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ABSTRACT

Let S be a closed orientable surface of genus g ≥ 1. The mapping class group of S,

denoted by Mod(Sg), is the group of isotopy classes of orientation-preserving self

diffeomorphisms of Sg which are identity on the boundary and preserve the set of

punctures. We start by introducing some basic properties of Mod(S) followed by

some explicit computation of the group for some surfaces such as a closed disk,

the sphere, etc.. Then we discuss some fundamental examples of infinite-order ele-

ments in Mod(Sg), known as Dehn twists. Further introducing the representation

Mod(Sg) −→ Sp(2g,Z) afforded by the natural action of Mod(Sg) on H1(Sg,Z),

we conclude the project by showing that the kernel of this representation namely

the Torelli group, is torsion-free.
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1. INTRODUCTION

Let S be a compact, connected, orientable surface of genus g ≥ 1, then the mapping

class group of a surface S, denoted by Mod(S) is the group of all the path com-

ponents of the orientation-preserving homeomorphisms which are identity on the

boundary and preserve the set of punctures. The added conditions may change

in different studies. The mapping class group is also commonly known as the

homeotopy group [18]. These groups play a central role in the field of Geometric

topology, particularly in the areas of Riemann surface theory, Moduli space theory,

Teichmüller theory, and Theory of 3-manifolds. Fricke [11] called this group the

“Automorphic Modular Group,” as it is the generalisation of the classical modular

group SL(2,Z).

The study of mapping class groups of surfaces started in the 1920s, with Dehn’s

[1–3] and Nielsen’s [4–6] work. Dehn’s work found a natural continuation in the

works of Harvey [7, 8] in the late 1970s. The works of Nielsen were extended and

brought to a complete form by Thurston in his theory of surface diffeomorphisms

[9, 10].

The primary reference for this project was [11]. The main references for hy-

perbolic geometry, which was a prerequiste for this project, are [13,15]. The notes

by Massuyeau [24] was also a helpful reference.



2. PRELIMINARIES

In this chapter, we would be discussing some preliminary notions of algebraic

topology which we will be using.

2.1 Surfaces

A surface S is defined to be a 2-manifold. We look at it as a 2-dimensional sub-

manifold embedded in a 3-dimensional Euclidean space. There are instances where

these cannot be embedded in 3-dimensions and we require higher dimensions.

Fig. 2.1: A closed surface.

Given the above notion of a surface, we perceive a closed surface to be a complex

mathematical object floating in space like some crumble cuboid with a lot of holes,

punctures and cusps. The figure demonstrates a complicated closed surface.

We know from a result proved by Radò [26] that every compact surface admits

a triangulation which led to one of the most fundamental results in surface theory.

Theorem 2.1 (Classification theorem of surfaces). Any closed, connected, ori-

entable surface is homeomorphic to the connected sum of a 2-dimensional sphere

with g ≥ 0 tori. Any compact, connected, orientable surface is obtained from a

closed surface by removing b ≥ 0 open disks with disjoint closures. The set of
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homeomorphism types of compact surfaces is in bijective correspondence with the

set {(g, b) : g, b ≥ 0}.

Here, the g stands for the genus of the surface and b stands for the number of

boundary components. Punctures are basically points removed from the interior of

the surface and are often denoted by marked points. We keep track of the position

of these points and often switch notations between marked points and punctures.

Thus, any surface can be characterised by the triple (g, b, n). Following this we

denote any surface as Sg,b,n. Throughout this project, will denote the boundary of

the surface S by ∂S, and the surface Sg,0,0 simply by Sg.

Thus, the surface in Figure 2.1 is equivalent to the surface in Figure 2.2 below.

Fig. 2.2: The same closed surface in Figure 2.1.

Now, we will discuss about an invariant which plays an important role in the

classification of surfaces. The Euler characteristic of a surface S = Sg,b,n is given

by

χ(S) = 2− 2g − (b+ n),

which remains invariant under homeomorphisms. It turns out that the value of

χ(S) determines the intrinsic geometry of S. If the value of χ(S) is positive, then

the geometry on S is spherical, if it is zero, then it is Euclidean, and if it is negative,

then the metric on S would be hyperbolic 2.2. We will focus on hyperbolic surfaces.
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2.2 Curves on surfaces

Let S be a connected, orientable surface. We know that a continuous mapping

S1 γ−→ S,

is called a closed curve. It is called simple when we do not have any self intersections

in the loop besides the base point.

Given an oriented closed curve γ ⊂ S, we have a bijective correspondence:

{
Non-trivial conjugacy

classes in π1(S)

}
←→


Non-trivial

free homotopy classes of

oriented closed curves in S

 .

By a free homotopy class we mean homotopy of loops without considering the

base point. Since our surface is connected, we will be able to conjugate the free

homotopy loops to the fixed homotopy loops by the path joining the base point

to a point in the free homotopy loop. In other words, a loop based at x1 can

be seen as a loop based at x0 by conjugating it with the path connecting x0 and

x1. Thus, if homotopic we get the correspondence. Moreover, we have another

bijective correspondence:

{
elements of the conjugacy

class of γ ∈ π1(S)

}
←→


lifts of these curves

free homotopy classes of

to the universal cover of S

 .

These topological curves on the surface are relevant to geometers as well. In

dimensions, 2 and 3 topology and geometry go hand in hand. For instance, there is

a bijective correspondence between the conjugacy classes in π1(S) and the oriented

geodesics in S. We implicitly use the Uniformisation theorem [27] to prove Theorem

2.3.

Theorem 2.2 (Uniformisation theorem). Every simply connected Riemann sur-

face is conformally equivalent to the unit disk, the complex plane, or the Riemann

sphere.
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Theorem 2.3. Let S be a hyperbolic surface. If γ be a closed curve in S which is

not homotopic to a neighbourhood of a puncture, then γ is homotopic to a unique

geodesic closed curve α.

Proof (a sketch). Take a simple closed curve in S, say γ. Lift it to the universal

cover which is H2 in this case. Choose a lift of γ and see that in H2 it would be a

curve from boundary to boundary. Thus, it would be homotopic to a geodesic in

H2. Thus, we push the homotopy down to S to obtain our desired result.

While studying loops on a surface, it suffices to consider the simple closed

curves as these are primitive in the space of all closed curves. We broadly classify

simple closed curves on a surface S into two different classes.

Definition 2.4. We refer to a simple closed curve as separating if cutting the

surface along the curve breaks the surface into connected components and if cutting

the surface along the curve does not result in breaking the surface into connected

components we call it nonseparating.

Definition 2.5. An essential simple closed curve is a simple closed curve which is

not homotopic to a point or into a boundary component or into a neighbourhood

of a puncture.

Let Sg be a closed surface of genus g. Then we have that H1(Sg) ∼= Z2g is gener-

ated by the latitudinal and longitudinal curves around the genera. In practice, we

write every curve in terms of the g generators of Zg. An example would be S2,0,0

the double torus. It has four curves generating its homology group namely,

e1 =


1

0

0

0

 , e2 =


0

1

0

0

 , e3 =


0

0

1

0

 , and e4 =


0

0

0

1

 ,

which are represented by the curves in the Figure 2.3. Later on we will realise

more of their importance. Also, notice that we cannot write the separating curve

in terms of these.
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e1
e3

e2 e4

Fig. 2.3: A basis of H1(S2).

2.3 Bigon Criterion

Definition 2.6. Let α and β be two closed curves in S. Let the free homotopy

class of α be a and that of β be b. We define the minimum number of intersection

points between the representatives of the classes a and b, i.e.,

i(a, b) = min{|α ∩ β| : α ∈ a and β ∈ b}

to be the geometric intersection number of a and b.

Remark 2.7. Observe that geometric intersection number is always non-negative.

Moreover, for any homotopy class a we have i(a, a) = 0.

Remark 2.8. The representative curves α ∈ a and β ∈ b are said to be in minimal

position if i(a, b) = i(α, β).

The word bigon stands for a polygon with two sides. The presence of bigons

reduces intersections between curves. Figure 2.4 give an illustration of this phe-

Fig. 2.4: Reduction of intersections by sliding across bigons.
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nomenon. Formalizing this idea, we have:

Theorem 2.9 (Bigon criterion). Two transverse simple closed curves in a surface

S are in minimal position if and only if they do not form a bigon.

Proof:(a sketch). We find the formed bigons and reduce the intersections by con-

tracting the embedded disks in between the arms of the bigons as shown in the

Figure 2.4.

Corollary 2.10. Distinct, simple closed geodesics in a hyperbolic surface are in

minimal position.

2.4 Change of co-ordinates principle

A homeomorphism takes a separating curve to a separating curve and a nonsepa-

rating curve to a nonseparating one. This is because, if we cut along a curve, the

number of connected components remain invariant under a homeomorphism. The

change of co-ordinates principle tells us that there is a unique nonseparating curve

up to homeomorphism. Therefore, on a surface S there is only one nonseparating

simple closed curve up to homeomorphism. We will be using this principle often

in arguments later on.

Theorem 2.11. There is an orientation-preserving homeomorphism of a surface

taking one simple closed curve to another if and only if the corresponding cut

surfaces (which may be disconnected) are homeomorphic.

To demonstrate the usage of the principle let us look at an example.

Example 2.12. Consider the surface S2, and let us look at the curve γ on S2 shown

in the Figure 2.5. We are to find an essential simple closed curve in S2 such that the

geometric intersection number of γ and our desired curve is 1. Since it is separating,

by change of coordinates principle we know that there is a homeomorphism of S2,0,0

which takes γ to one of the known separating curves, and now by the Figure 2.5

it makes the problem easier. Evidently, there are none.
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γ

φ

φ(γ)

Fig. 2.5: Illustration of the change of coordinates principle.

2.5 Some Important Results

In this section, we will be stating some results that are central to the theory of

mapping class groups.

Definition 2.13. Let φ and ψ be homeomorphisms of S then they are said to be

isotopic if there is a homotopy

H : S × [0, 1] −→ S,

from φ to ψ with the property that, for every t ∈ [0, 1], H(x, {t}) is a homeo-

morphism. The homotopy here is called the isotopy of homeomorphisms. Similar

notions of isotopy of curves, loops and points can be defined.

In 1928, Baer [17, 18] related the homotopy and isotopy of essential simple

closed curves.

Theorem 2.14 (Baer). Let α and β be two essential simple closed curves in a

surface S. Then α is isotopic to β if and only if α is homotopic to β.
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Proof. By definition, an isotopy is a homotopy making the forward implication

trivial. For the other case, we will be proving it for the genus g ≥ 2 case. Let

us assume that α is homotopic to β, therefore we have that i(a, b) = 0, where a

is the class of α and b is the class of β. Now, α can be isotoped to a curve which

is transverse to β. Abusing notation let us call this curve also to be α. Now, if

α and β are not disjoint then by the bigon criterion, they will form a bigon. So,

by shrinking the bigon we can reduce the intersection between them, and we can

continue this process to the stage where α and β are at the minimal position, that

is they are disjoint.

Now, we choose lifts α̂ and β̂ of α and β respectively onto the universal cover

of S, H2 such that they have same end points in ∂H2.

Moreover, ∃ a hyperbolic isometry φ, acting by translation on all lifts keeping

these invariant. Further quotient R′ = R/〈φ〉 gives an annulus. The image R′′ of

R in S is a further quotient of R′. However, since the covering map R′ −→ R′′

is single-sheeted on the boundary, it follows that R′ ≈ R′′. So, the annulus R′′

between α and β gives an isotopy.

Moreover, if we have an isotopy of simple closed curves, we can extend that

isotopy to an isotopy of the surface.

Theorem 2.15 (Isotopy Extension Theorem). Let S be any surface. If

F : S1 × I −→ S,

is a smooth isotopy of simple closed curves, then there is an isotopy

H : S × I −→ S,

so that H|S×0 is the identity and H|F (S1×{0})×I = F.

The next natural question is whether the result by Baer can be extended in the

case of homeomorphisms.

Theorem 2.16. Let S be any compact surface and let f and g be homotopic

homeomorphisms of S. Then f and g are isotopic unless they are one of S = D2
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and S = A. In particular, if f and g are orientation-preserving, then they are

isotopic.

In 1950, Munkres [19] proved a remarkable result relating surface homeomor-

phisms to diffeomorphisms. The idea was to take a sequence of homeomorphism

converging to a diffeomorphism and using this sequence as an isotopy.

Theorem 2.17 (Munkres). Let S be a compact surface. Then every homeomor-

phism of S is isotopic to a diffeomorphism of S.

This theorem is often used to jump from the category of homeomorphism to the

category of diffeomorphisms. Lastly, we conclude this chapter by stating the fol-

lowing result,

Theorem 2.18. Let S be a compact surface, possibly minus a finite number of

points from the interior. Assume that S is not homeomorphic to S2,R2, D2, T 2,

the closed annulus, the once-punctured disk, or the once-punctured plane. Then

the space Homeo0(S) is contractible.



3. MAPPING CLASS GROUPS

In this chapter, we define the mapping class groups of surfaces and compute some

explicit examples like the closed disk, the sphere with punctures and the torus.

3.1 Mapping Class Group

Definition 3.1. Let S be a surface and Homeo(S) be the group of all homeomor-

phisms of S −→ S. Then Homeo+(S, ∂S) is the subgroup of Homeo(S) containing

all orientation-preserving homeomorphisms of S to S which are identity on the

boundary and preserve the set of punctures.

Remark 3.2. Homeo+(S, ∂S) forms a group under composition and also notice

that it forms a topological group under the compact-open topology.

Following this remark, we have that the notion of path-components in Homeo+(S, ∂S)

make sense, and here, the paths are isotopies of homeomorphisms. Thus we at-

tempt to formalise the description of the group given before as follows:

Definition 3.3. Let S be a connected, orientable surface. The mapping class group

of S, Mod(S) is defined to be the group of the path components of Homeo+(S, ∂S),

i.e.,

Mod(S) = π0(Homeo+(S, ∂S)).

Let Homeo0(S, ∂S) be the path component of identity in Homeo+(S, ∂S) then

equivalently,

Mod(S) = Homeo+(S, ∂S)/Homeo0(S, ∂S)

= Homeo+(S, ∂S)/ ∼,
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where “ ∼ ” is the isotopy relation. Furthermore, by Theorem 2.17, we have that,

Mod(S) = Diff+(S, ∂S)/ ∼ .

The elements of the mapping class group are called mapping classes. In the study

of mapping classes we often treat the boundaries and punctures as the same while

dealing with essential curves, though they are fundamentally different objects. A

boundary is a result of removing an open disk from the interior of the surface

whereas a puncture is a result of removing just a singleton point which is closed,

from the surface. Further, the representatives of the mapping classes are allowed

to permute the punctures but fix the boundary pointwise. We notice that although

not drastically different they have subtle differences which make them largely dif-

ferent.

There are some examples like the annulus where homotopy is not the same

as isotopy and thus the different definitions of Mod(S) give rise to unequivalent

notions of the group. In the next section, we will see some computations of the

mapping class group and we will lay down some foundational objects in the process.

3.2 Some explicit computations of mapping

class groups

The first example we look at is that of a closed disk.

Theorem 3.4 (Alexander’s Trick). The space Homeo+(D2) is contractible. In

particular, we have Mod(D2) = {1}.

Proof. Choose a representative φ of a non-trivial mapping class f of D2 embedded

in R2.

F (x, t) =

(1− t)φ( x
1−t), 0 ≤ |x| < 1− t, and

x, 1− t ≤ |x| ≤ 1,

for 0 ≤ t < 1, and we define F (x, 1) to be the identity map of D2. Therefore, F

is an isotopy (Figure 3.1) from φ to identity, and a choice of φ is arbitrary, any
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φ(D2)t = 0

φ(D2)t = 1
2

t = 1 IdD2

Fig. 3.1: Pictorial representation of the isotopy: The grey shaded area represents
the part of the disk where φ acts nontrivially which is continuously
shrunk to a point.

homeomorphism (in Homeo+(D2, S1)) of the disk is isotopic to the identity.

Remark 3.5. The same homotopy works with the once-punctured disk. Since

there is only one puncture it is identity there and by pasting lemma, we have that

the mapping class group for the once-puncture disk is also trivial. So is the case

for the once-punctured sphere, as it is contractible to a point.

Theorem 3.6. The mapping class group of the 2−sphere is trivial.

Proof. Let S2 = S0,0,0 be the 2-sphere. Let f be a representative of a mapping

class of S2. Let γ be an oriented simple closed curve on S2. But S2 is simply

connected, therefore f(γ) is isotopic to γ. Now if we cut through f(γ) then we get

a disk with f(γ) as its boundary. But, by Theorem 3.4 Mod(D2) is trivial. So,

f |(D2,f(γ)) is isotopic to the identity of D2. Thus, we have that the isotopy which

takes f(γ) to γ can be extended using the isotopy extension leaving us with an

isotopy which takes f to IdS2 .

Lemma 3.7. Any two essential simple proper arcs in S0,0,3 with the same endpoints

are isotopic. Any two essential arcs that both start and end at the same marked

point of S0,0,3 are isotopic.

Proof (a sketch). If α and β are two essential simple closed curves in S0,0,3 connect-

ing two of the marked points. Remove the third marked point, and the resultant
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space becomes a disk with 2 punctures which are connected by α and β, then by

the Theorem 2.4 we can find a disk embedded in between them and contract it.

Thus α is isotopic to β.

Theorem 3.8. The mapping class group of the thrice-punctured sphere is the

symmetry group of three elements.

Proof. Let φ be a representative of a mapping class of Mod(S0,0,3). Consider α to

be a simple closed arc connecting two of the punctures. Now, by the definition

of φ it preserves punctures and thus, φ(α) is also a simple closed arc connecting

the punctures. Now, if we cut through φ(α), then we get a disk with a puncture

and boundary φ(α). But, Mod(D2) = {1}, therefore, any homeomorphism there is

isotopic to the identity and is identity at the boundary. So, we extend this isotopy

taking φ(α) to α to the surface, and we are done.

The same proof also works for the twice punctured case. So, we conclude that:

Theorem 3.9. Let S be the 2-sphere, and n denote the number of punctures on

S the sphere then, for n ≤ 3 we have that Mod(S) = Σn.

An alternative way to look at the case of the thrice-punctures sphere case is

through Möbius transformations. As 3 points are sufficient to completely charac-

terise such a transformation. The fixing of the set of punctures gives rise to atmost

3 combinations giving rise to the permutation group.

Our first example of a mapping class group of infinite order is the annulus

(S1 × [0, 1] ≈ S0,2,0)

Theorem 3.10. The mapping class group of the annulus is Z.

Proof. Let f ∈ Mod(A) and φ be a orientation preserving homeomorphism which is

represented by f. The universal cover of A is the infinite strip Ã ≈ R× [0, 1], and φ

has a preferred lift φ̃ : Ã −→ Ã which fixes the origin. Let φ|R×{1} = φ̃1 : R −→ R.
Identifying Z to the group of integer translations of R we get that, φ̃1 is an integer

translation. Define

ρ : Mod(A) −→ Z,

such that, ρ(f) = φ̃1.
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The map sends the mapping class [f ] to the number k such that [−x+ f(x)] =

k · a, where a is a group isomorphism. The matrix,

M =

(
1 n

0 1

)
,

induces a linear transformation (R −→ R) which preserves R×[0, 1]. This transfor-

mation is equivariant with respect to the deck transformations forcing the restric-

tion of M on R × [0, 1] to descend to a homeomorphism at the surface level. By

the way we have constructed the map, we have ρ([φ]) = n, giving us surjectivity.

Let f ∈ Mod(A) be an element of the kernel of ρ. Further, let us assume φ

to be a homeomorphism representing f having a preferred lift φ̃. As ρ(f) = 0 we

have that φ̃ acts as identity on ∂Ã.

Therefore, we have that the straight line homotopy descends to a homotopy

between φ and IdA fixing the boundary pointwise. Thus, f is identity and hence

ρ is injective.

In this proof, we have implicitly used the fact that the straight line homotopy from

φ̃ to Id
∣∣
Ã

is equivariant.

Remark 3.11. The twist maps which generate Mod(A) are called Dehn twists.

We will study Dehn twists in detail in Section 4.1.

Definition 3.12. Let α and β be two oriented simple closed curves in minimal

position. We associate to each intersection of α and β an index +1 (resp. −1)

if the orientation of the tangents to the two curves at the point of intersection

agrees (resp. does not agree) with the orientation of the surface. The algebraic

intersection number î(α, β) is defined to be the sum of the indices taken over all

intersections of α and β. Further, if a denotes the isotopy class of α and b denotes

the same of β then we define

î(a, b) := min(̂i(α, β)).

Remark 3.13. The algebraic intersection number remains invariant under orientation-

preserving homeomorphisms.



3. Mapping Class Groups 16

Theorem 3.14.

Mod(S1) ∼= SL(2,Z).

Proof. Firstly we define φ to be the map

Mod(S1)
φ−→ SL(2,Z),

such that, if f is a representative of the mapping class [f ] ∈ Mod(S1,0,0), then f

induces a map at the homology level

(Z2 ∼=)H1(S1)
f∗−→ H1(S1)(∼= Z2),

and thus [f ]
φ7−→ f∗. But, f preserves the orientation and the intersection number

and thus tells us that f∗ we have that φ([f ]) ∈ SL(2,Z). So we have that,

φ([f ]) =

(
î(f∗(a), b) î(f∗(b), b)

î(−f∗(a), a) î(−f∗(b), a)

)
,

where î : H1(Sg;Z)× H1(Sg;Z) −→ Z is the algebraic intersection number.

Now we check the injectivity and surjectivity of the map. The surjectivity of

φ can be proved as follows. We realise S1 × S1 as R2/Z2, in such a way that

the loop S1 × {1} lifts to [0, 1] × {0} and {1} × S1 lifts to {0} × [0, 1]. Any

matrix T ∈ SL(2,Z) defines a linear homeomorphism R2 −→ R2, which leaves

Z2 globally invariant and so induces an (orientation-preserving) homeomorphism

f : R2/Z2 −→ R2/Z2. It is easily checked that φ([f ]) = T.

To prove the injectivity, let us consider a homeomorphism f : T 2 −→ T 2 such

that φ([f ]) is trivial. Since π1(T 2) is abelian, this implies that f acts trivally

at the level of the fundamental group. The canonical projection R2 −→ R2/Z2

gives the universal covering of S1 × S1 ≈ T 2. Thus, f can be lifted to a unique

homeomorphism f̃ : R −→ R such that f(0) = 0 and, by assumption on f, f is

Z-equivariant. Therefore, the “affine” homotopy

H : R2 × [0, 1] −→ R2, such that,

(x, t) 7−→ t · f(x) + (1− t) · x,
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between IdR2 and f, descends to a homotopy from IdT 2 to f. Since homotopy

coincides with isotopy in dimension two, we deduce that [f ] = 1 ∈ φ(T 2).

Remark 3.15. The mapping class group of the torus with a puncture is also

isomorphic to the SL(2,Z).



4. DEHN TWISTS

Recall that in Theorem 3.10 for computing the mapping class group of the annulus

we generated by twist maps known as Dehn twists. Max Dehn in 1938 [20] was

the first one to give the idea of a Dehn twists. He showed these simplest infinite

order elements of the mapping class groups generate the mapping class group of a

surface. In this chapter, we will be studying the properties of Dehn twists.

4.1 Dehn twists

Definition 4.1. Let S be a connected oriented surface. Every simple closed curve

in S has a regular annular neighbourhood in S. Let α be a simple closed curve in

S and let N be the annular neighbourhood. Choose a homeomorphism from A to

N , and call it φ. The Dehn twist about α is given by

Tα : S −→ S,

such that

Tα(x) =

φ ◦ T ◦ φ−1, if x ∈ N, and

x, if x ∈ S \N,

where T : A −→ A such that, (θ, t) 7→ (θ + 2πt, t).

There are several ways of looking at a Dehn twists namely, via cutting and gluing,

via inclusion and via surgery. We will briefly discuss these perspectives.

• Cutting and Gluing: Given a simple closed curve γ, in our surface S. We

cut along the curve, then twist the curve by integral rotation. After that we

glue back the curve. Since, the twist is a complete twist the gluing requires

no extra details. This is what we term as a cutting and gluing realisation of
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the Dehn Twist. Figure 4.1 gives an illustration of the cutting and gluing

perspective.

b

a

Ta(b)

cutting

twisting

gluing

Fig. 4.1: Cutting and gluing after twisting.

• Inclusion: Given a surface S, by the Collar neighbourhood theorem [28]

we can find an annular neighbourhood of a curve. The inclusion of annulus

induces the homomorphism Mod(A) −→ Mod(S), and the image of the

generator of Mod(A) is a Dehn twist in Mod(S).

• Surgery: With some abuse of notation let us consider that a is a repre-

sentative of the isotopy class of simple closed curves a, and similarly b be a

representative of b. Now, Tb(a) will be twisting a along b. In other words, we

will be cutting the intersection point. This is illustrated in the Figure 4.2.

These are all well-established ways to view a Dehn twist, but it does depend on

the parametrisation t and the choice of the simple closed curve α. Thus, a Dehn

twist about α is not a well-defined element in the Homeo+(S) group, but it is well
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Fig. 4.2: Realizing a Dehn twist using surgery.

defined in Mod(S). We now show that Dehn twists are non-trivial infinite order

elements in Mod(S).

Theorem 4.2. Dehn twists are non-trivial elements in the mapping class group

of a surface.

Proof. Let b be a nonseparating simple closed curve on the surface. By the change

a

b

Tb(a)

Fig. 4.3: A Dehn twist along a nonseparating curve in S2.

of coordinates principle we can bring b to a homology generator say b1. Further we

can always find a curve a1 such that i(a1, b1) = 1⇒ i(a1, b) = 1. Thus, we see that

i(Tb(a), a) = 1 where i(a, a) = 0. Thus, it is a non-trivial element. The argument

e

f

Fig. 4.4: A twist along a separating curve in S2.

for the separating curve is similar (see Figure 4.4).
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4.2 Properties of Dehn twists

Proposition 4.3. Let a and b be arbitrary isotopy class of essential simple closed

curves in a surface and k ∈ Z, then,

i
(
T ka (b), b

)
= |k|i(a, b)2.

Proof. We choose minimal representatives of a and b, say α and β respectively,

then we take ki(a, b) parallel copies of β with one copy of α and then perform

surgery to perform the twists, then by counting we get the result.

Corollary 4.4. Dehn twists are infinite order elements in Mod(S).

Proposition 4.5. Let a and b be unoriented isotopy classes of simple closed curves

on a surface then

Ta = Tb ⇔ a = b.

Proof. Since Dehn twists are well-defined we have that if a = b then Ta = Tb. On

the contrary, assume that a 6= b. By Theorem 2.11, we have that there is a simple

closed curve c such that î(a, c) = 0 and î(b, c) 6= 0. Now if î(a, b) 6= 0, then choose

b = c. If that is not the case, we can again use change of coordinates principle to

find c. Thus, we get that,

i (Ta(c), c) = i(a, c)2 = 0 6= i(b, c)2 = i (Tb(c), c) ,

⇒ Ta 6= Tc ⇒ Ta 6= Tb. Thus, we get a contradiction.

Proposition 4.6. For any f ∈ Mod(S) and any isotopy class of simple closed

curves a in S we have

Tf(a) = fTaf
−1.

Proof. Let φ denote a representative of f, let α denote a representative of a, and

let ψα denote a representative of Ta whose support is an annulus. Note that φ−1

takes a regular neighbourhood of φ(α) to a regular neighbourhood of α (preserv-

ing the orientation), then ψα twists the neighbourhood of α, and φ takes this

twisted neighbourhood of α back to a neighbourhood of φ(α) (again preserving

the orientation). So the net result is a Dehn twist about φ(α).
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Proposition 4.7. For any f ∈ Mod(S) and any isotopy class a of simple closed

curves in S, we have

f commutes with Ta ⇐⇒ f(a) = a.

Proof. We have that,

fTa = Taf ⇐⇒ fTaf
−1 = Ta

⇐⇒ Tf(a) = Ta

⇐⇒ f(a) = a.

Proposition 4.8. For any two isotopy classes a and b of simple closed curves in

a surface S, we have

i(a, b) = 0⇐⇒ Ta(b) = b⇐⇒ TaTb = TbTa. (4.1)

Proof. If Ta(b) = b, then i(Ta(b), b) = i(b, b) = 0. So, i(Ta(b), b) = i(a, b)2, and it

follows that i(a, b) = 0.

Theorem 4.9. If a and b are such that i(a, b) = 1 then,

TaTbTa = TbTaTb. (4.2)

This is called the braid relation.

Proof. Note that

TaTbTa = TbTaTb ⇒ (TaTb)Ta (TaTb)
−1 = Tb.

But by Proposition 4.6 we have that TTaTb(a) = Tb. So it reduces to checking that

if i(a, b) = 1 then TaTb(a) = b. So, by change of coordinates principle stated in

Theorem 2.11 we can choose the isotopy class representatives to be a and b in

Figure 4.5. So, by the illustration in Figure 4.5, we are done.
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Tb(a)
a

b

Tb

Ta

b

Fig. 4.5: An illustration of the braid relation.

4.3 Groups generated by two Dehn twists

Recall that a Dehn twist is an infinite order element in the mapping class group.

So, a group generated by a Dehn twist is a free abelian group generated by the

twist. But, what about the group generated by two Dehn twists. As discussed

above we see that there may be relations between two Dehn twists. Thus, the

groups generated depend on the isotopy classes of the curves along which the

twists are defined. Again, if they do not have any geometric intersection, then it

would be the free abelian group generated by the twists. This brings us to the

following lemma.

Lemma 4.10 (Ping Pong lemma). Let G be a group acting on a set X. Let

g1, . . . , gn be elements of G. Suppose that there are nonempty, disjoint subsets

X1, . . . , Xn of X with the property that, for each i and each j 6= i, we have

gki (Xj) ⊂ Xi for every nonzero integer k. Then the group generated by the gi

is a free group of rank n.

Proof. Consider a freely reduced word g starting with and ending with a nontrivial

power of g1. Then for every x ∈ X2 we have that g(x) ∈ X1, but X1 ∩X2 = ∅, so

g(x) 6= x.
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Since any other freely reduced word in the gi is conjugate to a word that starts

and ends with g1, every freely reduced word in the gi represents an element of G

that is conjugate to a nontrivial element and hence is itself nontrivial.

With this helpful lemma in place, we return to our discussion of the group gener-

ated by two Dehn twists.

Theorem 4.11. Let a and b be two isotopy classes of simple closed curves in a

surface S. If i(a, b) ≥ 2, then the group generated by Ta and Tb is isomorphic to

the free group F2 of rank 2.

Proof. Let us assume a and b are two isotopy classes of oriented simple closed

curves having i(a, b) ≥ 2. Let F = 〈Ta, Tb〉. Let X be the set of isotopy classes of

simple closed curves in S.

Define Xa and Xb as follows,

Xa = {c ∈ X : i(c, b) > i(c, a)} 6= ∅

Xb = {c ∈ X : i(c, a) > i(c, b)} 6= ∅

Xa ∩Xb = ∅.

By the Lemma 4.10 it suffices to show that T ka (Xb) ⊂ Xa for k 6= 0. Therefore,

∣∣i (T ka (c), b
)
−
∣∣ k|i(a, b)i(a, c)| ≤ i(b, c),

and so

−i(b, c) ≤ i
(
T ka (c), b

)
− |k|i(a, b)i(a, c) ≤ i(b, c). (4.3)

If c ∈ Xb, then i(a, c) > i(b, c). Since k 6= 0, the inequality in 4.3 implies

i
(
T ka (c), b

)
≥ |k|i(a, b)i(a, c)− i(b, c)

≥ 2|k|i(a, c)− i(b, c)

> 2|k|i(a, c)− i(a, c)
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= (2|k| − 1)i(a, c)

≥ i
(
T ka (a), T ka (c)

)
= i
(
a, T ka (c)

)
.

Thus i(T ka (c), b) > i(T ka (c), a), and so T ka (c) ∈ Xa. Hence the proof.

Thus we have that the group formed by two Dehn twists can be categorised by

the intersection number of the curves along which the twist takes place.



5. SYMPLECTIC REPRESENTATION

In this chapter we discuss the natural action of Mod(Sg) on H1(Sg : Z), given by

[f ] · α = [f∗(α)], which yields a representation into the integral symplectic group.

We conclude by showing that the kernel of this representation is torsion-free.

5.1 Symplectic vector spaces

A symplectic structure on a vector space is a structure induced by a skew-symmetric

alternating bilinear form. Let (a1, b1, a2, b2, . . . , ag, bg) be a basis for the vector

space R2g. Now define our form to be as follows:

ω =

g∑
i=1

dai ∧ dbi.

Given two vectors v = (v1, w1, . . . , vg, wg) and v′ =
(
v′1, w

′
1, . . . , v

′
g, w

′
g

)
in R2g, we

compute

ω (v, v′) =

g∑
i=1

(viw
′
i − v′iwi) .

The vector space formed by putting the above structure is called the symplectic

vector space of order g, formally defined as

Sp(2g,R) = {A ∈ GL(2g,R) : A?ω = ω} .

Moreover, this form is given by a matrix J, so this vector space can be also looked

at as,

Sp(2g,R) =
{
A ∈ GL(2g,R) : ATJA = J

}
,
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where,

J =



0 1 0 0 · · · 0 0

−1 0 0 0 · · · 0 0

0 0 0 1 · · · 0 0

0 0 −1 0 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 0 1

0 0 0 0 · · · −1 0


.

In the case of surfaces, we always look at the generators of the first homology

group as the basis and try to associate them to the bases of the vector spaces.

Thus, we shift out interest from the symplectic group to the integral symplectic

group which is

Sp(2g,Z) = Sp(2g,R) ∩GL(2g,Z) ⊂ SL(2,Z).

Burkhardt in 1890 [23], gave the explicit generators for the integral symplectic

group and showed that it is finitely generated. To see this, we should have a basic

idea of the elements in the space.

Theorem 5.1. Let A ∈ Sp(2g,R), then λ is an eigenvalue of A if and only if

λ−1 is also an eigenvalue of A. Further, the elementary symplectic matrices of the

integral symplectic group are the matrices of the form

SEij =

{
I2g + eij, if i = σ(j), and

I2g + eij − (−1)i+jeσ(j)σ(i), otherwise,

where, i 6= j and σ is an element of the symmetry group acting on 2g elements

transposing every 2i and 2i− 1.

Remark 5.2. For the case g = 1 we have Sp(2,R) = SL(2,R).

Theorem 5.3 (Burkhardt). The following linear maps form a finite generating

set for Sp(4,Z):

Trasvection



5. Symplectic representation 28

(a1, b1, a2, b2) 7→ (a1 + b1, b1, a2, b2),

Factor Rotation

(a1, b1, a2, b2) 7→ (b1,−a1, a2, b2),

Factor Mix

(a1, b1, a2, b2) 7→ (a1 − b2, b1, a2 − b1, b2), and

Factor Swap

(a1, b1, a2, b2) 7→ (a2, b2, a1, b1).

For a more general case of Sp(2g,Z) we require 1 transvection, 1 factor rotation,

1 factor mix and g − 1 factor swaps.

5.2 Algebraic intersection number

In the last section, when we referred to the basis being the generators of the first

homology group we see it as the following diagram.

a1

b1

a2

b2

a3

b3

ag

bg

Fig. 5.1: Geometric symplectic basis for H1(Sg,Z).

Recall the algebraic intersection number defined in Chapter 3. By defintion, it

is apparent î(a, b) = −î(b, a). the algebraic intersection number gives a symplectic
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form

î : H1 (Sg;Z) ∧ H1 (Sg;Z) −→ Z, (5.1)

which further extends to

î : H1 (Sg;R) ∧ H1 (Sg;R) −→ R, (5.2)

thereby giving a symplectic structure on H1 (Sg;R) . A basis of H1(Sg;Z) will be

termed as a geometric symplectic basis. This symplectic structure can be given as:

î =

g∑
i=1

[ai]
? ∧ [bi]

? ∈ 42 (H1 (Sg;R)?), (5.3)

where [ai]
? and [bi]

? denote the vectors in H1 (Sg;R)? dual to [ai] and [bi] , respec-

tively.

Example 5.4. Consider the surface S2. Notice that, î(a1, b1) = 1, î(b1, d1) = −1,

a1

b1

c1

d1

Fig. 5.2: Intersection points between essential simple closed curves in S2,

and î(c1, d1) = 0. So the algebraic intersection number can be 0 even when the

geometric intersection is positive. Thus, in general, î(a, b) ≤ i(a, b). The matrix J

induced by this form would be given by,

Ji,j = î(ai, bj).

Therefore, for a genus g surface having geometric symplectic basis in Figure 5.1

we have the 2g × 2g matrix J introduced earlier. Moreover, the intersection can

also be 0 when the geometric intersection is positive.
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5.3 Symplectic Representation

The symplectic form defined in 5.1 leads to the representation,

Ψ : Mod(Sg) −→ Aut(H1(Sg;Z)),

such that [f ] 7→ f∗ where f∗ : H1(Sg;Z) −→ H1(Sg;Z) is the induced isomorphism.

This is well-defined as homotopic maps induce the same automorphisms at the

level of homology. Since H1(Sg;Z) ∼= Z2g, we can extend this to

Ψ : Mod(Sg) −→ Aut(H1(Sg;Z))
∼=−→ Aut(Z2g)

∼=−→ GL(2,Z).

Moreover, any representative of a mapping class preserves the algebraic intersection

number. Therefore, the image of Mod(Sg) under this representation sits inside the

integral symplectic group, in other words,

Mod(Sg)
Ψ−→ Sp(2g;Z).

We shall look at some examples before we proceed. For ease of computation we

will be looking at genus 2 surfaces.

a1

b1

a2

b2

ag

bg

. . .

. . .

. . .

π

Fig. 5.3: Hyperelliptic involution.

Example 5.5. This hyperelliptic involution indicated in the Figure 5.3 f ∈
Mod(Sg) sends ai 7→ −ai and bi 7→ −bi for a genus g surface. This gives us
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the matrix, Thus, at the homology level we get f∗ gives the matrix,

Ψ(f) =



−1 0 0 0 · · · 0 0

0 −1 0 0 · · · 0 0

0 0 −1 0 · · · 0 0

0 0 0 −1 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 0 0

0 0 0 0 · · · 0 −1


.

This is the negative identity −I2g×2g. This in fact is a symplectic matrix.

Example 5.6. For the Dehn twist Tb1 ∈ Mod(S2) shown in Figure 5.4,

a1

b1 Tb1(a1)Tb1

Fig. 5.4: Dehn twist along b1 in Mod(S2).

Ψ(Tb1) =


1 0 0 0

1 1 0 0

0 0 1 0

0 0 0 1

 .

In the general case of a genus g surface, a Dehn twist along the basis curve b1 takes

a1 7→ a1 + b1, and the rest remains identity.

Theorem 5.7. Let a and b be isotopy classes of oriented simple closed curves in

Sg. For any k ≥ 0, we have

Ψ(T kb )([a]) = [a] + k · î(a, b)[b].

Proof. When b is separating, by Theorem 2.11, we have a geometric symplectic
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basis of H1(Sg;Z) such that, i(ai, b) = i(bi, b) = 0, for each i. Therefore, we get

Ψ(T kb )([a]) = [a] + 0 = [a].

If b is nonseparating, again by Theorem 2.11, we have a geometric symplectic basis

say {ai, bi}gi=1 of H1(Sg;Z) such that, b1 = b. A direct check gives us,

Ψ
(
T kb
)

([c]) =
[
T kb (c)

]
=

{
[a1] + k [b1] , if c = a1, and

[c], if c ∈ {b1, a2, b2, . . . , ag, bg} .

Now let a be the isotopy class of an arbitrary oriented simple closed curve in Sg.

The [a1]−coefficient of [a] in the basis {[ai], [bi]} is î(a, b). The assertion now follows

from the linearity of Ψ.

We will now show the surjectivity of Ψ : Mod(Sg) −→ Sp(2g,Z).

Theorem 5.8 (Surjectivity of Ψ). For genus g ≥ 1, the representation

Ψ : Mod(Sg) −→ Sp(2g,Z),

is surjective.

Proof. We give the following Table 5.1 giving the words in Dehn twists in Mod(Sg)

which form the Burkhardt’s generators [23] under Ψ.

Transvection (a1, b1, a2, b2) 7→ (a1 + b1, b1, a2, b2) Tb1
Factor Rotation (a1, b1, a2, b2) 7→ (b1,−a1, a2, b2) Tb1Ta1Tb1

Factor Mix (a1, b1, a2, b2) 7→ (a1 − b2, b1, a2 − b1, b2) T−1
b1
T−1
b2
Tc

Factor Swap (a1, b1, a2, b2) 7→ (a2, b2, a1, b1) (Tai+1
Tbi+1

TdiTaiTbi)
3

Tab. 5.1: The words in Dehn twists realising the Burkhardt generators.

Transvections can be seen to be generated by Dehn twist as given above. We

claim that, these generators can be written in terms of Dehn twists.

Let {ai, bi}gi=1 be the standard geometric symplectic basis for H1(Sg,Z) (as

shown in Figure 5.1), and c = b2 − b1 and di = ai+1 + bi.

We obtain Burkhardt’s factor rotation generator as follows. Let N be a closed

regular neighbourhood of a1 ∪ b1 in Sg. The subsurface N is homeomorphic to
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a1

b1

Tb1(a1)

Tb1

Fig. 5.5: Realising a transvection by Tb1 in genus 2.

a torus with one boundary component. We think of N as a square with sides

identified and an open disk removed from the center.

a1

b1

hr
hr(a1)

hr(b1)

Fig. 5.6: Geometric realisation of factor rotation.

Consider the homeomorphism of N obtained by rotating the boundary of the

square by π
2

and leaving the boundary of N fixed. Extending by the identity map

gives a homeomorphism of Sg, hence a mapping class hr ∈ Mod(Sg) called a handle

rotation (see Figure 5.6). This handle rotation represents a mapping class which

equals the product of Dehn twists:

Tb1Ta1Tb1 .

This tells us Ψ(hr) is the factor rotation generator.

We next realise Burkhardt’s factor mix generator by a mapping class. Consider

a closed annular neighborhood of b1 and push the left-hand boundary component

of this annulus along a path in the surface that intersects a2 once (from the left of

a2) and misses the other curves in the geometric symplectic basis; The resulting

mapping class h is called a handle mix (see Figure 5.7).
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a1 a2 ag

b1 b2
bg

. . . . . .

bg

ag

hm(a1)
hm

Fig. 5.7: Geometric realsiation of factor mix in a genus g surface: Here, the image
of a1 under hm is a1 − b2, similarly, the image of a2 would be a2 − b1.

We can also describe h as the mapping class obtained by cutting Sg along b1,

pushing one of the new boundary components through the (a2, b2)−handle, and

then regluing. Alternatively, hm is a product of three commuting Dehn twists:

hm = T−1
b1
T−1
b2
Tc,

where c is a simple closed curve in the homology class [b2] − [b1]. A direct check

gives that Ψ(h) is Burkhardt’s factor mix generator.

Finally, we have Burkhardt’s g − 1 factor swaps. These are obtained as the

images under Ψ of handle swaps. The ith handle swap hsi for 1 ≤ i ≤ g − 1 is

. . .

ai

bi

ai+1

bi+1

. . .
hsi

hsi(ai+1) hsi(ai)

hsi(bi+1) hsi(bi)

. . . . . .−→

Fig. 5.8: Geometric realisation of Factor swap in a genus g surface: Here we can
see that the positions of ai, bi is swapped with ai+1, bi+1.

easily visualized (see Figure 5.8), but we can also write it as a product of Dehn

twists:

hsi =
(
Tai+1

Tbi+1
TdiTaiTbi

)3
,
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where di is a simple closed curve in the homology class [ai + 1] + [bi].

Therefore each of Burkhardt’s generators can be realised in terms of Dehn

twists.

Once we have this representation it is only natural to ask about its kernel. The

Torelli group (I(Sg)) is a normal subgroup of Mod(Sg) defined to be the kernel of

Ψ, and so we have the exact sequence.

0 −→ I(Sg) −→ Mod(Sg)
Ψ−→ Sp(2g,Z) −→ 0.

We conclude this chapter by stating these results.

Theorem 5.9. For g ≥ 1, I(Sg) is torsion-free.

The proof of this result uses some concepts from Riemannian geometry, algebraic

topology, and the following result by Fenchel and Nielsen [25],

Theorem 5.10. Let S = Sg,n and suppose χ(S) < 0. If f ∈ Mod(S) is an element

of finite order k, then there is a representative φ ∈ Homeo+(S) so that φ has order

k. Further, φ can be chosen to be an isometry of some hyperbolic metric on S.

This was further genralised by Kerckhoff saying that every finite subgroup of

Mod(S) comes from a finite subgroup of Homeo+(S).

Proof of Theorem 5.9. Let f ∈ Mod(Sg) be a finite ordered mapping class group

with order n, then there is a diffeomorphism φ representing f such that φn = IdSg .

The existence of this equality is due to Theorem 5.10. Let h be a Riemannian

metric on Sg. Then we have that

h+ φ∗h+ (φ2)∗h+ . . .+ (φn−1)∗h,

also forms a metric of Sg such that φ is isometric under this metric. If there is a

fixed point of φ say x ∈ Sg, then the derivative Dφx at x is a 2 × 2 orthogonal

matrix. But, it is also orientation preserving, so determinant of Dφ is 1.
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Again, φ is nontrivial, so Dφx is a nontrivial rotation, with x as an isolated

fixed point of degree 1. So, by Lefschetz – Hopf formula [14]

L(φ) =
2∑
i=0

(−1)i Trace (φ? : Hi (Sg;Z)→ Hi (Sg;Z))

= 1− Trace (φ? : H1 (Sg;Z)→ H1 (Sg;Z)) + 1

= M(φ),

where M(φ) is the sum of indexes of fixed points of φ. Each fixed point has degree

1, thus M(φ) ≥ 0. Now, if φ∗ is identity then, trace would be at least 4 as we have

taken g ≥ 2. Thus, Ψ(f) = φ∗ 6= IdSg .
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A. REVIEW OF HYPERBOLIC

GEOMETRY

Any topological surface can be endowed with a geometric structure. This means

that one can find a metric on the surface which in small regions looks like one of

the geometries namely, Euclidean, spherical or hyperbolic such that the ‘transition

maps’ are isometries of the appropriate geometry [15]. Hyperbolic geometry is

the study of geometry on Riemann surfaces having constant negative Gaussian

curvature [15]. There are four well known models to study this geometry, namely:

1. Upper half plane (H2),

2. Poincaré disk model (D),

3. Hyperboliod model and

4. Klein model (K).

The upper half plane model is of interest to us.

Definition A.1. Let C be the complex plane then, we define the upper half plane

to be

H2 := {z ∈ C : Im(z) > 0},

where Im(z) is the imaginary part of z.

Further due to the one point compactification of C, we define the boundary of H2

to be

∂H2 = R ∪ {∞}.
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Lines are arcs of circles (or lines) which meet ∂H2 orthogonally. Note that arcs

must be semicircles with centres on R. The metric on H2 is given by

ds2 =
dx2 + dy2

y2
. (A.1)

H2 endowed with the above metric in A.1 is a space with Gaussian curvature of

−1 [15]. If two lines l, l′ ⊂ H2 meet at ∂H2 then, the infimum of the distances

between their points is 0, however, if they do not meet at the boundary then there

is a non-zero shortest distance between them which is realised by by the unique

common perpendicular [15].

Definition A.2. A map f : H2 −→ H2 is said to be an orientation-preserving

isometry of H2 if it is differentiable as a function R2 −→ R2, with detDf(z) >

0,∀z ∈ H2, and if

d(f(z1), f(z2)) = d(z1, z2) for all z1, z2 ∈ H2.

We denote the set of all orientation-preserving isometries of H2 with Isom+(H2)

Theorem A.3. Isom+(H2) ∼= PSL(2,R).

Definition A.4. If T =

(
a b

c d

)
∈ GL(2,C), then the trace of T is defined by:

Tr(T ) = a+ d.

Since Tr(AD) = Tr(DA) for all A,D ∈ GL(2,C), we have that Tr(STS−1) =

Tr(T ).

Theorem A.5. Let T be a nontrivial element in SL(2,C) then T has either 1 or

2 fixed points. [15]

Definition A.6. Let m(z) = az+b
cz+d

be an element of Isom+(H2). Then we say that

m is parabolic if m has exactly one fixed point in R̄. Any such m is conjugate to

q(z) = z + 1, and Tr(m) = 2.
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We say that m is hyperbolic or loxodromic if m has exactly two fixed points in R̄.

Any such m is conjugate to

m(z) = a2z, for a ∈ R \ {0,±1}, and Tr(m) > 2.

We say m is elliptic if m has exactly one fixed point in H2. Such an m is conjugate

to

q(z) =
z cosθ + sinθ

−z sinθ + cosθ
, for θ ∈ R, and Tr(m) < 2.

Definition A.7. Let S be a surface. A hyperbolic structure on S is a maximal

collection of coordinate charts, that is open sets Ui ⊂ S and maps φi : Ui −→ H2

such that:

1. the sets Ui cover S,

2. φi : Ui −→ φi(Ui) is a homeomorphism, and

3. φiφ
−1
j : φj(Ui ∩ Uj) −→ φi(Ui ∩ Uj) is an isometry of H2, i.e., the transition

map is in Isom+(H2).

Remark A.8. A surface S with hyperbolic structure on it, is called a hyperbolic

surface.

It is impossible to embed an infinite simply connected surface of constant negative

curvature isometrically into Euclidean 3-space [16].

Definition A.9. A Fuchsian group is a discrete subgroup of SL(2,R).

For hyperbolic surfaces the Uniformisation theorem stated in Theorem 2.2 takes

the following form [15]:

Theorem A.10. Let X be a complete hyperbolic surface. Then X = H2/G for

some torsion-free Fuchsian group G.



B. MORE ON DEHN TWISTS

So far we have realised the importance of Dehn twists in the theory of the mapping

class groups. In this section, we explore some additional properties of Dehn twists.

The inclusion homomorphism

Consider a closed subsurface S of a surface S ′. The inclusion map S −→ S ′ will

induce a map at the level of the mapping class group, let Mod(S)
η−→ Mod(S ′).

Theorem B.1. Let α1, α2, . . . , αm denote the boundary components of S that bound

once-punctured disks in S ′ − S and let {β1, γ1}, {β2, γ2}, . . . , {βn, γn} denote the

pairs of boundary components of S that bound annuli in S ′ − S. Then the kernel

of η is injective.

Proof (a sketch). Consider a representative of a mapping class of the subsurface

and extend it to the surface. Now we choose a simple closed curve and look at

its image under the homeomorphism. Further, we isotope it back to extend this

isotopy later. Lastly, we smartly choose a family of curves and apply Alexander’s

method.

The cutting homomorphism

This is a geometric operation used heavily in theory. Given a simple closed curve

on a surface, if we cut along it the resultant cut surface will be having two more

punctures than the original surface. The idea is that a mapping class of the cut

surface can be extended nicely to the original surface.

Theorem B.2 (The cutting homomorphism). Let S be a closed surface with

finitely many marked points. Let α1, . . . , αn be a collection of pairwise disjoint,
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homotopically distinct essential simple closed curves in S. There is a well-defined

homomorphism

ζ : Mod (S, {[α1] , . . . , [αn]})→ Mod (S − ∪αi) ,

with kernel 〈Tα1 , . . . , Tαn〉.

Proof (a sketch). We consider an open regular neighbourhood of the unions of all

αis. Then we look at the induced inclusion from the surface having the neighbour-

hood removed to the surface. We have its kernel from the previous theorem, and

we compare the kernels of this inclusion to the inclusion from the cut surface to

its closure. Using that we conclude the well-definedness of the map. Then the

homomorphism property follows from the construction of the map.

The capping homomorphism

The capping tells us that if there is a boundary component of the surface, then we

can cap it by a disk with a puncture with Mod(D2, {x0}) = {1}. To demonstrate

the strength of some tools we would be proving it after we introduce the Birman

exact sequence. The result is as follows:

Theorem B.3. Let S ′ be the surface obtained from a surface S by capping the

boundary component β with a once-marked disk; call the marked point in this disk

p0. Denote by Mod(S, {p1, p2, ..., pk}) the subgroup of Mod(S) consisting of elements

that fix the punctures p0, ..., pk, where k ≥ 0. Let

Cap : Mod(S, {p1, ..., pk}) −→ Mod(S ′, {p0, ..., pk}),

be the induced homomorphism. Then the following sequence is exact:

1 −→ 〈Tβ〉 −→ Mod(S, {p1, ..., pk})
Cap−→ Mod(S, {p0, ..., pk}) −→ 1.

These three ideas play important roles in making arguments precise. Once

we discuss in detail about the capping in the next section we will compute the

mapping class group of a pair of pants, which are the topological building blocks

of any compact surface.
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Generating the mapping class group

In 1938, Dehn [20] proved that Mod(Sg) is generated by 2g(g− 1) Dehn twists. In

1967, Mumford [21] improved Dehn’s work by showing that we require twists only

around nonseparating curves. In 1964, Lickorish [22] independently proved that

Mod(Sg) is generated by 3g − 1 Dehn twists about nonseparating curves. These

results are remarkable and have given the topic, new dimensions.

Theorem B.4 (Dehn–Lickorish). For g ≥ 0, the mapping class group Mod(Sg) is

generated by finitely many Dehn twists about nonseparating simple closed curves.

The proof shows that the subgroup of Mod(Sg) fixing all the punctures denoted by

PMod(Sg) is finitely generated by Dehn twists, and then extend it to the general

case. It is a double induction process on the genus and number of punctures, and

it also assumes the connectedness of the complex of non-separating curves [11],

and the exactness of the Birman exact sequence [11] given by

1 −→ π1(S, x)
Push−−−→ Mod(S, x)

Forget−−−−→ Mod(S) −→ 1.

We conclude this thesis with the following result.

Theorem B.5. Let Sg,n be a surface of genus g ≥ 1 with n ≥ 0 punctures.

Then the group PMod(Sg,n) is finitely generated by Dehn twists about nonseparating

simple closed curves in Sg,n.

Proof (a sketch). Let g ≥ 1 and n ≥ 0. Further assume for the inductive step that,

PMod(Sg,n) is generated by finitely many Dehn twists about nonseparating simple

closed curves {αis} in Sg,n. Now, by the Birman exact sequence we get that,

1 −→ π1(Sg,n, x)
Push−−−→ PMod(Sg,n+1)

Forget−−−−→ PMod(Sg,n) −→ 1.

Now note that as we have a positive genus (non-zero) thus, the fundamental group

would be generated by classes of finitely many non-separating simple closed curves.

Further the Push map takes these loops to mapping classes ( 6= 1). Moreover, for

every non-separating simple closed curve in Sg,n there is a non-separating simple

closed curve in Sg,n+1 such that it is the image under the Forget map. Then the
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Dehn twists along these curves will be having pre-images in Sg,n+1 which completes

the inductive step.

Now we will discuss the inductive step on the genus. Let g ≥ 2, and assume

that our claim is true for genus g − 1 that is, PMod(Sg−1,n). Here we require the

connectedness of the complex of curves of non-separating simple closed curves.

Let Mod(Sg, a) be the subgroup of Mod(Sg, a) consisting of elements that pre-

serve the orientation of a. We have the short exact sequence

1→ Mod (Sg,~a)→ Mod (Sg, a)→ Z/2Z→ 1.

Now, we smartly look at the twists which change the orientation of a by changing

coordinates as well. This gives us a nontrivial coset of Mod(Sg, a) and look at the

sequence,

1→ 〈Ta〉 → Mod (Sg,~a)→ PMod (Sg − α)→ 1.

where α is a representative of a. The surface Sg − α is homeomorphic to Sg−1, 2

which is finitely generated. Thus PMod(Sg − α) is finitely generated by Dehn

twists along nonseparating simple closed curves. By construction of this surface

we get our desired result for the inductive step.
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[23] Burkhardt. H. Grundzüge einer allgemeinen Systematik der hyperelliptischen

Functionen I. Ordnung. Mathematische Annalen, 35 : 198− 296, 1890.

[24] Massuyeau, Gwenael. A short introduction to mapping class groups. pages

17. http://massuyea.perso.math.cnrs.fr/notes/MCG.pdf

[25] Kerckhoff. Steven P. The Nielsen realization problem. Ann. of Math. (2),

117(2) : 235− 265, 1983.

[26] Carsten Thomassen. The Jordan–Schönflies theorem and the classification of

surfaces. Amer. Math. Monthly, 99(2):116–130, 1992.

[27] Chan. Kevin. Uniformaization of Riemann surfaces. Harvard Mathematics

Department Senior Thesis. 2004. http://www.math.harvard.edu/theses/

senior/chan/fulldraft7.pdf

[28] Kapovitch. Vitali, Notes on Collar neighbourhood theorem and tensors. 2015.

http://www.math.toronto.edu/vtk/1300Fall2015/lecture-nov2.pdf

http://massuyea.perso.math.cnrs.fr/notes/MCG.pdf
http://www.math.harvard.edu/theses/senior/chan/fulldraft7.pdf
http://www.math.harvard.edu/theses/senior/chan/fulldraft7.pdf
http://www.math.toronto.edu/vtk/1300Fall2015/lecture-nov2.pdf


INDEX

Homeo(S), 10

Homeo+(S, ∂S), 10

Alexander’s Trick, 11

algebraic intersection number, 14

bigon, 6

Bigon Criterion, 5

Bigon criterion, 6

boundary components, 3

braid relation, 21

Change of co-ordinates principle, 7

Classification theorem of surfaces, 2

closed curve, 4

Dehn twist, 17

Dehn twists, 14

Dehn–Lickorish, 41

elliptic, 38

essential simple closed curve, 5

Euler Characteristic of a surface, 3

Factor Mix, 27

Factor Rotation, 27

Factor Swap, 27

free homotopy class, 4

geometric intersection number, 6

geometric symplectic basis, 28

hyperbolic, 38

hyperelliptic involution, 29

integral symplectic group, 26

Isotopy Extension Theorem, 9

isotopy of curves, 8

isotopy of homeomorphisms, 8

loxodromic, 38

mapping class group, 10

minimal position, 6

nonseparating, 5

parabolic, 37

Ping Pong lemma, 22

Punctures, 3

separating, 5

simple, 4

surface, 2

symplectic group, 26

Symplectic Representation, 29

symplectic structure, 25

symplectic vector space, 25

The capping homomorphism, 40

The cutting homomorphism, 39

The inclusion homomorphism, 39

Trasvection, 26

48


	Certificate
	Academic Integrity and Copyright Disclaimer
	Acknowledgment
	Abstract
	List of Figures
	Introduction
	Preliminaries
	Surfaces
	Curves on surfaces
	Bigon Criterion
	Change of co-ordinates principle
	Some Important Results

	Mapping Class Groups
	Mapping Class Group
	Some explicit computations of mapping class groups

	Dehn Twists
	Dehn twists
	Properties of Dehn twists
	Groups generated by two Dehn twists

	Symplectic representation
	Symplectic vector spaces
	Algebraic intersection number
	Symplectic Representation

	Appendix
	review of Hyperbolic Geometry
	More on Dehn twists
	Index


