(w1), v2 ∈ φ−1(w2), and let Ev1 = {x1, · · · , xr}. If v2 /∈ Ev1 , then
|Ew1| > |Ev1 |, which is not possible as φ is locally bijective. So, v1 and v2 are ad-
jacent, and if there are m edges edges between w1 and w2, then there are m edges
edges between v1 and v2 as well. Hence, the number of edges between a vertex in
φ−1(w1) and a vertex in φ−1(w2) is m · |φ−1(w1)|. Reversing the roles of w1 and w2,
we get that there are m · |φ−1(w2)| edges joining a vertex φ−1(w2) to a vertex in
φ−1(w1). Since m > 0, we have |φ−1(w1)| = |φ−1(w2)|.

Case 2: w1 and w2 are not adjacent vertices.
As G is connected, there exists a path (w1 = v1, e1, v2, e2, · · · , en, vn+1 = w2). From
the arguments above, it follows that |φ−1(vi)| = |φ−1(vj)|, for 1 ≤ i 6= j ≤ n + 1.
Thus, we have |φ−1(w1)| = |φ−1(w2)|, and this completes the proof.

Definition 5.1.8. Let φ : Ĝ → G be a covering. We say Ĝ is an n-lift of G if
|φ−1(v)| = n for all v ∈ G.

Lemma 5.1.9. If Ĝ and G are finite graphs such that Ĝ covers G, then h(Ĝ) ≤
h(G).

Proof. Let φ : Ĝ → G be a covering. If G is not connected, then by Lemma 5.1.5
Ĝ is not connected, and so we have

h(Ĝ) = 0 = h(G).

Now suppose that G is connected. Let S ⊂ G such that h(G) = |∂S|
|S| , and let

φ−1(S) = {v ∈ V (Ĝ) | φ(v) ∈ S}.

Let w ∈ V (G), and let a = |φ−1(w)|. Then by Lemma 5.1.7, we know that |Ĝ| =

a · |G| and |φ−1(S)| = a · |S|. Since |S| ≤ 1
2
|G|, we get |φ−1(S)| ≤ 1

2
|Ĝ|. Every edge

in ∂S has exactly a preimages in Ĝ. So |∂φ−1(S)| = a|∂S|. Therefore, we have

h(Ĝ) ≤ |∂φ
−1(S)|

|φ−1(S)|
=
a|∂S|
a|S|

= h(G),

which completes the proof.
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5.2 2-Lifts

Let G = (V,E) be a simple graph. By Definition 5.1.8, a 2-lift of G is a graph

Ĝ = (V̂ , Ê) that has two vertices {v0, v1} for each v ∈ V, in other words, the fibre
of each vertex v ∈ V has two elements.

Remark 5.2.1. By the definition of graph covering, every edge in G corresponds
to two edges in Ĝ. Once the vertex set V̂ is fixed, for an edge {u, v} ∈ E, the edge

set Ê can either contain the pair of edges

{{u0, v0}, {u1, v1}}, or {{u0, v1}, {u1, v0}}.

If only edge pairs of first type appear, then the 2-lift is just two disjoint copies of
the original graph G. Note that if the original graph G is a tree, then no matter
what type of edge pairs appear, its 2-lift is two disjoint copies of G.

Remark 5.2.2. If the original graph is bipartite, then its 2-lift is also bipartite as
the preimage of a independent set is also independent.

Example 5.2.3. Consider the graphs G,H depicted in Figure 5.3. H is a 2-lift of
G having edges only of the second type, and therefore H is a double cover of G.

(a) G

(b) H

Figure 5.3: A 2-lift of the 3-cycle graph.

Definition 5.2.4. We define sign function s : E → {±1} given by

s({u, v}) =

{
1, if corresponding edges are of type (1) in the 2-lift, and

−1, if corresponding edges are of type (2) in the 2-lift.

Using the sign function, we define the signed adjacency matrix As(G) to be same as
the adjacency matrix A(G), except the entries corresponding to an edge {u, v} are
s({u, v}). We refer to the eigenvalues of A(G) as old eigenvalues, and eigenvalues
of As(G) as new eigenvalues.
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Lemma 5.2.5. Let G = (V,E) be a simple graph and let Ĝ be a 2-lift of G. Then

every eigenvalue of A(G) and As(G) are eigenvalues of A(Ĝ). Furthermore, the

multiplicity of each eigenvalue of A(Ĝ) is the sum of its multiplicities in A(G) and
As(G).

Proof. Let A1 be the adjacency matrix of the graph G1 = (V, s−1(1)), and let A2

be the adjacency matrix of the graph G2 = (V, s−1(−1)). Then note that

A(G) = A1 + A2, and As(G) = A1 − A2.

Also, observe that

A(Ĝ) =

[
A1 A2

A2 A1

]
,

where the second block diagonal matrix is also A1 in A(Ĝ) because a covering is
locally bijective.

Now, if (λ, u) is an eigenpair of A(G). Then

A(Ĝ)(u, u)T =

[
A1 A2

A2 A1

] [
u
u

]
=

[
A1(u) + A2(u)
A2(u) + A1(u)

]
=

[
A(G)(u)
A(G)(u)

]
= λ(u, u)T .

Similarly, if (µ, v) is an eigenpair of As(G). Then

A(Ĝ)(v,−v)T =

[
A1 A2

A2 A1

] [
v
−v

]
=

[
A1(v) + A2(−v)
A2(v) + A1(−v)

]
=

[
As(G)(v)
−As(G)(v)

]
= µ(v,−v)T .

Since the dot product of (u, u) and (v,−v) is zero, these eigenvectors are linearly
independent and form a basis.

5.3 Coset Graphs

Definition 5.3.1. Let G be a finite group, and let Γ ⊂ G be symmetric. Given a
subgroup H of G, we construct a coset graph Cos(H\G,Γ) := (V,E), where V is
the set H\G of right cosets of H in G, and two vertices Hx, and Hy are adjacent
if there is γ ∈ Γ such that Hx = Hyγ.

Example 5.3.2. Consider the dihedral group D6. Let H = {1, s}, and let Γ =
{s, r, r2}. Then H\D6 = {H,Hr,Hr2}. The coset graph Cos(H\G,Γ) is shown in
Figure 5.4 below.
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Figure 5.4: A Cayley coset graph of D6.

Remark 5.3.3. Note that, as is case with Cay(G,Γ),Cos(H\G,Γ) is also |Γ|-
regular.

If H C G, then we have Cos(H\G,Γ) = Cos(G/H,Γ) = Cay(G/H,Γ), where Γ is
the image of Γ under the canonical homomorphism φ : G→ G/H.

Lemma 5.3.4. Let G be a finite group, let H < G, and let Γ ⊂ G be symmetric.
Then Cay(G,Γ) covers Cos(H\G,Γ).

Proof. Define a map φ : G→ H\G such that for all g ∈ G, φ(g) = Hg. Whenever
{g, gγ} is an edge in Cay(G,Γ), {Hg,Hgγ} is an edge in Cos(H\G,Γ). Therefore,
φ is a graph homomorphism. Moreover, it is a surjective graph homomorphism
as for any Hg ∈ H\G there is a g in G. As both the graphs Cay(G,Γ) and
Cos(H\G,Γ) are regular with degree = |Γ|, we get that φ is locally bijective. This
implies Cay(G,Γ) covers Cos(H\G,Γ).

The following is a direct consequence of Lemma 5.1.9.

Corollary 5.3.5. Let G,H,Γ be as in Lemma 5.3.4. Then

h(Cay(G,Γ)) ≤ h(Cos(H\G,Γ)).

Definition 5.3.6. Let (Gn) and (Qn) be sequences of finite groups. We say that
(Gn) admits (Qn) as a sequence of quotients if for each n there exists HnCGn such
that Gn/Hn

∼= Qn.

Definition 5.3.7. Let (Gn) be a sequence of finite groups. We say that (Gn) yields
an expander family if for some positive integer d, there exists a sequence (Γn), such
that for each n, Γn is a symmetric subset of Gn with cardinality d so that the
sequence of Cayley graphs (Cay(Gn,Γn)) is an expander family.

Proposition 5.3.8. (Quotients Non-expansion Principle) Let (Gn) be a sequence
of finite groups. Suppose that (Gn) admits (Qn) as a sequence of quotients. If (Qn)
does not yield an expander family, then (Gn) does not yield an expander family.
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Proof. We will prove the contrapositive of the statement. Suppose (Gn) yields
an expander family, that is, for a positive integer d, there exists a sequence of
symmetric subsets (Γn) such that (Cay(Gn,Γn)) is an expander family. Let (Hn) be
the sequence of normal subgroups of Gn such that Gn/Hn

∼= Qn. Then by Lemma
5.3.4 and Corollary 5.3.5, it follows that (Qn) yields an expander family.

5.4 Subgroups and Schreier Generators

Definition 5.4.1. Let G be a finite group, and let H < G. Let T ⊂ G such that
it contains exactly one element from each right coset of H in G. Then T is called
a set of transversals for H in G.

Note that the subset T can not be a multiset, since the cosets are disjoint and
partition the group. For G,H, and T as in Definition 5.4.1, we denote by x̄ the
unique element of T such that Hx = Hx̄. If t, γ ∈ G, we introduce the notation

(̂t, γ) = tγ(tγ)−1.

Definition 5.4.2. Let G,H, and T be as in Definition 5.4.1, and let Γ ⊂ G. We
call

Γ̂ := {(̂t, γ) | (t, γ) ∈ T × Γ}

the set of Schreier generators for H in G with respect to Γ.

Example 5.4.3. Consider the dihedral group D8. Let H = {1, r, r2}, and let
Γ = {s, sr}. The right cosets of H in G are H and Hs. Let T = {1, s}. Then

(̂s, sr) = ssr(ssr)−1 = r · 1 = r,

(̂1, s) = s(s)−1 = s · s = 1,

(̂s, s) = ss(ss)−1 = 1, and

(̂1, sr) = sr(sr)−1 = sr · s−1 = srs = r−1 = r2,

Thus, the complete multiset of Schreier generators is

Γ̂ = {(̂1, s), (̂1, sr), (̂s, s), (̂s, sr)}.

Lemma 5.4.4. Let G,H, and T be as in Definition 5.4.1.

(i) For all x ∈ G, there exists a unique h ∈ H such that x = hx̄.

(ii) For all h ∈ H, a ∈ G, we have ha = ā.

(iii) For all a, b ∈ G, we have āb = ab.

(iv) For all t ∈ T , we have t̄ = t.
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Proof. (i) Hx̄ = Hx if and only if H = Hxx̄−1, which implies there exist some
h ∈ H such that h = xx̄−1, and so we have x = hx̄. This is unique because if
x = h1x̄ and x = h2x̄, then h1 = h2.

(ii) This follows from the fact Hha = Ha.

(iii) We know Ha = Hā ⇒ (Ha)b = (Hā)b. Also, as (Hā)b = Hāb we have
Hāb = Hab = Hab, and the assertion follows.

(iv) This follows from Definition 5.4.1.

Lemma 5.4.5. Γ̂ ⊂ H. Moreover, if Γ ⊂ G is symmetric, then Γ̂ is symmetric in
H.

Proof. For t ∈ T and γ ∈ Γ, let x = tγ. Then by Lemma 5.4.4, we know that there
exists a unique h ∈ H such that x = hx̄, which implies xx̄−1 ∈ H, or tγ(tγ)−1 ∈ H.
Therefore, Γ̂ ⊂ H.

Now, assume Γ ⊂ G is symmetric. Define a map φ : T × Γ → T × Γ by
φ(t, γ) = (tγ, γ−1). Once again, from Lemma 5.4.4, it follows that

(φ ◦ φ)(t, γ) = φ(tγ, γ−1) = (tγγ−1, γ) = (t, γ),

which shows that φ is bijective.
We know that

(̂t, γ)
−1

= tγγ−1t−1 = tγγ−1(tγγ−1)−1 = φ̂(t, γ).

Finally, from the bijectivity of φ, it follows that (̂t, γ)
−1

∈ Γ̂, which concludes the
proof.

Lemma 5.4.5 tells us that if Cay(G,Γ) is an undirected graph, then Cay(H, Γ̂) is
also an undirected graph.

Lemma 5.4.6. There is a one-to-one correspondence between the set of directed
edges in Cay(G,Γ) and the set of directed edges in Cay(H, Γ̂).

Proof. Let E1 = E(Cay(G,Γ)), E2 = E(Cay(H, Γ̂)), and let T be a set of transver-
sals for H in G. Then any element g ∈ G can be written as ht, for some h ∈ H and
t ∈ T . Define a map φ : E1 → E2 given by

φ(ht, γ) = (h, (̂t, γ)).

We want to show that φ is a bijection. Since G is a finite group, we have

|E2| = |H|[G : H]|Γ| = |H| |G|
|H|
|Γ| = |G| · |Γ| = |E1|.

Since for any edge (h, (̂t, γ)) ∈ E2, there is an edge (ht, γ) ∈ E1, the map φ is
sujective, and the assertion follows.
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Lemma 5.4.7. Let G,H, and T be as in Definition 5.4.1 Let Γ ⊂ G be symmetric.
Then

h(Cay(G,Γ)) ≤ h(Cay(H, Γ̂))

[G : H]
.

Proof. Let S ⊂ H such that |S| ≤ 1
2
|H| and h(Cay(H, Γ̂)) = |δS|

|S| . Let Ŝ = {ht | h ∈
S, t ∈ T}. Then we have

|Ŝ| = |S| · |T | ≤ 1

2
|H| · |T | = 1

2
|G|.

Note that the map ht 7→ h is the same as the map g 7→ g( ¯(g))−1. So if h ∈ H, t ∈ T,
and γ ∈ Γ, then

htγ ∈ Ŝ ⇐⇒ htγ(htγ)−1 ∈ S ⇐⇒ ĥ(t, γ) ∈ S.

By Lemma 5.4.6, we have

|δŜ| = |{(g, γ) | g ∈ Ŝ, γ ∈ Γ, gγ 6∈ Ŝ}|
= |{(ht, γ) | h ∈ S, t ∈ T, γ ∈ Γ, htγ 6∈ Ŝ}|

= |{(h, (̂t, γ)) | h ∈ S, t ∈ T, γ ∈ Γ, htγ 6∈ Ŝ}|

= |{(h, (̂t, γ)) | h ∈ S, t ∈ T, γ ∈ Γ, h(̂t, γ) 6∈ S}|
= |δS|.

Therefore,

h(Cay(G,Γ)) ≤ |δŜ|
|Ŝ|

=
|δS|

|S| · [G : H]
=
h(Cay(H, Γ̂))

[G : H]
.

Remark 5.4.8. If Γ generates G, then Cay(G,Γ) is connected, which implies that
h(Cay(G,Γ)) > 0, and so by Lemma 5.4.7, it follows that h(Cay(H, Γ̂)) > 0. Hence,
we have that Cay(H, Γ̂) is connected, which implies that Γ̂ generates H. Therefore,
we conclude if Γ generates G, then Γ̂ generates H. This is known as the Schreier
subgroup lemma in Group Theory.

Definition 5.4.9. Let (Gn) and (Hn) be sequences of finite groups. We say that
(Gn) admits (Hn) as a bounded-index sequence of subgroups if Hn < Gn for all n
and the sequence ([Gn : Hn]) is bounded.

Proposition 5.4.10. (Subgroups Non-expansion Principle) Let (Gn) be a sequence
of finite groups. Suppose that (Gn) admits (Hn) as a bounded-index sequence of
subgroups. If (Hn) does not yield an expander family, then (Gn) does not yield an
expander family.
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Proof. We will prove the contrapositive of the statement. Suppose (Gn) yields an
expander family, that is, for a positive integer d, for each n, there exists a sequence
of symmetric subsets (Γn) with |Γn| = d such that (Cay(Gn,Γn)) is an expander
family. Let ε > 0 such that h((Cay(Gn,Γn))) ≥ ε, for all n. Let M be a positive
integer such that [Gn : Hn] ≤ M , for all n. Let Tn be a set of transversals for Hn

in Gn for each n, and let

Sn = Γ̂ ∪ {(M − [G : H])d · en},

where en denotes the identity. So, |Sn| = M · d for all n. Then

h(Cay(Hn, Sn)) = h(Cay(Hn, Γ̂n)) ≥ h((Cay(Gn,Γn))) ≥ ε,

for each n. Therefore, (Hn, Sn) is an expander family as desired.

5.5 Solvable Groups with bounded Derived Length

In this section, we will prove that Cayley graphs yielded by a sequence of solvable
groups with bounded derived length do not form an expander family.

Definition 5.5.1. Let G be a group. An element of the form a−1b−1ab for some
a, b ∈ G is called a commutator. We denote by [G,G] to be the subgroup of G
generated by the set of commutators in G.

Definition 5.5.2. Let G be a group. We recursively define a sequence of subgroups
of G, as follows:

G(0) = G, and G(k+1) = [G(k), G(k)], for k ≥ 0. (5.5.1)

The group G(k) is called the kth derived subgroup of G.

Definition 5.5.3. Let G be a group.

(i) We say that G is solvable with derived length 0 if G is the trivial group.

(ii) We say that G is solvable with derived length k+1 if G(k) 6= 1, but G(k+1) = 1.

Remark 5.5.4. A group G is abelian iff G is solvable with derived length 1.

Theorem 5.5.5. Let (Gn) be a sequence of finite non-trivial groups such that
|Gn| → ∞. Let k be a positive integer. Suppose that for all n, we have that Gn is
solvable with derived length ≤ k. Then (Gn) does not yield an expander family.

Proof. We will prove this using induction on k. By Corollary 4.3.4, we know that a
sequence of abelian groups (Gn) does not yield an expander family. Therefore, the
theorem holds for k = 1.

Assuming that the theorem holds true when the derived length is k, we want to
show that it holds for k + 1. We divide the argument into two cases.
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Case 1: The sequence (G′n) has bounded index in (Gn).
For all n, let ln be the derived length of Gn. Note that (G′n) is solvable with derived
length ln − 1 ≤ k. By the inductive hypothesis, (G′n) does not yield an expander
family. Therefore, by the Subgroups Non-expansion Principle, we have that (Gn)
does not yield an expander family.

Case 2: The sequence (|Gn/G
′
n|) is unbounded.

Since Gn/G
′
n is abelian, it follows from Corollary 4.3.4 that (Gn/G

′
n) does not yield

an expander family. Therefore, by the Quotients Non-expansion Principle, we have
that (Gn) does not yield an expander family, which completes the proof.
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Chapter 6

Representation Theory and
Eigenvalues of Cayley Graphs

In this chapter, we use the results and techniques from the representation theory
of finite groups to determine the eigenvalues of Cayley graphs. In Section 6.1, we
recall some basic notions from representation theory, and in Section 6.2, we express
the adjacency matrix A of a Cayley graph in terms of regular representation of the
involved group. Since every representation of finite group is completely reducible
(Maschke’s Thereom), we show that we can further decompose A into the direct
sum of inequivalent irreducible representations of the group. In Section 6.3, we give
a formula to explicitly calculate the spectrum of Cayley graphs on abelian groups.
This chapter is based on Chapters 6 and 7 of [8].

6.1 Representations of finite groups

Definition 6.1.1. Let G be a group and V be a finite-dimensional vector space.
A representation of G in V is a homomorphism π : G → GL(V ), where GL(V ) =
{T : V → V | T is an isomorphism}. The dimension of vector space V is called the
degree of π.

We denote a representation of G as in Definition 6.1.1 by the pair (π, V ).

Example 6.1.2. Let G be a finite group, and let π : G→ GL(C) = C× be defined
by π(g) = 1, for all g ∈ G. Then (π,C) is a one-dimensional representation of G
called the trivial representation.

Example 6.1.3. The homomorphism

Zn → Z× : [m]
φ7−→ ei 2πm/n

defines a representation (φ,C) of Zn of degree one.

Definition 6.1.4. Let (π, V ) and (π′, V ′) be two representations of a group G.
Then an intertwining operator is a linear map φ : V → V ′ such that for all g ∈ G,

φ ◦ π(g) = π′(g) ◦ φ. (6.1.1)
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The space of intertwining operators from V to V ′ is denoted by HomG(V, V ′) or
HomG(π, π′).

Definition 6.1.5. Two representations (π, V ) and (π′, V ′) of a group G are said
to be equivalent if there exists an isomorphism φ : V → V ′ such that it satisfies
Equation 6.1.1.

Definition 6.1.6. Let (π, V ) be a representation of G, and let W be a subspace of
V . We say that W is G-invariant if for all g ∈ G,w ∈ W,π(g)w ∈ W .

Definition 6.1.7. Let (π, V ) be a representation of G. We say that π is an irre-
ducible representation of G if it has no non-trivial G-invariant subspace.

We will now state some results from the representation theory of finite groups, that
will be used later in this chapter.

Theorem 6.1.8. (Maschke’s Thereom). Every representation of a finite group is
completely reducible.

Lemma 6.1.9. (Schur’s lemma) Let (π, V ) and (π′, V ′) be two irreducible represen-
tations of a group G, and let φ ∈ HomG(V, V ′). Then φ = 0 or φ is an isomorphism.
Moreover,

(i) If π = π′ and φ ∈ HomG(π, π′), then φ = λ · 1, for some λ ∈ C.

(ii) Let (π, V ) and (π′, V ′) be two irreducible representations of a group G, and let
φ1, φ2 be two non-zero intertwining maps. Then φ1 = λφ2, for some λ ∈ C.

Corollary 6.1.10. Let (π, V ) and (π′, V ′) be two irreducible representations of a
group G.

(i) If π � π′, then HomG(π, π′) = 0.

(ii) If (π, V ) is an irreducible representation of G, then center of G acts by scalars.

(iii) If G is an abelian group, (π, V ) is an irreducible representation of G, then π
is 1-dimensional.

Definition 6.1.11. Let φ : G → GL(V ) be a representation. The character χφ :
G→ C of φ is a function defined by setting χφ(g) = tr(φ(g)), where tr denotes the
trace.

The character of an irreducible representation is called an irreducible character.

Remark 6.1.12. If φ : G→ C∗ is a degree 1 representation, then χφ = φ.

Theorem 6.1.13. Let G be a finite group. Let φ, ρ be two irreducible representa-
tions of G. Then

〈χφ, χρ〉 =

{
1, φ ∼ ρ, and

0, φ � ρ.

Thus, the irreducible characters of G form an orthonormal set.
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Definition 6.1.14. Let G be a finite group. The right regular representation of
G is the homomorphism R : G → GL(L2(G)) such that R(g)f(h) = f(hg) for all
f ∈ L2(G) and g, h ∈ G.

Remark 6.1.15. To see that R in Definition 6.1.14 is indeed a representation, we
need to show that R is a group homomorphism. Let g, h, i ∈ G, and let f ∈ L2(G).
Then

R(gh)f(i) = f(igh)

and
(R(g)R(h)f)(i) = (R(g)(R(h)f))(i) = R(h)f(ig) = f(igh).

Therefore, R(gh) = R(g)R(h).

Proposition 6.1.16. Let G be a finite group of order n, and let Γ ⊆ G be symmet-
ric. Let φ : G → GL(L2(G)) be a map defined as φ(g) = A(Cay(G, {g})) := Ag.
Then φ is the right regular representation of G, and we have that

A(Cay(G,Γ)) =
∑
g∈Γ

Ag.

Proof. First, to prove that φ is a group homomorphism, we need to show that
Ag1Ag2 = Ag1g2 . We know that (Ag)ij = 1 if and only if the vertex gi is connected
to gj, or when gig = gj. Now, we note that

(Ag1g2)ij = 1⇔ gj = gi(g1g2).

Further,

(Ag1Ag2)ij = 1⇔
k=n∑
k=1

(Ag1)ik(Ag2)kj = 1⇔ gk = gig1 and gj = gkg2 ⇔ gi(g1g2) = gj.

Hence, φ is a group homomorphism. Now, we note that for all g, h ∈ G we have

φ(g)(δh) = Ag(δh) = δhg = R(g)(δh),

which proves the first part.
Now, let X = Cay(G,Γ). We know that (A(X))ij = 1 if and only if there exists

g, g−1 ∈ Γ such that gig = gj and gi = gjg
−1. Therefore, we have A(Cay(G,Γ)) =∑

g∈ΓAg.

Theorem 6.1.17. Let G be a finite group. Then there are only finitely many
irreducible representations of G, up to equivalence. Suppose that V1, V2, · · · , Vn form
a complete list of inequivalent irreducible representations of G. Let di = dim(Vi).
Then L2(G) is orthogonally equivalent to

d1V1 ⊕ · · · ⊕ dnVn.

Moreover, |G| =
∑
d2
i .
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6.2 Decomposing the Adjacency Operator into

irreducible representations

Proposition 6.2.1. Let G be a finite group, Γ ⊂ G be symmetric, and let A the
adjacency operator of Cay(G,Γ). If π1, · · · , πk is a complete set of inequivalent
matrix irreducible representations of G, then

A ∼= d1Mπ1 ⊕ d2Mπ2 ⊕ · · · ⊕ dkMπk ,

where di is the dimension of πi and Mπ =
∑

γ∈Γ π(γ).

Proof. Let R be the right regular representation of G, and let f ∈ L2(G). Then

(Af)(g) =
∑
h∈G

Ag,hf(h),

=
∑
γ∈Γ

f(gγ),

=
∑
γ∈Γ

(R(γ)f)(g).

Therefore, A =
∑

γ∈ΓR(γ). By Maschke’s theorem and Theorem 6.1.17, we have

R ∼= d1π1 ⊕ · · · ⊕ dkπk, and so we have∑
γ∈Γ

R(γ) ∼=
∑
γ∈Γ

d1π1(γ)⊕ · · · ⊕ dkπk(γ).

Therefore,

A ∼=
∑
γ∈Γ

d1π1(γ)⊕ · · · ⊕ dkπk(γ),

from which the assertion follows.

Remark 6.2.2. The matrices A and d1Mπ1 ⊕ d2Mπ2 ⊕ · · · ⊕ dkMπk in Proposition
6.2.1 have the same eigenvalues. Since det(A⊕B) = det(A)det(B), if all Mπi have
degree ≤ 4, we can find out all the eigenvalues.

Example 6.2.3. Consider the symmetric group S3, and let ζ = e
2πi
3 . Its complete

set of irreducible representations up to equivalence is given by {π0, π1, π2}, where
π0 is defined to be the trivial representation, π1(σ) := (sgn(σ)) for all σ ∈ S3, and
π2 is defined as

π2(e) =

(
1 0
0 1

)
, π2((1, 3)) =

(
0 ζ
ζ2 0

)
, π2((1, 2)) =

(
0 ζ2

ζ 0

)
,

π2((2, 3)) =

(
0 1
1 0

)
, π2((1, 2, 3)) =

(
ζ2 0
0 ζ

)
, π2((1, 3, 2)) =

(
ζ 0
0 ζ2

)
.
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Let X = Cay(S3,Γ), where Γ = {(1 2), (2 3), (1 2 3), (1 3 2)}, and let A be the
adjacency operator of X. Then we have∑

γ∈Γ

π0(γ) = 4,
∑
γ∈Γ

π0(γ) = 0, and
∑
γ∈Γ

π0(γ) =

(
−1 −ζ
−ζ2 −1

)
.

Therefore, we get

A ∼=


4

0
−1 −ζ
−ζ2 −1

−1 −ζ
−ζ2 −1

 .

The characteristic polynomial of the matrix

(
−1 −ζ
−ζ2 −1

)
is x(x + 2). Hence, its

eigenvalues are 0 and -2. Thus, we get

Spec(A) =

(
−2 0 4
2 3 1

)
.

Corollary 6.2.4. Let G be a finite group, and let Γ,Γ′ ⊂ G be symmetric such that
Γ ⊂ Γ′. Let X = Cay(G,Γ) and X ′ = Cay(G,Γ′). Then |Γ|−λ1(X) ≤ |Γ′|−λ1(X ′).

Proof. Let A and A′ be the adjacency operators for X and X ′, respectively. Let
f ∈ L2(G) such that ||f || = 1. Since, R is unitary with respect to the standard
inner product on L2(G), by Cauchy-Schwarz inequality, we get

|〈R(g)f, f〉| ≤ ||R(g)f ||||f || = ||f ||2 = 1 ∀g ∈ Γ′. (6.2.1)

Also,

〈R(g)f, f〉+ 〈R(g−1)f, f〉 = 〈f,R(g−1)f〉+ 〈f,R(g)f〉,
= 〈R(g−1)f, f〉+ 〈R(g)f, f〉,
= 〈R(g−1)f, f〉+ 〈R(g)f, f〉,
= 〈R(g)f, f〉+ 〈R(g−1)f, f〉.

⇒ 〈R(g)f, f〉+ 〈R(g−1)f, f〉 ∈ R. (6.2.2)

Now,

|Γ| − 〈Af, f〉 = |Γ| −
∑
γ∈Γ

〈R(g)f, f〉

=
∑
γ∈Γ

(1− 〈R(g)f, f〉)

≤
∑
γ∈Γ′

(1− 〈R(g)f, f〉) .
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Since, Γ′ is symmetric, by Equations 6.2.1 and 6.2.2, we get

2− 〈R(g)f, f〉 − 〈R(g−1)f, f〉 ≥ 0.

If γ has order 2, then

〈R(γ)f, f〉 = 〈f,R(γ−1)f〉 = 〈f,R(γ)f〉 = 〈R(γ)f, f〉.

⇒ 〈R(g)f, f〉 ∈ R.

So, by Equation 6.2.2, we get 1− |〈R(g)f, f〉| = 1− 〈R(g)f, f〉 ≥ 0. Thus, the last
inequality holds true. Thus, for all f ∈ L2(G) such that ||f || = 1, we have

|Γ| − 〈Af, f〉 ≤ |Γ′| − 〈A′f, f〉.

Let f0 ∈ L2(G) such that ||f0|| = 1 and 〈A′f0, f0〉 = λ1(X ′). Then

|Γ| − 〈Af0, f0〉 ≤ |Γ′| − λ1(X ′), and as

|Γ| − λ1(X) ≤ |Γ| − 〈Af0, f0〉,

the assertion follows.

Theorem 6.2.5. Let G be a finite group and Γ ⊂ G be symmetric such that
gΓg−1 = {gγg−1|γ ∈ Γ} = Γ, for all g ∈ G. Let X = Cay(G,Γ) and let A be
the adjacency operator of X. Let ρ1, · · · , ρr be a complete set of inequivalent irre-
ducible representations of G; let χi be the character of ρi; and let di be the degree
of ρi. Then the eigenvalues of A are given by

µi =
1

di

∑
γ∈Γ

χi(γ),

for 1 ≤ i ≤ r, where each eigenvalue µi occurs with multiplicity d2
i .

Proof. Since Γ is closed under conjugation, for all g ∈ G, we have

AR(g) =
∑
γ∈Γ

R(γ)R(g) =
∑
γ∈Γ

R(γg)

=
∑
γ∈Γ

R((gγg−1)g) =
∑
γ∈Γ

R(gγ) = R(g)A.

By Theorem 6.2.1, we can decompose

L2(G) = d1V1 ⊕ · · · ⊕ dnVn.

Fix i ∈ {1, 2, . . . , r}, and let β be a basis of Vi. Then we have

[A]β[R(g)]β = [R(g)]β[A]β, for all g ∈ G.
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Since, restriction of R(g) to any Vi is ρi (i.e., R(g)vi = ρi(g)vi for all vi ∈ Vi), by
Schur’s lemma, we get [A]β = µiIdi , where µi ∈ C. This gives

diµi = tr (A|Vi)

= tr

(∑
γ∈Γ

ρi(γ)

)
=
∑
γ∈Γ

χi(γ).

Thus, we have µi = 1
di

∑
γ∈Γ χi(γ), for each i, which would imply that

A ∼= d1(µ1Id1)⊕ · · · ⊕ dr(µrIdr).

Therefore, the eigenvalues of A are µ1, · · · , µr, where µi has multiplicity d2
i .

Remark 6.2.6. Theorem 6.2.5 does require not imply that the µi have to be nec-
essarily distinct, as there can be some µi = µj. In that case, the multiplicity of the
eigenvalue µi will be d2

i + d2
j .

Example 6.2.7. Again, consider the group S3. We denote by K(1 2), the conjugacy
class of the permutation (1 2). Recall the complete set of irreducible representa-
tions. {π0, π1, π2} given in Example 2.3. Let χ0, χ1, and χ2 be the characters of
π0, π1, and π2, respectively. Let X = Cay(S3, K(1 2)), and let A be the adjacency
operator of X. Then by Theorem 2.5, the eigenvalues of A are

µ0 =
1

1

∑
γ∈Γ

χ0(γ) = 3,

µ1 =
1

1

∑
γ∈Γ

χ1(γ) = −3, and

µ2 =
1

2

∑
γ∈Γ

χ2(γ) = 0.

Therefore,

Spec(A) =

(
−3 0 3
1 4 1

)
.

6.3 Eigenvalues of Cayley graphs on abelian groups

In this section, we describe the set of irreducible representations of any finite abelian
group. Using this, we give a formula to explicitly calculate the spectrum of any
Cayley graph of an abelian group.

Proposition 6.3.1. The complete set of inequivalent irreducible matrix represen-
tations of Zn are given by

Φ = {Φk | for k = 0, 1, 2, · · · , n− 1},

where
Φk(a) = e

2πiak
n , for all a ∈ Zn.
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Proof. First, Φk is a representation, since for all a, b ∈ Zn and for all 0 ≤ k ≤ n−1,

Φk(a+ b) = e
2πi(a+b)k

n = e
2πiak
n e

2πibk
n = Φk(a)Φk(b).

Since each Φk is a degree 1 representation, it is irreducible. Further,

〈Φk(g),Φj(g)〉 =
∑
g∈Zn

e
2πigk
n e

−2πigj
n

= eπik(n−1)e−πij(n−1)

=

{
1, if k = j, and

0, if k 6= j.

Therefore, representations are inequivalent. Since |Zn| =
∑n−1

i=0 12, this is the com-
plete set of inequivalent irreducible representations of Zn.

The following corollary, which gives the complete set of irreducible representations
for finite abelian groups, is a direct consequence of Proposition 6.3.1.

Corollary 6.3.2. Let G = Zn1 × · · · × Znr be a finite abelian group. Then the set
of irreducible representations of G is

{Φk | k = (k1, · · · , kr) ∈ Zn1 × · · · × Znr},

where

Φk(a1, · · · , ar) =
(
e

2πia1k1
n1 e

2πia2k2
n2 · · · e

2πiarkr
nr

)
.

A direct application of Proposition 6.3.1 and Corollary 6.3.2 is the following.

Corollary 6.3.3. Let Γ ⊂ Zn be symmetric, and let ζ = e
2πi
n . Then the eigenvalues

of Cay(Zn,Γ) are given by

λk =
∑
γ∈Γ

ζkγ,

where 0 ≤ k ≤ n− 1.

Example 6.3.4. Let Xn = Cay(Z2n,Γn) where Γn = {1,−1, n}. By Corollary
6.3.3, the eigenvalues of Xn are given by

λk =
∑
γ∈Γn

e
2πikγ
2n = e

2πik
2n + e

−2πik
2n + eπik = 2 cos(

πk

n
) + (−1)k,

where 0 ≤ k ≤ 2n− 1. Therefore, we have

λ1(Xn) = 2 cos(
2π

n
) + 1→ 3, as n→∞,

which implies that the spectral gap (3− λ1(Xn)) → 0. Therefore, Xn is not an
expander family.
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Chapter 7

Families I: Bipartitte Ramanujan
Graphs of All Degrees

In this chapter, we prove the existence of infinite families of regular bipartite Ra-
manujan graphs of every degree greater than 2, and the existence of infinite families
of irregular Ramanujan graphs. To do this, we will prove a variant of a conjecture of
Bilu and Linial [1] about the existence of certain special 2-lifts of every graph using
the method of interlacing polynomials. The key idea is to start with a d-regular
complete bipartite graph G, and using this variant, cosntruct a 2-lift of G which
is Ramanujan. Since a 2-lift of a bipartite graph is also bipartite, we inductively
form the appropriate 2-lifts to obtain an infinite sequence of d-regular bipartite
Ramanujan graphs. This chapter is based on [1, 2, 3, 4, 5, 7, 9].

7.1 Matching Polynomial

Definition 7.1.1. A matching M in a graph G is a subset of its edge set E(G)
such that no two edges in M share a common vertex. A matching which covers all
the vertices of a graph is called a perfect matching of that graph.

The number of matchings with r edges of a graph G is denoted by ρ(G, r). We set
ρ(G, 0) = 1 (empty set).

Remark 7.1.2. By definition, it is apparent that a graph of odd order cannot have
a perfect matching.

Example 7.1.3. In the graph C6 depicted in Figure 7.1, M1 = {{1, 2}, {5, 6}} is a
matching in C6, whereasM2 = {{1, 2}, {1, 5}} is not. However, M3 = {{1, 2}, {3, 4}, {5, 6}}
is a perfect matching in C6.

Definition 7.1.4. The matching polynomial of a graph G = (V,E), denoted by
µG(x), is defined as

µG(x) :=
∑
r≥0

(−1)rρ(G, r)xn−2r,

where n is the order of G.
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Figure 7.1: The C6 (prism) graph.

Example 7.1.5. Let G be an empty graph with n vertices, then µG(x) = xn, as
the only non-zero coefficient is ρ(G, 0) = 1.

Example 7.1.6. Let Pn be a path on n vertices. Then its matching polynomial is

µPn(x) =
∑
r≥0

(−1)r
(
n− r
r

)
xn−2r.

To prove this, we show that there is a one-to-one correspondence between the set
of matchings in Pn having r edges and the set of paths on (n − r) vertices with
i distinguished vertices. Given a matching M with |M | = r, contract each edge
that belongs to M onto its left endpoint in Pn to obtain a path on (n− r) vertices.
Conversely, given a path on (n − r) vertices, select any r vertices and we can
reconstruct a matching having r edges in Pn. Thus, ρ(Pn, r) =

(
n−r
r

)
, and we have

µPn(x) =
∑
r≥0

(−1)r
(
n− r
r

)
xn−2r.

In the following theorem, we establish some fundamental properties of the matching
polynomial.

Theorem 7.1.7. Let G and H be two graphs on different vertex sets.

(i) µG∪H(x) = µG(x)µH(x).

(ii) For e = {u, v} ∈ E(G), we have µG(x) = µG\e(x)− µG\uv(x), where G \ uv is
the graph obtained by removing the vertices u and v from the graph G.

(iii) µG(x) = xµG\u(x)−
∑

i∼u µG\ui(x).

Proof. (i) Every matching in G ∪ H is the union of a matching of G and a
matching of H. Thus, we have

ρ(G ∪H, r) =
r∑
s=0

ρ(G, s)ρ(H, r − s).
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So the coefficient of xn−2r in µG(x)µH(x) is given by

r∑
s=0

(−1)sρ(G, s)(−1)r−sρ(H, r − s) =
r∑
s=0

(−1)rρ(G, s)ρ(H, r − s),

which completes the proof.

(ii) We note that the number of r-matchings which contain the edge e is ρ(G \
uv, r− 1), and the number of r-matchings which do not contain the edge e is
ρ(G \ e, r). So, for r ≥ 0, we have

ρ(G, r) = ρ(G \ e, r) + ρ(G \ uv, r − 1).

Hence, it follows that

µG(x) =
∑
r≥0

(−1)rρ(G \ e, r)xn−2r +
∑
r≥1

(−1)rρ(G \ uv, r − 1)xn−2r,

=
∑
r≥0

(−1)rρ(G \ e, r)xn−2r + (−1)
∑
r≥1

(−1)r−1ρ(G \ uv, r − 1)xn−2(r−1+1),

=
∑
r≥0

(−1)rρ(G \ e, r)xn−2r + (−1)
∑
r≥1

(−1)r−1ρ(G \ uv, r − 1)xn−2−2(r−1),

= µG\e(x) + (−1)
∑
t≥0

(−1)tρ(G \ uv, r − 1)xn−2−2t,

= µG\e(x) + µG\uv(x),

as |V (G \ uv)| = n− 2. Therefore, the assertion follows.

(iii) First, we note that

ρ(G, r) = ρ(G \ i, r) +
∑
i∼j

ρ(G \ ij, r − 1). (7.1.1)

Now, plugging it in the expression for ρ(G, r) from Equation 7.1.1 above into
the expression for the matching polynomial µG(x) =

∑
r≥0(−1)rρ(G, r)xn−2r,

we get

µG(x) =
∑
r≥0

(−1)r

(
ρ(G \ i, r) +

∑
i∼j

ρ(G \ ij, r − 1)

)
xn−2r

=
∑
r≥0

(−1)rρ(G \ i, r)xn−2r +
∑
r≥0

(−1)r
∑
i∼j

ρ(G \ ij, r − 1)xn−2r

= x
∑
r≥0

(−1)rρ(G \ i, r)xn−1−2r + (−1)
∑
r≥0

(−1)r−1
∑
i∼j

ρ(G \ ij, r − 1)

= xµG\i(x)−
∑
i∼j

µG\ij(x).
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In the following theorem, we show that the matching polynomial of a tree is exactly
the same as the characteristic polynomial of its adjacency matrix.

Theorem 7.1.8. Let G be a tree, and let A(G) be its adjacency matrix. Then
µG(x) = det(xI − A(G)).

Proof. Let |V (G)| = n. Since there are no loops in the graph G, all the diagonal
entries of (xI−A(G)) = x. Now, expanding the determinant using Leibniz formula,
we get

det(xI − A(G)) =
∑
σ∈Sn

(−1)sgn(σ)x|a:σ(a)=a|
∏

a:σ(a)6=a

(−A(G)(a, σ(a)).

We claim that the only permutations that contribute to the sum are the involutions
(σ(σ(a)) = a for all a ∈ V (G)). This condition ensures that whenever A(G)(a, σ(a))
appears in the product, so does A(G)(σ(a), a), thereby making the product positive.
We prove this using contradiction. Let σ = (a1, · · · , ak) be a permutation that
contributes to the sum. This means, σ(ai) = ai+1 for 1 ≤ i ≤ k − 1 and σ(ak) = a1.
Since A(G) is an adjacency matrix, for these terms to contribute, A(G)(ai, ai+1)
must be equal to 1 for all 1 ≤ i ≤ k − 1 and A(G)(ak, a1) = 1, which implies there
is a cycle of length k in the graph. But, G is a tree and hence cannot have cycle,
which is a contradiction. Thus, the only permutations that contribute to the sum
are the involutions.

We know that any involution σ has either fixed points or transpositions, and
each transposition that contributes to the sum, corresponds to an edge in the graph.
Thus, the number of permutations with k cycles of length 2 is equal to the number
of matchings with k edges. Also, we know that the sign of a permutation with
k transpositions is (−1)k, so the coefficient of xn−2k in the expansion above is
(−1)kρ(G, k), which complete the argument.

Since the matching polynomial of a tree is same as its characteristic polynomial,
we get that it has real roots. Next, we prove that the matching polynomial of any
graph has real roots by proving that it divides the matching polynomial of its path
tree.

Definition 7.1.9. Given a graph G and a vertex a of G, the path tree P (G, a) is a
graph whose vertices correspond to paths in G that start at a and do not contain
any vertex twice. Two vertices in P (G, a) are adjacent if one path extends the other
by one vertex.

Example 7.1.10. Depicted in Figure 7.2, is a graph G and its path tree P (G,A)
starting at the vertex A.
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(a) G

(b) P (G,A)

Figure 7.2: Example of a path tree.

Remark 7.1.11. Note that when G itself is a tree, then for any vertex a of G,
P (G, a) is isomorphic to G.

Theorem 7.1.12. Given a graph G, and a vertex a ∈ V (G), we have

µG\a(x)

µG(x)
=
µP (G,a)\a(x)

µP (G,a)(x)
.

Proof. We will prove the theorem using induction on |G|. First, we note that
P (G, a) \ a =

⋃
b∼a P (G \ a, b). Moreover, if the graph G is a tree, then we know

that P (G, a) ∼= G, and so the equality holds for trees. As all graphs with number of
vertices ≤ 2 are trees, the statement of the theorem holds. Let |G| = n, and let us
assume the assertion holds true for all proper subgraphs of G. Then by Theorem
7.1.7, we have

µG(x)

µG\a(x)
=
xµG\a(x)−

∑
b∼a µG\ab(x)

µG\a(x)

= x−
∑
b∼a

µG\ab(x)

µG\a(x)

= x−
∑
b∼a

µP (G\a,b)\b(x)

µP (G\a,b)(x)
(by our inductive hypothesis). (1)

Now, since

P (G \ a, a) \ b =
⋃

c∼b,c 6=a

P (G \ ab, c), and P (G, a) \ a =
⋃
c∼a

P (G \ a, c),
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we have
µP (G,a)\a(x) =

∏
c∼a

µP (G\a,c)(x).

Let ab be a vertex in P (G, a) that corresponds to a path from a to b. Then

(P (G, a) \ a) \ ab =

( ⋃
c∼a,c6=b

P (G \ a, c)

)
∪

( ⋃
c∼b,c6=a

P (G \ ab, c)

)
,

=

( ⋃
c∼a,c6=b

P (G \ a, c)

)
∪ (P (G \ a, b) \ b) .

⇒ µP (G,a)\a)\ab(x) =

( ∏
c∼a,c6=b

µP (G\a,c)(x)

)
µP (G\a,b)\b(x)

⇒
µP (G,a)\a)\ab(x)

µP (G,a)\a(x)
=

(∏
c∼a,c6=b µP (G\a,c)(x)

)
µP (G\a,b)\b(x)∏

c∼a µP (G\a,c)(x)

=
µP (G\a,b)\b(x)

µP (G\a,b)(x)
.

This expression when substituted in Equation (1) yields

µG(x)

µG\a(x)
= x−

∑
b∼a

µP (G,a)\a)\ab(x)

µP (G,a)\a(x)

=
xµP (G,a)\a(x)−

∑
b∼a µP (G,a)\a)\ab(x)

µP (G,a)\a(x)

=
µP (G,a)(x)

µP (G,a)\a(x)
.

Theorem 7.1.13. Let G be graph and let a ∈ V (G). Then µG(x) | µP (G,a)(x).

Proof. Let |G| = n. We will induct on n to establish the theorem. When n ≤ 2,
G is a path three, and the assertion holds. Now, for b ∼ a let us assume µG\a(x)
divides µP (G\a)(x) (this is true for any b ∈ V (G \ a), but we are interested only in
the case when b ∼ a).
Since

P (G, a) \ a =
⋃
b∼a

P (G \ a, b),

we have
µP (G,a)\a(x) =

∏
b∼a

µP (G\a,b)(x).

This implies that for any b ∼ a, µP (G\a,b)(x) | µP (G,a)\a(x), and so we have that

µG\a(x) | µP (G,a)\a(x).

In other words,
(
µP (G,a)\a(x)

µG\a(x)

)
is a polynomial in x, which implies

(
µP (G,a)(x)

µG(x)

)
is a

polynomial in x. Thus, µG(x) | µP (G,a)(x), as desired.
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The following is a consequence of Theorems 7.1.8, 7.1.12, and 7.1.13.

Theorem 7.1.14. (Godsil) Let P (G, u) be a path tree of G. Then the matching
polynomial of G divides the characteristic polynomial of the adjacency matrix of
P (G, u). In particular, all the roots of the µG(x) are real and have absolute value
at most ρ(P (G, u)).

Theorem 7.1.15. For every graph G of maximum degree d, all the roots of the
µG(x) have absolute value at most 2

√
d− 1.

Proof. Fix a ∈ V (G) be the root vertex, let |P (G, a)| = n, and let A(P (G, a)) = AP .
It is apparent that the maximum degree of P (G, a) is d. We define a height function
h : V (P (G, a)) −→ N∪{0} by h(w) = dist(w, v), for all w ∈ V (P (G, a)). Let D be
a diagonal matrix of order of n with

Dii = (
√
d− 1)h(i).

Then

DAPD
−1 =


D11a11
D11

D11a12
D22

· · · D11a1n
Dnn

· ·
· ·
· ·

Dnna11
D11

Dnna12
D22

· · · Dnnann
Dnn

 ,
where Ap = (aij)n×n.

There are three types of vertices in a tree, namely the root vertex, leaf vertices,
and intermediate vertices. Let jth row corresponds to the root vertex a. Since the
degree of P (G, a) is at most, d, we have Djj = 1 and ajk = 1, for at most d values
of k. Hence, we have

(DAPD
−1)jk =

1√
d− 1

,

for at most d values of k. Therefore, for d ≥ 2,

n∑
k=1

(DAPD
−1)jk ≤

d√
d− 1

≤ 2
√
d− 1.

Again, let ith row correspond to one of the leaf vertices, and let h(i) = k. As
one is the only nonzero entry of the ith row of AP , it follows that (

√
d− 1)k−(k−1) =√

d− 1 is the only nonzero entry of the ith row of DAPD
−1.

The case of intermediate vertices is a combination of above two cases, i.e., the
row corresponding to any intermediate vertex in the matrix DAPD

−1 has one entry
equal to

√
d− 1, and up to (d− 1) entries equal to 1√

d−1
. Thus, the maximum row

sum of the matrix DAPD
−1 = 2

√
d− 1.
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Next, we claim that eigenvalues of a non-negative matrix are bounded above in
absolute value by its maximum row sum. We know that the spectral radius ρ(AP )
is the norm of the adjacency operator. That is,

ρ(AP ) = sup{‖APx‖2 | ‖x‖2 = 1}.

Let di denotes the row sum of the ith row of the matrix AP , and let λ = max{di|1 ≤
i ≤ n}. Let x =

(
1√
n
, · · · , 1√

n

)
. Then APx =

(
d1√
n
, · · · , dn√

n

)
, and so we have

‖APx‖2 =

√√√√ n∑
i=1

d2
i

n

≤
√
λ2n

n
,

= λ

⇒ ρ(AP ) ≤ λ.

We have proved above that the maximum row sum of the matrix DAPD
−1 is

2
√
d− 1, which tells us that ρ(DAPD

−1) = ρ(AP ) ≤ 2
√
d− 1. Thus, all the roots

of µG(x) have absolute value at most 2
√
d− 1.

Definition 7.1.16. Given a graph G and a vertex a of G, its universal cover T is
a graph whose vertices correspond to non-backtracking walks in G that start at a.
Two vertices in T are adjacent if one walk extends the other by one vertex.

Remark 7.1.17. Since in a graph there can be infinitely many non-backtracking
walks starting from a fixed vertex, the universal cover T in an infinite tree with
infinite symmetric adjacency matrix AT .

Lemma 7.1.18. Let G be a graph, and let T be its universal cover. Then the roots
of µG(x) are bounded in absolute value by ρ(T ).

Proof. Let a ∈ V (G). Note that P (G, a) is a finite induced subgraph of T , and AP
is a finite submatrix of AT . By Theorem 7.1.14, we know that the roots of µG are
bounded by ρ(P (G, a)). Therefore, we have

ρ(P (G, a)) = ‖AP‖2 = sup
‖x‖2=1

‖APx‖2

≤ sup
‖y‖2=1,supp(y)⊂P

‖ATy‖2

≤ sup
‖y‖2=1

‖ATy‖2 = ρ(T ).

Let G = (V,E) be a finite graph with |E| = m. Let E = {e1, e2, · · · , em} be an
arbitrary ordering. Let s be a signing of these edges, and let AS be the correspond-
ing adjacency matrix. We define fs(x) := det(xI − As) to be the characteristic
polynomial of As. This leads us to the following.
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Theorem 7.1.19. Let E denote the expected value of a random variable. Then

Es∈{+1,−1}m [fs(x)] = µG(x). (7.1.2)

Proof. By the Leibniz formula, we have

E(det(xI − As)) = E

∑
σ∈Sn

(−1)sgn(σ)x|a:σ(a)=a|
∏

a:σ(a)6=a

(−As(a, σ(a))


=
∑
σ∈Sn

(−1)sgn(σ)x|a:σ(a)=a|E

 ∏
a:σ(a)6=a

(−As(a, σ(a))

 .

So, for a fixed σ ∈ Sn,

E

 ∏
a:σ(a)6=a

(−As(a, σ(a))

 =

∏
a:σ(a) 6=a(−A1(a, σ(a)) + · · ·+

∏
a:σ(a)6=a(−A2m(a, σ(a))

2m
.

We now claim that the only way we can get a non-zero contribution in the expec-
tation is when the following holds:

(i) (a, σ(a)) ∈ E(G), and

(ii) σ(σ(a)) = a.

By the definition of As, it is apparent that the first condition is necessary. To
see the necessity of the second condition, we first note that for any σ ∈ Sn and
a ∈ V (G),E(As(a, σ(a)) = 0. Since both -1 and +1 appear 2m−1 times, the numer-
ator sum equals to zero. Now, if σ = (a1 · · · ak), then E(As(a1, a2) · · ·As(ak, a1)) =
E(As(a1, a2)) · · ·E(As(ak, a1)) = 0. Thus, the only permutations contributing non-
trivially to the sum are the involutions. As we have already seen in Theorem 7.1.8,
these correspond exactly to the matchings in the graph.

Remark 7.1.20. We can rewrite Equation 7.1.2 as
∑

s fs(x) = 2mµG(x). As µG(x)
has real roots,

∑
s fs(x) has real roots.

7.2 Interlacing Families

Definition 7.2.1. We say that a polynomial g(x) =
∏i=n−1

i=1 (x−αi) with real roots

interlaces a polynomial f(x) =
∏i=n

i=1 (x− βi) if

β1 ≤ α1 ≤ β2 ≤ · · · ≤ αn−1 ≤ βn.

Example 7.2.2. Note that a polynomial with real roots, and its derivative, inter-
lace.
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Definition 7.2.3. We say that polynomials f1, f2, · · · , fk have a common interlac-
ing there is a polynomial g that interlaces each of fi.

Lemma 7.2.4. Let f1, f2, · · · , fk be polynomials of degree n with real roots and
positive leading coefficients, and define

f0 :=
k∑
i=1

fi.

If f1, f2, · · · , fk have a common interlacing, then there exists an i for which the
largest root of fi is at most the largest root of f0.

Proof. Let g be a polynomial that interlaces all of the fi, and let αn−1 be the largest
root of g. First, note that the polynomial f0 has real roots, since at each root of g,
either f0 ≤ 0, or f0 ≥ 0. As each fi has a positive leading coefficient, it is positive
for sufficiently large x. As each fi is non-positive at αn−1, f0 is also non-positive
at αn−1 and will eventually becomes positive. This tells us that f0 has a root βn
such that βn ≥ αn−1. As f0 is the sum of the fi, there must be some i for which
fi(βn) ≥ 0. Thus, the largest root of fi is at least αn−1 and at most βn.

Remark 7.2.5. Using similar arguments, we can show that the conclusion of
Lemma 7.2.4 also holds for the kth largest root.

Remark 7.2.6. Note that the assumption of common interlacing in Lemma 7.2.4
is crucial to conclude that the sum f0 has real roots. For example, consider the
polynomial (x + 1)(x + 2) + (x − 1)(x − 2). It does not have real roots, while the
polynomials (x+ 1)(x+ 2) and (x− 1)(x− 2) both have real roots. Even if the sum
of two polynomials has real roots, the conclusion of Lemma 7.2.4 may fail to hold
if we do not assume a common interlacing. For example, consider the polynomials
(x+ 5)(x− 9)(x− 10) and (x+ 6)(x− 1)(x− 8). The largest root of the sum is 7.4
which is less than the largest roots of both the polynomials.

Definition 7.2.7. Let S1, S2, · · · , Sm be finite sets, and for every assignment s1, · · · , sm ∈
S1×· · ·×Sm, let fs1,s2,··· ,sm(x) be a polynomial of degree n with real roots and pos-
itive leading coefficient. For s1, · · · , sk ∈ S1 × · · · × Sk with k < m, we define

fs1,··· ,sk :=
∑

sk+1∈Sk+1,··· ,sm∈Sm

fs1,··· ,sk,sk+1,··· ,sm

and
f0 :=

∑
s1∈S1,··· ,sm∈Sm

fs1,··· ,sm .

We say that the polynomials {fs1,··· ,sm}s1,··· ,sm form an interlacing family if for all
k < m and all s1, · · · , sk ∈ S1 × · · · × Sk, the polynomials

{fs1,··· ,sk,t}t∈Sk+1

have a common interlacing.
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Theorem 7.2.8. Let S1, · · · , Sm be finite sets, and let {fs1,··· ,sm}s1,··· ,sm be an inter-
lacing family of polynomials. Then, there exists some s1, · · · , sm so that the largest
root of the polynomial fs1,··· ,sm is at most the largest root of the polynomial f0.

Proof. We note that f0 = {ft}t∈S1 . By definition, we know that {ft}t∈S1 has a
common interlacing. By Lemma 7.2.4, we know that there exists an i ∈ S1 such
that fi has its largest root to be no greater than the largest root of f0. Similarly,
note that fi = {fi,t}t∈S2 , and there exists an j ∈ S2 such that fi,j has its largest root
bounded above by the largest root of fi. Proceeding inductively, for any s1, · · · , sk,
we have that the polynomials {fs1,··· ,sk,t}t∈Sk+1

have a common interlacing, and
fs1,··· ,sk = {fs1,··· ,sk,t}t∈Sk+1

. By Lemma 7.2.4, there exists an sk+1 ∈ Sk+1 such that
the largest root of the polynomial fs1,··· ,sk,sk+1

is bounded above by the largest root
of fs1,··· ,sk .

We want to prove that the polynomials {fs}s∈{±1}m defined in Section 7.1 form
an interlacing family. According to Definition 7.2.4, this requires establishing that
the existence of certain common interlacings. We circumvent this by showing that
for a set of polynomials {f1, f2, · · · , fk} of degree n, having a common interlacing
is equivalent to requiring that

∑k
i=1 fi has real roots.

Definition 7.2.9. Let f1(x), · · · , fk(x) be polynomials in one variable with real
coefficients. We say they are compatible if for all c1, · · · , ck ≥ 0, all the roots of the
polynomial

∑k
i=1 cifi(x) are real.

For a polynomial f , let nf (X) denote the number of real roots of f(x) that lie in the
interval [x,∞) (counted with their multiplicities). It is can be shown that for two
compatible polynomials f, g with positive leading coefficients, |nf (x) − ng(x)| ≤ 1
for all x ∈ R.

Lemma 7.2.10. Let f1, · · · , fk be univariate polynomials of degree n with posi-
tive leading coefficients. Then f1, · · · , fk have a common interlacing if and only if∑k

i=1 λifi has real roots for all non-negative λ1, · · · , λk.

Proof. The proof of forward implication is straightforward. Conversely, suppose∑k
i=1 λifi has real roots for all non-negative λ1, · · · , λk. To prove f1, · · · , fk have

a common interlacing, note that it is suffices to prove that for all s, t such that
1 ≤ s < t ≤ k, the polynomials fs, ft have a common interlacing.

For 1 ≤ i ≤ k, let (ri1, · · · , rin) be the root sequence of fi. We define intervals
I i1, · · · , I in+1, as follows: I i1 = [ri1,∞), I in+1 = (−∞, rin], and I ij = [rij, r

i
j−1], for

2 ≤ j ≤ n. Next, for 1 ≤ s < t ≤ k, to show that the polynomials fs, ft have a
common interlacing, it suffices to prove that for 1 ≤ j ≤ n+ 1, Isj

⋂
I tj is nonempty.

Suppose we assume on the contrary. Let j be the smallest possible index such
that Isj ∩ I tj = φ. Since the leading coefficients of both fs and ft are positive, we
have j ≥ 2. Assuming rsj−1 ≤ rtj−1, we see that rtj exists and rsj−1 < rtj. But then
nft(r

t
j) = j and nfs(r

t
j) ≤ j − 2, which is a contradiction, and so the assertion

follows.
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7.3 Infinite Families of Regular Bipartite Ramanu-

jan Graphs

In this section, we prove that the characteristic polynomials {fs}s∈{±1}m form an
interlacing family. Using this we prove that for every d-regular graph, there exists a
signing such that all of the new eigenvalues are at most 2

√
d− 1, which is a variant

of what was conjectured by Bilu and Linial [1]. The following theorem says that if
the sign of each edge is chosen independently, each with its own probability, then
the resulting polynomial has real roots.

Theorem 7.3.1. The polynomial

∑
s∈{±1}m

( ∏
i:si=1

pi

)( ∏
i:si=−1

(1− pi)

)
fs(x)

has real roots for all values of p1, · · · , pm ∈ [0, 1].

Theorem 7.3.2. The polynomials {fs}s∈{±1}m form an interlacing family.

Proof. By Lemma 7.2.10, it is sufficient to show that for 0 ≤ k ≤ m − 1, the
polynomial

λfs1,··· ,sk,1(x) + (1− λ)fs1,··· ,sk,−1(x)

has real roots, for each partial assignment s1, . . . , sk and every λ ∈ [0, 1]. By
Theorem 7.3.1, we know that

∑
s∈{±1}m

( ∏
i:si=1

pi

)( ∏
i:si=−1

(1− pi)

)
fs(x)

has real roots for all values of p1, · · · , pm ∈ [0, 1]. So, we want to choose the p′is such
that we get the coefficients of f−1 = 0 in the sum. Putting p2 = λ, p3, · · · , pm = 1/2,
and p1 = (1 + 1)/2 = 1, we get the desired result. Similarly, for any partial
assignment s1, · · · , sk, this follows by putting pk+1 = λ, pk+2, · · · , pm = 1/2, and
pi = (1 + si)/2 for 1 ≤ i ≤ k.

Theorem 7.3.3. Let G be a graph with adjacency matrix A and universal cover T.
Then there exists a signing s of A so that all of the eigenvalues of As are at most
ρ(T ). In particular, if G is d-regular, there is a signing s so that the eigenvalues of
As are at most 2

√
d− 1.

Proof. By Theorems 7.3.2 and 7.2.8, there exists a signing s ∈ {±1}m such that
the largest root of the polynomial fs is bounded above by the largest root of the
characteristic polynomial f0. Moreover, by Theorem 7.1.19, we have f0 = 2mµG(x).
Thus, by Theorem 7.1.14 and Lemma 7.1.18, we get that the roots of fs are no
larger than ρ(T ). The second statement follows form Theorem 7.1.15.

Lemma 7.3.4. Every nontrivial eigenvalue of a complete (c, d)-biregular graph is
zero.
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Proof. As adjacency matrix of such a graph has rank 2, there can be at most two
non-zero eigenvalues, and those are ±

√
cd, the trivial eigenvalues.

Theorem 7.3.5. For every d ≥ 3, there exists an infinite sequence of d-regular
bipartite Ramanujan graphs.

Proof. By Lemma 7.3.4, we know that a complete d-regular bipartite graph G is
Ramanujan. By Theorem 7.3.3, there exists a 2-lift of G such that all the new
eigenvalues are bounded above by 2

√
d− 1, and we know the spectrum of a bipartite

graph is symmetric about 0, so all the non-trivial eigenvalues of this 2-lift lie in
[−2
√
d− 1, 2

√
d− 1]. As a 2-lift of a d-regular bipartite graph is also d-regular and

bipartite, we get that the obtained 2-lift of G is also a d-regular bipartite Ramanujan
graph. Thus, for every d-regular bipartite Ramanujan graph, there is another d-
regular bipartite Ramanujan graph with twice as many vertices. Proceeding in this
manner, by considering successive 2-lifts, we obtain an infinite family, as desired.

Remark 7.3.6. By Remark 3.0.11, Theorem 7.3.5 also proves the existence of
infinite expander families.

Remark 7.3.7. Since every connected 2-regular graph of order n is Cn, Theorem
7.3.5 does not hold for d = 2.

Definition 7.3.8. We say a (c, d)-biregular graph is Ramanujan if all of its non-
trivial eigenvalues have absolute value at most

√
c− 1 +

√
d− 1.

Theorem 7.3.9. There exists an infinite sequence of (c, d)-biregular bipartite Ram-
nujan graphs for all c, d ≥ 3.

Proof. Let G be any (c, d)-biregular bipartite Ramanujan graph (for example, com-
plete (c, d)-biregular graph). By Theorem 7.3.3, we know that there is a 2-lift of G
such that all the new eigenvalues are bounded above by ρ(T ) =

√
c− 1 +

√
d− 1.

As a 2-lift is also (c, d)-biregular bipartite, all the non-trivial eigenvalues of the
2-lift have absolute value at most

√
c− 1 +

√
d− 1. Therefore, the resulting graph

is a larger (c, d)-biregular bipartite Ramanujan graph. By applying Theorem 7.3.3
repeatedly, we can construct an infinite sequence of (c, d)-biregular bipartite Ram-
nujan graphs for all c, d ≥ 3.
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