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ABSTRACT

We describe two soundness and completeness results. The first one is the

soundness and completeness of S4 with respect to the class of all topological

spaces. The second, a stronger one is the soundness and completeness of

S4 with respect to the class of all dense-in-itself separable metric spaces,

called the McKinsey-Tarski Theorem (first given in [1]). The theorems give

a syntactic characterization of the logic of these class of spaces.

For soundness and completeness with respect to the class of all spaces,

we describe two different proofs [2]. The first one uses the soundness and

completeness of S4 with respect to the class of all reflexive transitive frames.

The second one is called the canonical topo-model proof, and is constructive.

Next, we describe a recent proof of the McKinsey-Tarski theorem which uses

the fact that every formula which is not in S4 can be falsified on the space

of rational numbers with the usual topology. We conclude with how these

two results together point out the limitations of the introduced topological

interpretation.
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Z The set of integers

Q The set of rationals

R The set of real numbers

R+ The set of positive reals

N The set of natural numbers

Z∗ The set Z− {0}
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Int(A) Interior of a set A

Cl(A) Closure of a set A

⇒ implies

⇔ if and only if
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1. INTRODUCTION

A long studied class of problems in mathematical logic is axiomatizing the

logics of mathematical structures, and conversely, giving a semantic charac-

terization of logics, which are defined syntactically. In this thesis, we tackle

one such problem.

The birth of modal logic as a mathematical discipline is considered to have

been in 1918 by C.I. Lewis [3]. The first treatments were syntactic rather

than semantic, and in 1933, Gödel took � as a primitive and formulated S4

in the way that has become standard: he enriched a standard system for the

classical propositional logic with the rule of generalization, the K axiom, and

the additional axioms T and 4 [4].

Around 1960s, modal logic emerged as a new field when relational seman-

tics were introduced [5], but one of the first interpretation of modal logic is

topological, introduced some 20 years before the relational semantics. The

topological interpretation was influenced by the work of Kuratowski, who in

1922, gave an axiomatization of topological spaces by means of the closure

operator [6]. In 1944, J.C.C. McKinsey and Alfred Tarski gave the famous

McKinsey-Tarski theorem which says that S4 is the logic of the class of all

dense-in-itself separable metric spaces [1].

In this project, first we will see two proofs of a result which states that

S4 is the logic of the class of all topological spaces. The first proof uses

completeness of S4 with respect to the class of all reflexive transitive frames.

The second proof is more model-theoretic. Both of them can be found in [2].

Also, assuming the McKinsey-Tarski theorem, it can be proved that S4 is

sound and complete with respect to the class of all topological spaces. This

is because completeness of a normal modal logic with respect to the class

of dense-in-itself separable spaces implies the completeness of the logic with
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respect to the class of all topological spaces. Thus, the McKinsey-Tarski

theorem is stronger. Finally, we will see a recent proof of the McKinsey-

Tarski theorem given in [7]. The results together give us an axiomatization

of the logics of the class of all topological spaces, and of the class of all

dense-in-itself separable metric spaces.



2. PRELIMINARIES

2.1 Basic preliminaries

In this section, we discuss some definitions and results from [8], which will

be needed later.

Definition 2.1.1. Let U be a set, B ⊆ U , and let f : U × U → U and

g : U → U be binary, and unary functions on U , respectively. A set C ⊆ U

is said to be generated from B by f and g, if C is the smallest set containing

B, that is closed under f and g. ⊣

Example 2.1.2. If B = {a, b}, then C is the smallest set containing

a, b, f(a, b), f(a, a), g(b), g(f(a, b)), f(g(a), g(b)), and all such combi-

nations. ⊣

Definition 2.1.3. Let U,B,C, f , and g be as in Definition 2.1.1. Then C is

said to be freely generated from B by f and g, if C is generated from B by

f and g, and the following conditions hold:

1. The restrictions fC and gC of f and g to C, respectively are injective.

2. The range of fC , the range of gC , and B are pairwise disjoint.

⊣

The conditions 1 and 2 above can be thought of as implying that no element

of C can be ‘derived’ from elements of B by applying f and g in two different

ways. Let us assume we have such U,B,C, f, and g as in Definition 2.1.3.

We want to see when can we define a function on C recursively. Precisely,

suppose h is a function from B to a set V , and we want to extend it to the
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set C to form the function h̄. Assume we have been given the following rules

for h̄:

1. rules for computing h̄(f(x, y)), making use of h̄(x) and h̄(y), and

2. rules for computing h̄(g(x)), making use of h̄(x).

Then, the recursion theorem, which will be stated next, guarantees the exis-

tence and uniqueness of such an extension, given C is freely generated from

B by f and g.

Theorem 2.1.4 (Recursion theorem). Assume that a subset C of U is

freely generated from B by f and g, where

f : U × U → U,

g : U → U.

Further, assume that V is a set, and F,G, and h are functions such that

h : B → V,

F : V × V → V,

G : V → V.

Then, there is a unique function h̄ : C → V , such that

1. for x ∈ B, we have h̄(x) = h(x), and

2. for x, y ∈ C, we have

h̄(f(x, y)) = F (h̄(x), h̄(y), and

h̄(g(x)) = G(h̄(x))

Proof of Theorem 2.1.4 can be found in [8, Chapter 1].

Definition 2.1.5. Let X be set and R be a binary relation on X . R is called

a partial order on X if:
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1. (reflexivity) for each x ∈ X , we have xRx,

2. (anti-symmetry) for each x, y ∈ X , if xRy and yRx, then x = y, and

3. (transitivity) for each x, y, z ∈ X , if xRy and yRz, then xRz.

The pair (X,R) is called a partially ordered set or a poset. ⊣

Example 2.1.6. For a set S, let P(S) denote its power set. Then (P(S),⊆)

forms a poset. ⊣

Definition 2.1.7. LetX and X ′ be two sets. Let R and R′ be n-ary relations

on X and X ′, respectively. Let f be a function from X to X ′. The function

f is said to preserve the relational structure if for each x1, . . . , xn ∈ X , we

have (f(x1), . . . , f(xn)) ∈ R′, whenever (x1, . . . , xn) ∈ R. If the relations R

and R′ are partial orders and if f preserves the relational structure, then f

is said to be an order-preserving function. ⊣

Example 2.1.8. For the posets (Z,≤) and (R,≤), the function f(x) : Z → R

given by f(x) = ex is an order-preserving function, as for integers z1 and z2,

we have ez1 ≤ ez2, whenever z1 ≤ z2. ⊣

Later, we will define relations which are called linear orders. Functions pre-

serving linear orders will also be called order-preserving.

Definition 2.1.9. Let X and X ′ be sets, and R and R′ be binary relations

on X and X ′, respectively. Let f : X → X ′ be a function which preserves the

relational structure. Then f is said to be a p-morphism, if for each a ∈ X

and b′ ∈ X ′, there exists b ∈ X such that f(b) = b′ and aRb, whenever

f(a)R′b′. ⊣

Example 2.1.10. Consider the set Z with the relation

{(x, x+ 1) | x ∈ Z},

and the set {o, e} with the relation

R = {(o, e), (e, o)}.
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Consider the function f : Z → {o, e} which maps odd integers to o and even

ones to e, as shown in Figure 2.1.

b b b bbbb

b b

0-1-2-3 1 2 3

o e

Z

f

{o, e}

Fig. 2.1: f forms a p-morphism.

Then, as the successor of an odd number is even, and vice-versa, it follows

that f preserves the relational structure. Also, for a ∈ Z, if f(a)Ro holds,

then a is even. Consequently, a+ 1 is odd, and so f(a+ 1) = o. Thus, there

exists a+ 1 ∈ Z such that f(a+ 1) = o, and a is related to a+ 1. Reasoning

in a similar way for the case f(a)Re, we get that f is a p-morphism. ⊣

Definition 2.1.11. A partial function f from a set A to a set B is a function

from a set C to B such that C ⊆ B. ⊣

Example 2.1.12. The function which maps a non-negative real to its posi-

tive square root is a partial function from R to R. ⊣
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2.2 Classical Propositional Logic

preliminaries

Just like we use natural languages in our everyday life to communicate, we

can use formal languages to describe formal theories. The advantage of using

a formal language is that the languages can be handled by computers, and

the processes that we use can be mechanized. In this section, we describe a

formal language, called the language of classical propositional logic (or propo-

sitional logic). We can also call it the classical propositional language or the

sentential language. The language is named so - because the smallest inde-

pendent entities in the language correspond to sentences (or propositions).

This language roughly models the sentences which are related to each other

by connectives (and, or, so, only if, neither-nor, etc.)

A natural language (for example, English) has basic building blocks as

the letters in its alphabet. The letters are put together to form words, which

in turn are put together according to some rules to produce meaningful sen-

tences. We have a similar construction for formal languages. All of this can

be found in detail in [8, Chapter 1].

2.2.1 The Syntax of the Classical Propositional

Language

The syntax of a language means the arrangement of words and phrases to

create well-formed sentences in a language. First, we define the symbols we

will be using to construct the classical propositional language. The symbols

that we will be using can be grouped into the following subcollections:

• countably many propositional variables {p, q, r, . . .},

• the logical constant ⊥,

• logical connectives {¬,∧}, and

• parentheses {(, )}.
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Thus, our whole set of symbols becomes

{p, q, r, . . . ,⊥,¬,∧, (, )}.

We further assume that none of these symbols is a finite sequence of other

symbols. The significance of the names of the sub-collections will be clear

later. This collection of symbols forms the equivalent of the letters of the

‘alphabet’ for the classical propositional language.

Now, we give a process to form the ‘sentence’ equivalents of the formal

language. We call the ‘sentence’ equivalents as well-formed formulas or sim-

ply, formulas. Just as, in a natural language not every finite sequence of

words is a sentence, so it is natural to expect that the formulas will also have

some restrictions. We will now formalize these notions.

Definition 2.2.1. Formulas are finite sequences of symbols with the follow-

ing properties:

1. Each propositional variable is a formula.

2. ⊥ is a formula.

3. If α and β are formulas, then so are ¬α and (α ∧ β).

4. Nothing else is a formula.

⊣

The above definition is sometimes written in the following compact form.

φ ::= p | ⊥ | ¬φ | (φ ∧ ψ).

Let α and β be formulas. We define the following abbreviations:

1. (α ∨ β) is an abbreviation of ¬(¬α ∧ ¬β),

2. (α → β) is an abbreviation of (¬α ∨ β),

3. (α ↔ β) is an abbreviation of ((α→ β) ∧ (β → α)), and
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4. ⊤ is an abbreviation of ¬⊥.

Note that, using the symbols ⊥,∨,→,↔ for abbreviating does not contradict

the fact that our set of symbols for the language is just {p, q, r, . . . ,⊥,¬,∧, (, )}.

In fact, the abbreviations should be thought of as ‘shorthand’ notations, and

the original formulas should be kept in mind while working with the language.

Whenever ambiguity can be avoided, we skip writing “(” and “)”. For

example, sometimes we write p ∧ q instead of (p ∧ q), and p → q instead of

(p→ q).

Example 2.2.2. Some formulas are p,¬r, (¬q ∨⊥),¬¬(p ↔ s), and ¬(¬p ∧

¬r). Some finite sequences which are not formulas are ¬, (, p((∧, ∧qrs(¬,

and ¬p¬⊤. ⊣

Remark 2.2.3. We now make the fourth property from Definition 2.2.1

precise. Let S denote the set of all finite sequences on our set of symbols.

We can define two operators E¬ and E∧ on S, as follows:

E¬(α) = ¬α, and

E∧(α, β) = (α ∧ β).

Then, formulas are exactly the finite sequences which can be built up from

propositional variables, and ⊥ by repeatedly applying E¬ and E∧. ⊣

Using Remark 2.2.3, we describe a result which would help us in proving

many results for formal languages.

Theorem 2.2.4 (Induction principle). If A is a set of formulas which

contains all propositional variables and ⊥, and is closed under E¬ and E∧,

then A is the set of all formulas.

Two proofs of Theorem 2.2.4 are available in [8].

Example 2.2.5. Using the induction principle, we can prove that each for-

mula has an equal number of left and right parentheses. The idea is as

follows. As
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((p ∧ q) ∧ (¬¬r ∧ ¬s))

(p ∧ q) (¬¬r ∧ ¬s)

p q ¬¬r ¬s

¬r

r

s

E∧

E∧ E∧

E∧

(p ∧ q)

E¬E¬

E¬

E∧E∧

Fig. 2.2: Construction tree of ((p ∧ q) ∧ (¬¬r ∧ ¬s)).

• propositional variables and ⊥ have no parentheses, so they have an

equal number of left and right parentheses,

• E¬ doesn’t introduce new left or right parentheses, and

• E∧ introduces one new left and one new right parentheses,

so the set of all formulas with equal number of left and right parentheses

contains all propositional variables and ⊥, and is closed under E¬ and E∧. ⊣

Till now, we have defined what our ‘sentences’ in the formal language look

like. Next, we associate meanings to the different symbols, and as a result,

to the formulas that we are using.

2.2.2 The Semantics of the Classical Propositional

Language

We fix, once and for all, a two-point set {F, T}, where

F is called falsity, and

T is called truth.
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Let Φ denote the set of propositional variables, that is,

Φ = {p, q, r, . . .}.

Definition 2.2.6. Any function from Φ to {F, T} is called a truth assign-

ment. ⊣

Let v be a truth assignment. We want to extend v from Φ to the set of all

the formulas in such a way, that the symbols ¬ and ∧ mimic the action of

negation and joining by and, respectively. Specifically, calling the extension

as v, we want v to have the following properties:

1. For any z ∈ Φ, v(z) = v(z). (Thus, v is an extension of v.)

2. v(⊥) = F.

3. v(¬α) =




T, if v(α) = F, and

F, otherwise.

4. v(α ∧ β) =




T, if v(α) = T and v(β) = T, and

F, otherwise.

The existence of such a unique extension is guaranteed by the Recursion

theorem (2.1.4). This happens because the set of formulas is freely generated

from the set of propositional variables and ⊥. As the extension is unique,

sometimes v is written in place of v̄ for ease of expression.

Remark 2.2.7. We now see how does v(φ∨ψ) depend upon v(φ) and v(ψ).
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We have

v(φ ∨ ψ) = v(¬(¬φ ∧ ¬ψ))

=

{
T, if v(¬φ ∧ ¬ψ) = F, and

F, otherwise.

=

{
T, if v(¬φ) = F or v(¬ψ) = F, and

F, otherwise.

=

{
T, if v(φ) = T or v(ψ) = T, and

F, otherwise.

Similarly, we get the following:

v(φ → ψ) =

{
F, if v(φ) = T and v(ψ) = F, and

T, otherwise.

and v(φ ↔ ψ) =

{
T, if v(φ) = v(ψ), and

F, otherwise.

⊣

The next example is an application of Remark 2.2.7.

Example 2.2.8. Let v : Φ → {F, T} be such that v(p) = T, and v(q) = F.

Then v(p→ q) = F, and v(¬p) = F. ⊣

It can be shown that for a formula ϕ, v(ϕ) depends only upon the value of

the truth assignment of the propositional variables appearing in the formula.

The next example captures this fact.

Example 2.2.9. For two truth assignments v1 and v2, if v1(p) = v2(p) = T,

v1(q) = v2(q) = F, v1(r) = T, and v2(r) = F, then v1(p → q) = v2(p → q) =

F. ⊣

Definition 2.2.10. For a formula φ, we say a truth assignment v satisfies φ

if v(φ) = T . ⊣
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Example 2.2.11. Both the truth assignments in Table 2.1 satisfy

¬(p ∨ q) → ¬r.

p q r p ∨ q ¬r ¬(p ∨ q) ¬(p ∨ q) → ¬r
v1 T F T T F F T
v2 F F F F T T T

Tab. 2.1: A truth table for ¬(p ∨ q) → ¬r for two valuations.

⊣

Definition 2.2.12 (Tautologies). A formula ϕ is said to be a tautology if

for every truth assignment v, we have v(φ) = T. ⊣

Thus, if a formula is a tautology, then every truth assignment satisfies it.

Example 2.2.13. The formula p ∨ ¬p is a tautology. This can be seen in

Table 2.2. As for any truth assignment, there are only two possibilities for

the value of p, and as p is the only propositional variable occurring in p∨¬p,

so the two truth assignments shown in the Table 2.2 exhaust every possible

case for the formula p ∨ ¬p.

p ¬p p ∨ ¬p
v1 T F T
v2 F T T

Tab. 2.2: The truth table for p ∨ ¬p.

⊣

Sometimes, we will refer to the tautologies as propositional tautologies. They

will play an important role later when we define normal modal logics.

2.3 Modal logic preliminaries

Having known propositional language, we enrich our formal language by

adding more symbols to it. The formal language that we will be discussing in
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this section is called the basic modal language. The language is an extension

of the propositional language that we have seen. It comes from the family

called the general modal language. The general modal language helps us to

formalize concepts like necessity - possibility, knowledge - belief, obligation -

permission - prohibition, and time [9], among others.

2.3.1 Syntax

The set of symbols that we will be using can be divided into four types:

• propositional variables: p, q, r, . . .,

• logical symbols: ⊥,∧,¬,

• modal operator: ♦, and

• parentheses: (, ).

Thus, the set of symbols is

S = {p, q, r, . . . ,⊥,∧,¬,♦, (, )}.

The formulas in the basic modal language are finite sequences of symbols

with the following properties:

1. Each propositional variable is a formula.

2. ⊥ is a formula.

3. If α and β are formulas, then so are ¬α and (α ∧ β).

4. If α is a formula, then so is ♦α.

5. Nothing else is a formula.

Thus,

φ ::= p | ⊥ | ¬φ | (φ ∧ ψ) | ♦φ.

As in the case of the propositional language, here too we have some natural

abbreviations. Let α and β be finite sequences of symbols. We have the

following abbreviations:
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1. (α ∨ β) is an abbreviation of ¬(¬α ∧ ¬β),

2. (α → β) is an abbreviation of (¬α ∨ β),

3. (α ↔ β) is an abbreviation of ((α→ β) ∧ (β → α)),

4. �α is an abbreviation of ¬♦¬α, and

5. ⊤ is an abbreviation of ¬⊥.

Example 2.3.1. Some formulas are p,¬r, (♦q ∨ ⊥),¬¬(p ↔ s), and

¬(¬p ∧ �r). Some finite sequences which are not formulas are ¬, (, p♦(∧,

∧q�s(¬, and ¬p¬⊤. ⊣

Again, whenever ambiguity is avoidable, we skip writing “(” and “)”. For

example, sometimes we write p ∧ q instead of (p ∧ q) and p→ �q instead of

(p → �q). Moreover, as in the case of propositional language, here too the

last property can be made precise by defining the operators E¬, E∧, and E♦,

and for every formula, we get a corresponding construction tree.

The induction principle for the basic modal language looks like the fol-

lowing.

Theorem 2.3.2 (Induction principle). If A is a set of formulas which

contains all propositional variables and ⊥, and is closed under E¬, E∧, and

E♦, then A is the set of all modal formulas.

Before going to the semantics, we formalize the notion of uniformly sub-

stituting a formula for a propositional variable. Let Φ denote the set of

propositional variables.

Definition 2.3.3. Any map from Φ to the set of formulas is called a substi-

tution. ⊣

For a substitution σ, we want to extend σ to the set of all formulas such

that it mimics the action of uniformly substituting formulas for propositional

variables. Let us call the extension as (·)σ. We want (·)σ to satisfy the

following properties:
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⊥σ = ⊥,

pσ = σ(p),

(¬φ)σ = ¬φσ,

(φ ∧ ψ)σ = (φσ ∧ ψσ), and

(♦φ)σ = ♦φσ.

For a given substitution σ, there exists a unique extension (·)σ satisfying the

above properties by the Recursion theorem (2.1.4). This happens because

the set of formulas is freely generated from the set of propositional variables

and ⊥, by using the operators E¬, E∧, and E♦.

Definition 2.3.4. A formula φ is said to be a substitution instance of a

formula ψ if there is a substitution σ such that ψσ = φ. ⊣

Example 2.3.5. If σ is a substitution that maps p to �p∨ q, q to ¬r → �q,

and leaves all the other propositional variables untouched, then we have

((p ∧ q) ∨ s)σ = ((�p ∨ q) ∧ (¬r → �q)) ∨ s. ⊣

2.3.2 Semantics

The basic modal language is interpreted over frames, which are sets accom-

panied with relations.

Definition 2.3.6. A frame for the basic modal language is a pair F = (W,R),

where

1. W is a non-empty set, and

2. R is a binary relation on W .

Elements of W are also called the states of W . ⊣

Example 2.3.7. (N,≤), ({x}, {(x, x)}), and ({x}, ∅) are all examples of

frames. ⊣
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Let Φ denote the set of propositional variables, that is, Φ = {p, q, r, . . .}.

Definition 2.3.8. A model M is a tuple (F, V ), where

1. F = (W,R) is a frame, and

2. V is a function from Φ to the powerset of W (denoted by P(W )).

For a model M = (F, V ), F is called the underlying frame, and V is said to

be a valuation on F. ⊣

For a propositional variable p, by definition we have V (p) ⊆W. V (p) should

be seen as points in W where p is ‘true’.

Example 2.3.9. Consider the frame F = (W,R), where

W = {1, 2, 3, 4}, and R = {(1, 2), (2, 3), (3, 4), (4, 2)}.

Figure 2.3 shows two models based on the same frame.

b b

bb

1 2

34

b b

bb

1 2

34

p, q

p

r q

r

Fig. 2.3: Two models based on the same frame F.

⊣

We recall that the set of propositional variables (p, q, r, . . .) is denoted by Φ.

Next, we define what we mean by a formula being ‘true’ at a state.

Definition 2.3.10. Let w be a state in a model M = (W,R, V ). Then we

inductively define the notion of a formula φ being satisfied (or true) in M at

a state w as follows:
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1. M, w � p iff w ∈ V (p), where p ∈ Φ,

2. M, w � ⊥ never,

3. M, w � ¬φ iff it’s not the case that M, w � φ (denoted by M, w 2 φ),

4. M, w � (φ ∧ ψ) iff both M, w � φ and M, w � ψ, and

5. M, w � ♦φ iff there exists a v ∈ W such that Rwv and M, v � φ.

If a formula φ is true at all the states in a model M, then we say that φ is

true in M (notation: M � φ). For a set of formulas Σ, if for each φ ∈ Σ, we

have M � φ, then we say that Σ is true on M (notation: M � Σ). ⊣

bb

b b

1 2

3
4

p, q

p

Fig. 2.4: The model M.

Example 2.3.11. In Figure 2.4, we have:

1. M, 4 � p,

2. M, 1 2 ⊥, . . . ,M, 4 2 ⊥,

3. M, 1 � ¬r,M, 4 � ¬q,

4. M, 2 � (p ∧ q), M, 4 � (¬q ∧ p),

5. M, 1 � ♦q, M, 3 � ♦p, and M, 2 � ♦¬r.

⊣
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Next, we see how the abbreviations get interpreted.

Remark 2.3.12. For ∨ we have,

M, w � (φ ∨ ψ) ⇔ M, w � ¬(¬φ ∧ ¬ψ)

⇔ it’s not that M, w � (¬φ ∧ ¬ψ)

⇔ it’s not that both M, w � ¬φ and M, w � ¬ψ

⇔ at least one of M, w � ¬φ or M, w � ¬ψ doesn’t hold

⇔ M, w � φ or M, w � ψ.

Similarly, we get the following:

1. M, w � (φ→ ψ) iff M, w � ψ, whenever M, w � φ.

2. M, w � (φ ↔ ψ) iff both M, w � φ and M, w � ψ, or M, w 2 φ and

M, w 2 ψ hold.

3. M, w � ⊤ always.

For �φ we have:

M, w � �φ

⇔ M, w � ¬♦¬φ

⇔ M, w 2 ♦¬φ

⇔ it’s not the case that there exists a v ∈ W, such that Rwv and

M, v � ¬φ

⇔ it’s not the case that there exists a v ∈ W, such that Rwv and

M, v 2 φ

⇔ for each v ∈ W, if Rwv holds, then M, v � φ.

Thus, M, w � ♦φ means that φ is true at at least one ‘R-neighbor’ of w,

whereas M, w � �φ means φ is true at all ‘R-neighbors’ of w. ⊣

Example 2.3.13. Consider the model M, as shown in Figure 2.5. It should

be noted that here the underlying frame has infinite branching, and an in-

finitely long branch. Here we have:
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1. M, 0 2 z, for any propositional variable z,

2. M, 1 2 ♦⊤,

3. M, 6 � (p→ s), M, 2 � (r → s),

4. M,−2 � (p↔ s),

5. M, 0 � �p, M, 0 � ♦�r, and M, 1 � �⊥.

b

b
b

b

b b b

b

b

b

b

b

b

b

b

b

0

1

2

3

4

5

6

−1

−2

p

p, q p

p, q

p, rp, s

r

p

Fig. 2.5: A model with infinitely many branches.

⊣

Definition 2.3.14. A formula φ is valid on a frame F = (W,R) (notation

F � φ) if for all models M based on F and any state w ∈ W , we have

M, w � φ. For a class of frames F, we say that φ is valid on F (notation:

F � φ), if φ is valid on each frame contained in F. For a class of frames F, we

define

ΛF = {φ is a formula | F � φ}.

⊣

Example 2.3.15. Propositional tautologies are valid on all frames. ⊣
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Example 2.3.16. The formula p → ♦p is valid on the class of all reflexive

frames. To see this, let F = (X,R) be a reflexive frame, and let M = (F, V )

be a model based on the frame F. Let x ∈ X , such that M,x � p. As R is a

reflexive relation by assumption, we have xRx. Thus, M,x � ♦p, and hence,

M,x � p → ♦p. As x, V,F are all arbitrary, we get that p → ♦p is valid on

the class of all reflexive frames. ⊣

Definition 2.3.17. For a frame F = (W,R), a modal formula φ is said to be

satisfiable on F, if there exists a w ∈ W , and a valuation V on W , such that

(W,R, V ), w � φ. A set of formulas Σ is said to be satisfiable on a frame F if

there exists a w ∈ W , and a valuation V on W , such that (W,R, V ), w � Σ.

For a model M, a formula φ is said to be satisfiable on M, if there exists a

state w in M, such that M, w � φ. ⊣

Example 2.3.18. Consider the frame F = ({0}, {(0, 0)}). The formula

�p → p is satisfiable on F, as there is a valuation V (p) = {0}, and the

state 0 such that (F, V ), 0 � �p → p. But, the formula p ∧ ♦¬p is not

satisfiable on F. ⊣

2.3.3 Generated Submodels

Definition 2.3.19. For a model M = (X,R, V ), a model M′ = (X ′, R′, V ′)

is said to be a submodel of M if:

1. X ′ ⊆ X,

2. R restricted to X ′ is R′, (i.e. R′ = R ∩ (X ′ ×X ′)) and

3. V restricted to X ′ is V ′ (i.e. V ′(p) = V (p) ∩X ′ for each propositional

variable p.)

⊣

Example 2.3.20. In Figure 2.6, the picture on the right depicts a submodel

of the model shown in the picture on the left. ⊣



2. Preliminaries 22

b

bb

b

b b

p q

p q

p, r p, s

1 2

3 4

1 2

Fig. 2.6: A model and one of its submodels.

Definition 2.3.21. A submodel M′ of a model M is said to be a gener-

ated submodel, if it is closed under R, that is, if w ∈ X ′ and Rwv, then

v ∈ X ′. ⊣

Generated submodels are studied for interesting invariance properties.

Example 2.3.22. In Figure 2.7, the model shown on the right is a generated

submodel of the model shown on the left. ⊣

b

bb

b
p q

p, r p, s

1 2

3 4
bb

b
q

p, r p, s

2

3 4

Fig. 2.7: A model and one of its generated submodels.

As the truth of a formula at a point depends upon the truth of the constituent

formulas at the point and its R-neighbors, so it is natural to expect that the

set of formulas which are true at any point in the generated submodel is the

same as the set of formulas true at the point in the original model.
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Proposition 2.3.23. LetM = (X,R, V ) be a model and letM′ = (X ′, R′, V ′)

be one of its generated submodels. For w ∈ X ′, and any formula φ, we have,

M, w � φ iff M′, w � φ. Thus, modal satisfaction is invariant under gener-

ated submodels.

The proof of Proposition 2.3.23 uses induction on the set of all formulas

(see [9].) The idea behind the proof is as follows. For any propositional

variable p, we have, M, w � p iff M′, w � p. This happens because V ′ is just

V restricted to X ′. So, the argument concerning propositional variable goes

through. The argument for ¬ and ∧ follows from the induction hypothesis

and the fact that the truth of formulas ¬φ and φ∧ψ at a point w depends on

the truth of φ and ψ only at the point w. For ♦, ♦φ is true at w iff φ is true

at some R-neighbor of w. The definition of a generated submodel guarantees

that all R-neighbors of w are present in the generated submodel, and so get

that ♦φ is true at w in the generated submodel too.

Some other properties of models are also preserved when a generated

submodel is constructed. Reflexivity is preserved because for each point

w ∈ X ′, we have (w,w) ∈ R and R′ = R ∩ (X ′ × X ′). Thus, (w,w) ∈ R′.

For transitivity, if w, y, z ∈ X ′ such that R′wy and R′yz, then as R′ is just a

restriction of R, we have Rwy and Ryz. As the original model is transitive,

we get Rwz, and thus, we get R′wz. Hence, transitivity is preserved too and

we get the following result.

Proposition 2.3.24. Reflexivity and transitivity is preserved under gener-

ated submodel construction.

2.3.4 Filtrations

In this section, we develop tools which will help us in constructing smaller

models from bigger models such that the truth of certain formulas remains

preserved. The results explained in this section can be found in [9].

Definition 2.3.25. A set of formulas Σ is said to be closed under subformulas

(or: subformula closed) if for all formulas φ, φ′: if φ ∧ φ′ ∈ Σ, then so are φ

and φ′; if ¬φ ∈ Σ, then so is φ; and if ♦φ ∈ Σ, then so is φ. ⊣
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Example 2.3.26. The set {¬p ∨ q,¬¬p ∧ ¬q,¬¬p,¬q,¬p, q, p} is a subfor-

mula closed set. ⊣

Definition 2.3.27. Let M = (W,R, V ) be a model, and Σ be a subformula

closed set of formulas. Then the relation !Σ on the states of M is defined

by:

w !Σ v iff for all φ ∈ Σ, M, w � φ iff M, v � φ holds.

It should be noted that !Σ forms an equivalence relation. For w ∈ W , let

the equivalence class of w be denoted by |w|Σ (or |w|, if there is no ambiguity).

The map w → |w| is said to be the natural map.

Let WΣ = {|w|Σ | w ∈ W}. Suppose M
f
Σ is any model (W f , Rf , V f ) such

that the following hold.

1. W f =WΣ.

2. If Rwv, then Rf |w||v|.

3. If Rf |w||v|, then for all ♦φ ∈ Σ, we have M, w � ♦φ, whenever

M, v � φ.

4. V f(p) = {|w| | M, w � p}, for all propositional variables p ∈ Σ.

then M
f
Σ is called a filtration of M through Σ; sometimes we will write Mf

instead of Mf
Σ. ⊣

It should be noted that the second condition in the above definition gives us

the states in WΣ that should be necessarily related by Rf . Meanwhile, the

third condition gives us a restricting property on the states in WΣ that are

related by Rf . Thus, in a way, the second condition guarantees the presence

of elements in Rf , whereas the third condition restricts the presence of all

possible tuples in Rf .

Example 2.3.28. Consider a model M = (N, R, V ) as shown in Figure 2.8,

where

R = {(0, 1), (0, 2), (1, 3)} ∪ {(n, n+ 1) | n ≥ 2},
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Fig. 2.8: The model M and one of its filtrations.

and V has V (p) = N/{0}, and V (q) = {2}. Let Σ = {♦p, p}. Here, Σ is

subformula closed. It can be checked that the model

N = ({|0|, |1|}, {(|0|, |1|), (|1|, |1|)}, V ′),

where V ′(p) = {|1|} is a filtration of M through Σ. ⊣

The next proposition states that the size of a filtration depends upon the

size of the subformula closed set considered.

Proposition 2.3.29. Let Σ be a finite subformula closed set of modal for-

mulas. For any model M, if Mf is a filtration of M though a subformula

closed set Σ, then Mf contains at most 2n states (where n denotes the size

of Σ).

The idea behind the proof is as following. To each state |w| ∈ Mf , we can

associate a subset of Σ, namely, the set of formulas in Σ which are true at w.

If two states |v1| and |v2| get associated with the same set of formulas, then

by the definition of !Σ, we get that |v1| = |v2|. As Σ is finite, the number

of possible subsets of Σ is finite and is bounded by 2n, where n is the size of

Σ. Hence, there are at most 2n distinct states in Mf .

Crucially, filtrations preserve satisfaction in the following sense.
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Theorem 2.3.30 (Filtration Theorem). Let Mf be a filtration of M

through a subformula closed set Σ. Then for all formulas φ ∈ Σ, and all

nodes w in M, we have M, w � φ iff Mf , |w| � φ.

The proof of Theorem 2.3.30 uses induction, and conditions 2-3 facilitate the

case for ♦ [9].

In fact, for each model at least one of its filtrations always exists (see [9]).

Proposition 2.3.29 and Theorem 2.3.30 together yield the following theorem.

Theorem 2.3.31 (Finite Model Property - via Filtrations). Let φ be

a modal formula. If φ is satisfiable, then it is satisfiable on a finite model.

Indeed it is satisfiable on a finite model containing at most 2m nodes, where

m is the number of subformulas of φ.

The idea behind the proof of Theorem 2.3.31 is the following. Let Σ be the

set containing all subformulas of φ (including φ). Then Σ is a subformula

closed set. If φ is satisfiable on a model, then it is satisfiable on a filtration by

Theorem 2.3.30. By Proposition 2.3.29, the filtration has at most 2m nodes.

It is natural to ask what properties of the model are inherited by the

filtrations.

Remark 2.3.32. Let M = (W,R, V ) be a reflexive model. Then for each

w ∈ W, we have Rww. By the second condition in Definition 2.3.27, we get

that in any filtration Mf , we have Rf |w||w|. Thus, reflexivity is preserved

under taking filtrations. ⊣

Not all properties are preserved under taking filtrations. It can be checked

that not all filtrations preserve transitivity. We need to ‘tweak’ Rf appropri-

ately to make sure that the filtration is transitive.

Theorem 2.3.33. Let M be a model, Σ be a subformula closed set of for-

mulas, and WΣ be the set of equivalence classes induced on M by !Σ . Let

Rt be the binary relation on WΣ defined by:

Rt|w||v| iff for all φ, if ♦φ ∈ Σ and M, v � φ ∨ ♦φ, then M, w � ♦φ.

If R is transitive then (WΣ, R
t, V f ) is a filtration and Rt is transitive.
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Thus, if a formula is satisfiable on reflexive transitive model, then it is satis-

fiable on a finite reflexive transitive model.

2.3.5 Normal modal logics

In this section, we describe a ’special’ class of sets of modal formulas called

normal modal logics. These sets are defined syntactically, but some have

interesting properties such as having a semantic characterization, that is,

these are exactly the set of formulas valid on a specific class of frames.

Definition 2.3.34. A normal modal logic (or normal logic) Λ is a set of

modal formulas that contains:

• all propositional tautologies,

• (K) �(p→ q) → (�p→ �q), and

• (Dual) ♦p↔ ¬�¬p,

and is closed under

• modus ponens (i.e., if ϕ ∈ Λ and ϕ→ ψ ∈ Λ, then ψ ∈ Λ),

• uniform substitution (i.e., if ϕ belongs to Λ, then so do all of its sub-

stitution instances), and

• generalization (i.e., if ϕ ∈ Λ, then �ϕ ∈ Λ).

If ϕ ∈ Λ, then we say ϕ is a theorem of Λ (notation: ⊢Λ ϕ). ⊣

Example 2.3.35. The set of all modal formulas is a normal logic. If F is a

class of frames, then the set of formulas valid on every element of F forms a

normal logic. ⊣

For a collection of modal formulas Γ, the smallest normal logic containing Γ,

denoted by KΓ, is the intersection of all normal logics which contain Γ. This

method of defining KΓ, is called the ‘top down approach’, as KΓ is being

constructed by removing elements from bigger sets.
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There is another way to construct KΓ which is called the ‘bottom up

approach’. This method adds necessary formulas to smaller sets to form KΓ.

The method is defined as follows. Let

C0 = {Propositional tautologies} ∪ {(K)} ∪ {(Dual)} ∪ Γ.

For each n ∈ N, we define Cn = Cn−1 ∪ {all modal formulas that can be

obtained by applying the rules of modus ponens, uniform substitution, or

generalization on Cn−1}.

For example, we have p ↔ ¬¬p ∈ C0, so by generalisation, we get

�(p ↔ ¬¬p) ∈ C1, and by uniform substitution, we obtain

(¬r ∧ q) ↔ ¬¬(¬r ∧ q) ∈ C1. It can be shown that

KΓ =

∞⋃

0

Cn.

Thus, the theorems of KΓ are exactly the formulas which can be obtained

from C0 by applying the rules a finite number of times. The Table 2.3 lists

some formulas and their common names.

Names Formulas
(4) �p→ ��p
(T) �p→ p
(B) p→ �♦p
(D) �p→ ♦p
(L) �(�p→ p) → �p

Tab. 2.3: Some formulas and their common names.

The smallest normal logic is denoted by K, and its corresponding set Γ is

empty. The logics KT, KB, KT4, and KT4B are usually called T, B, S4,

and S5, respectively.

In [9], the formulas (4) and (T) have been defined as ♦♦p → ♦p and

p→ ♦p, respectively. Note that, we have defined (4) and (T) differently. Let

us call ♦♦p → ♦p and p→ ♦p as (4’) and (T’), respectively. It can be shown
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that (4) is a theorem of K4’, and (4’) is a theorem of K4. Similarly, (T)

is a theorem of KT’, and (T’) is a theorem of KT. Thus, the normal logics

K4 and K4’ are the same. Similarly, the logics KT and KT’ are the same.

Thus, with no loss of generality we can call ♦♦p → ♦p as (4), and p → ♦p

as (T).

Next, we wish to understand how do these normal logics ‘capture’ the

frame-related properties. To this end, we first give some definitions.

Definition 2.3.36. A normal logic Λ is said to be sound with respect to a

class of frames F, if every theorem of Λ is valid on F, that is, we have F � ϕ,

whenever ⊢Λ ϕ. ⊣

Thus, if Λ is sound with respect to F, then Λ ⊆ ΛF.

Example 2.3.37. The logicK is sound with respect to the class of all frames.

This happens because of the following reasons. All the propositional tautolo-

gies, and the axiom (K) and (Dual) are valid on the class of all frames. Also,

the property of a formula being valid on the class of all frames is preserved

under the rules of modus ponens, uniform substitution, and generalisation.

That is,

• if φ and φ → ψ are valid on the class of all frames, then ψ is valid on

the class of all frames,

• if φ is valid on the class of all frames, then so are all of its substitution

instances, and

• if φ is valid on the class of all frames, then so is �φ.

Thus, every theorem of K is valid on the class of all frames. ⊣

In a similar way, once we prove that the axioms (T) and (4) are valid on the

class of all reflexive transitive frames, and the property of a formula being

valid on the class of all reflexive transitive frames is preserved under the

rules of modus ponens, uniform substitution, and generalisation, we get the

following result.
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Proposition 2.3.38. S4 is sound with respect to the class of all reflexive

transitive frames.

Thus, any formula that can be derived using the propositional tautologies,

(K), (Dual), (T), and (4), using the rules of modus ponens, uniform sub-

stitution, and generalization, finitely many times is valid on the class of all

reflexive transitive frames.

There is a notion of completeness which is kind of ‘converse’ to the defi-

nition of soundness. It is defined as the following.

Definition 2.3.39. A normal logic Λ is said to be complete with respect to

a class of frames F, if every formula that is valid on F, is theorem of Λ, that

is, we have ⊢Λ ϕ, whenever F � ϕ. ⊣

Thus, if Λ is complete with respect to F, then ΛF ⊆ Λ, and if a normal logic

Λ is both sound and complete with respect to a class of frames F, then we

have Λ = ΛF.

Remark 2.3.40. An equivalent definition of completeness is the following.

A normal logic Λ is complete with respect to a class of frames F, if every

formula which is not in Λ, is not valid on F, that is, if ϕ 6∈ Λ, then there

exists a model M based on a frame in F and a state x in M, such that

M, x 2 ϕ. ⊣

A well known result is that K is complete with respect to the class of all

frames. To describe its proof, we first need a few definitions.

Definition 2.3.41. For a normal logic Λ, a set of formulas Γ is said to be Λ-

consistent if for no finite set {φ1, . . . , φn} ⊆ Γ, we have

⊢Λ (φ1 ∧ . . . ∧ φn) → ⊥, and a Λ-consistent set of formulas Γ is called a

Λ-maximally consistent set (or MCS), if there is no Λ-consistent set of for-

mulas properly containing Γ. A formula φ is said to be Λ-consistent, if the

set {φ} is Λ-consistent. ⊣

MCSs behave nicely with respect to the underlying logic in the following way.

Lemma 2.3.42. If Γ is an MCS of formulas for the normal logic Λ, then we

have,
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• Γ is closed under modus ponens: if φ, φ→ ψ ∈ Γ, then ψ ∈ Γ,

• Λ ⊆ Γ,

• for all formulas φ : φ ∈ Γ or ¬φ ∈ Γ, and

• for all formulas φ, ψ : φ ∨ ψ ∈ Γ iff φ ∈ Γ or ψ ∈ Γ.

We have not yet established the existence of MCSs. The next lemma says

that any Λ-consistent set of formulas can be extended to an MCS, and hence

several examples of an MCS exist.

Lemma 2.3.43 (Lindenbaum’s Lemma). If Σ is a Λ-consistent set of

formulas, then there is an MCS Σ+ such that Σ ⊆ Σ+.

The key step in the proof [9] is to enumerate the set of all modal formulas,

and for each formula φ, keep adding φ or ¬φ to Σ such that the consistency

of Σ is preserved.

Next, we construct a model called the canonical model for a normal logic

Λ, where the states of the model are MCSs for Λ. The model is special because

every Λ-consistent set is satisfiable in this model.

Definition 2.3.44. The canonical model MΛ for a normal logic Λ is the

triple (WΛ, RΛ, V Λ), where:

1. WΛ is the set of all Λ-MCSs,

2. RΛ is the binary relation called the canonical relation on WΛ, defined

by RΛwu iff for all formulas φ, we have ♦φ ∈ w, whenever φ ∈ u, and

3. V Λ is the valuation defined by

V Λ(p) = {w ∈ WΛ | p ∈ w}.

V Λ is called the canonical (or natural) valuation.

The pair FΛ = (WΛ, RΛ) is called the canonical frame for Λ. ⊣
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The natural valuation says that if a propositional variable is in an MCS,

then it is true at the MCS. The truth lemma, which we will be stating next,

extends this notion of truth to the set of all formulas.

Lemma 2.3.45 (Truth Lemma). For any normal modal logic Λ, and any

formula φ, we have, MΛ, w � φ iff φ ∈ w.

In the canonical model, we have all the MCSs as our states. So, if we have a

Λ-consistent set, by Lindenbaum’s lemma (2.3.43), the set can be extended

to an MCS, and by the Truth lemma (2.3.45), the set is true on the MCS.

Thus, we get the following result.

Theorem 2.3.46. If Σ is a Λ-consistent set of formulas, then it is satisfiable

on the canonical frame for Λ.

Next, we state a proposition which bridges the gap between Λ-consistent sets

being satisfiable on a class of frames, and the completeness of normal logics

with respect to the class of frames.

Proposition 2.3.47. A normal logic Λ is complete with respect to a class of

frames F iff every Λ-consistent formula is satisfiable on some F ∈ F.

Thus, every normal logic Λ is complete with respect to the class of frames

containing the canonical frame for Λ, and we get the following result.

Proposition 2.3.48. K is complete with respect to the class of all frames.

It so happens that the canonical frame for K4 is transitive, and the canonical

frame for S4 is both reflexive and transitive [9]. Thus, we get the following

result.

Proposition 2.3.49. K4 is complete with respect to the class of all transitive

frames.

This happens because everyK4-consistent formula is satisfiable on the canon-

ical frame for K4. Similarly, we get the next result.

Proposition 2.3.50. S4 is complete with respect to the class of all reflexive

transitive frames.
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Thus, using the soundness and completeness of S4 with respect to the class

of all reflexive transitive frames, we can say that the theorems of S4 are

exactly the formulas which are valid on the class of all reflexive transitive

frames.

We have introduced most of the logical tools that we will be needing

later. The next chapter introduces another interpretation for the basic modal

language, called the topological interpretation.



3. TOPO-SEMANTICS

In the previous chapter, we defined S4 to be the smallest normal logic con-

taining the following axioms:

(T) p→ ♦p,
(4) ♦♦p → ♦p.

Also, for an arbitrary subset Y of a topological space X , the following prop-

erties hold for the closure operator:

• Y ⊆ Cl(Y ), and

• Cl(Cl(Y )) ⊆ Cl(Y ).

Such resemblance is not a mere coincidence. Many properties of a topolog-

ical space can be ‘encoded’ by interpreting the basic modal language on a

topological space in a suitable way. We see one such interpretation which

can be found in [10, Chapter 5].

3.1 Topo-models

In this section, we see an alternative interpretation of the basic modal lan-

guage, based on topological spaces.

Definition 3.1.1. Consider the basic modal language, with P being the

countable set of propositional variables. A topo-model M = 〈X, τ, v〉 is a

topological space 〈X, τ〉 equipped with a function v : P → P(X), where

P(X) denotes the power set of X . The function v is called a valuation

function on X . ⊣
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Every topological space 〈X, τ〉 with any such arbitrary valuation v forms a

topo-model. Figure 3.1 below depicts a topo-model based on R2.

1 2 3−1−2−3

−1

−2

−3

1

2

3

p

q
r

Fig. 3.1: A topo-model based on R2.

Next, we define the notion of a formula being ‘true’ at a point.

Definition 3.1.2. Truth of modal formulas is defined inductively at points

x of X in a topo-model M = 〈X, τ, v〉:

• M,x � p iff x ∈ v(p), for each p ∈ P ,

• M,x � ¬φ iff it is not the case that M,x � φ,

• M,x � φ ∧ ψ iff both M,x � φ and M,x � ψ, and

• M,x � ♦φ iff for each U open in 〈X, τ〉 containing x, there is some

y ∈ U such that M, y � φ.

⊣

We have abbreviated ¬(¬φ ∧ ¬ψ) as φ ∨ ψ, ¬♦¬φ as �φ, ¬φ ∨ ψ as φ → ψ,

and (φ → ψ) ∧ (ψ → φ) as φ ↔ ψ. If the context is clear, we write x � φ

instead of M,x � φ.
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Remark 3.1.3. We see how the truth for the abbreviations depends upon

the truth of constituent formulas. We have

M,x � φ ∨ ψ ⇔M,x � ¬(¬φ ∧ ¬ψ),

⇔M,x 2 ¬φ ∧ ¬ψ,

⇔ not both M,x � ¬φ and M,x � ¬ψ hold ,

⇔ not both M,x 2 φ and M,x 2 ψ hold,

⇔M,x � φ or M,x � ψ.

Similarly, we get

• M,x � φ→ ψ iff we have M,x � ψ, whenever M,x � φ, and

• M,x � φ ↔ ψ iff both M,x � φ and M,x � ψ hold, or both M,x 2 φ

and M,x 2 ψ hold.

For �, we have

M,x � �φ ⇔M,x � ¬♦¬φ,

⇔ it is not the case that M,x � ♦¬φ,

⇔ it is not that for each U ∈ τ containing x,

there exists a y ∈ U such that M, y � ¬φ,

⇔ there exists Uo ∈ τ containing x, such that for each

y ∈ Uo, we have M, y 2 ¬φ,

⇔ there exists Uo ∈ τ containing x, such that for each y ∈ Uo,

we have M, y � φ.

⊣

Given a valuation v, the Recursion theorem (2.1.4) guarantees that v can

be extended to a unique function on the set of all modal formulas. As the

extension is unique, with no ambiguity, we can call the extension as v. It can

shown by induction on the set of modal formulas that

v(φ) = {x ∈ X | M,x � φ}.



3. Topo-semantics 37

p

b

b

♦p

Fig. 3.2: ♦ corresponds to Closure.

Thus, x ∈ v(�φ) if and only if there exists Uo ∈ τ containing x such that

for each y ∈ Uo, we have M, y � φ. So by definition of v(φ), x ∈ v(�φ) if and

only if there exists Uo ∈ τ containing x such that Uo ⊆ v(φ). Thus, x ∈ v(�φ)

if and only if x ∈ Int(v(φ)). Hence, we get v(�φ) = Int(v(φ)). Similarly, we

get v(♦φ) = Cl(v(φ)). Also, we get v(¬(φ)) = v(φ)c, v(φ∧ψ) = v(φ)∩ v(ψ),

and v(φ ∨ ψ) = v(φ) ∪ v(ψ). So, given subsets of a set X , using modal

formulas we can talk about their union, intersection, complements, closures,

and interiors.

Example 3.1.4. Consider R2 with the usual topology, and let v(p) be a

spoon with boundary, as shown in Figure 3.3. Then, �p denotes the interior,

that is, the disk part, and ♦p is the closure which is the spoon itself. So, here

M,x � �p ↔ p for all x in R2. The formula ¬p denotes the complement of

the spoon. The formula ♦¬p denotes its closure, which is everything except

the interior of the spoon. The formula ♦p ∧ ♦¬p denotes the boundary of

the spoon. ⊣

Next, we define the notion of validity for this interpretation of the basic
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Fig. 3.3: A closed spoon in R2.

modal language.

Definition 3.1.5. A formula φ is said to be valid on a topological space

〈X, τ〉 if φ is true at every point on every topo-model based on 〈X, τ〉 (nota-

tion: 〈X, τ〉 � φ).

A formula φ is valid on a class of topological spaces S if φ is valid on

every member of S. ⊣

Example 3.1.6. The formula (Dual) given by ♦p ↔ ¬�¬p, which is just

the abbreviation of ♦p ↔ ¬¬♦¬¬p, is valid on the class of all topological

spaces, as for any topo-model M = 〈X, τ, v〉, and any x ∈ X, we have

• M,x � ♦p iff x ∈ v(♦p) iff x ∈ Cl(v(p)), and

• M,x � ¬¬♦¬¬p iff x ∈ v(¬¬♦¬¬p) iff x ∈ Cl(v(p)c c)c c.

As Cl(v(p)) = Cl(v(p)c c)c c, we get that M,x � ♦p ↔ ¬¬♦¬¬p. Since M

and x are arbitrary, we get that ♦p ↔ ¬¬♦¬¬p is valid on the class of all

topological spaces. ⊣

As we will see, we can sometimes construct a relation between two topo-

models such that the states related to each other posses the same logical
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information, that is, the same set of formulas is true at both the points. Such

relations are called topological bisimulations. There is a similar concept of

bisimulation for the relational interpretation of the modal language, which

can be found in [9].

3.2 Topo-bisimulations

Definition 3.2.1. A topological bisimulation (or simply a topo-bisimulation)

between two topo-models M = 〈X, τ, v〉 and M ′ = 〈X ′, τ ′, v′〉 is a nonempty

relation T ⊆ X ×X ′, such that if xTx′, then the following conditions hold.

1. (atomic clause) For each p ∈ P , we have x ∈ v(p) iff x′ ∈ v′(p).

2. (forth) For arbitrary U ∈ τ , if x ∈ U, then there exists some U ′ ∈ τ ′

containing x′ such that for each y′ ∈ U ′, there exists a corresponding

y ∈ U with yTy′.

3. (back) For arbitrary U ′ ∈ τ ′, if x′ ∈ U ′, then there exists some U ∈ τ

containing x such that for each y ∈ U , there exists a corresponding

y′ ∈ U ′ with yTy′.

A topo-bisimulation is called total if its domain is X , and its range is X ′.

That is, it is said to be total if for each x ∈ X , we have (x, y′) ∈ T for some

y′ ∈ X ′, and for each x′ ∈ X ′, we have (y, x′) ∈ T for some y ∈ X.

If only the atomic clause (1) and the forth condition (2) hold, then we

say that the second model simulates the first. We say that two topo-models

M and M ′ are topo-bisimilar if there exists a topo-bisimulation between

them. ⊣

Remark 3.2.2 (Restating the conditions). For a subset A ⊆ X , and a

relation T ⊆ X ×X ′, the T -image of A (denoted by T (A)) is defined to be

T (A) = {y ∈ X ′ | xTy, for some x ∈ A}.

We now prove that the forth condition in the definition of topo-bisimulation

is equivalent to the statement that T -image of every open subset of 〈X, τ〉 is
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open.

Let U be open in X . Let T be a topo-bisimulation between 〈X, τ, v〉 and

〈X ′, τ ′, v′〉. We assume the forth condition holds for T . If T (U) = ∅, then

T (U) is open. Assume T (U) 6= ∅. Let x′ ∈ T (U). We claim x′ is contained

in an open set contained in T (U).

By definition, there exists some x ∈ U such that xTx′. By the forth

condition, there exists U ′ ∈ τ ′ such that x′ ∈ U ′, and for each y′ ∈ U ′, there

exists y ∈ U such that yTy′. It should be noted that, for each y ∈ U ′, there

exists y ∈ U such that yTy′, implies U ′ ⊆ T (U). So, U ′ is the required open

set, and we have x′ ∈ U ′ ⊆ T (U). As x′ is arbitrary, this implies T (U) is

open.

Conversely, let us assume we have a nonempty relation T ⊆ X ×X ′ such

that T -image of every open set of 〈X, τ〉 is open in 〈X ′, τ ′〉. We need to

prove the forth condition, that is, we need to prove that for each x ∈ X,

and x′ ∈ X ′, if xTx′ holds, then for each U ∈ τ containing x, we have a

corresponding U ′ ∈ τ ′ such that x′ ∈ U ′, and for each y′ ∈ U ′, there exists a

corresponding y ∈ U such that yTy′.

Let x ∈ X , and x′ ∈ X ′ such that xTx′, and let x ∈ U for some U ∈ τ .

Then x′ ∈ T (U) (by definition of T (U)). As T (U) is open (being the image

of an open set under T ), there exists U ′ ∈ τ ′ such that x′ ∈ U ′ ⊆ T (U). We

prove U ′ is the required open set around x′. Let y′ ∈ U ′. As y′ ∈ U ′ ⊆ T (U),

we get y′ ∈ T (U). Therefore, there exists y ∈ U such that yTy′. Hence, the

forth condition is satisfied.

A similar correspondence exists between the back condition and the in-

verse relation T−1. Consider the inverse relation T−1 defined by

T−1 = {(x′, x) | xTx′}.

As the back condition is just the forth condition if T is replaced by T−1, so

the back condition is equivalent to the statement that the T−1 image of every

open set in 〈X ′, τ ′〉 is open in 〈X, τ〉.

Moreover, the condition numbered 1 (the atomic clause) is equivalent to

the statement that T (v(p)) ⊆ v′(p), and T−1(v′(p)) ⊆ v(p), for all propo-
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sitional variables p ∈ P . Hence, we have a formulation of all the three

conditions which is point independent, and wholly in terms of the open sets

and the valuations. ⊣

Example 3.2.3. Consider the two topo-models as shown in Figure 3.4.

b b

b

b

b

a b c
y z

p q r
q

T

T

r

M = 〈X, τ, v〉
M ′ = 〈X ′τ ′, v′〉

Fig. 3.4: A relation T ⊆ X ×X ′.

Let M = 〈X, τ, v〉, and M ′ = 〈X ′, τ ′, v′〉, where X = {a, b, c},

τ = {∅, X, {a}, {b}, {a, b}}, v(p) = {a}, v(q) = {b}, v(r) = {c},

X ′ = {y, z}, τ ′ = {∅, X ′, {y}}, v′(q) = {y}, v′(r) = {z}, and v′(p) = ∅.

Let T = {(b, y), (c, z)}. It can be verified that the atomic clause holds for T .

Also, T (∅) = {x′ ∈ X ′ | xTx′ for some x ∈ ∅} = ∅, T (X) = X ′, T ({a}) = ∅,

T ({b}) = {y}, and T ({a, b}) = {y}, all of which are open in X ′. So, the forth

condition is satisfied. Whereas, T−1({y, z}) = {b, c}, is not open in X . So,

the back condition is not satisfied, and T is not a topo-bisimulation. But,

here M ′ simulates M . Instead, if we have a model as in Figure 3.5, in the

place ofM and the same T , then as T ({b, c}) = X ′, the forth condition is sat-

isfied here as well, and as T−1(∅) = ∅, T−1(X ′) = {b, c}, and T−1({y}) = {b},

all of which are open in X , we would get T to be a topo-bisimulation.

⊣
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a b c

p q r

Fig. 3.5: An alternate topo-model.

Next, we see the main result of this section which asserts that for the states

related under a topo-bisimulation, the set of formulas that are true at the

states is the same. Thus, the states contain the same logical information.

Theorem 3.2.4. Let M = 〈X, τ, v〉 and M ′ = 〈X ′, τ ′, v′〉 be two topo-models

and x ∈ X, and x′ ∈ X ′ be two topo-bisimilar points. Then for each modal

formula φ, we have, M,x � φ iff M ′, x′ � φ. That is, the truth of modal

formulas is invariant under topo-bisimulations.

Proof. We prove this by induction on the set of all formulas. Let

M = 〈X, τ, v〉 and M ′ = 〈X ′, τ ′, v′〉 be two bisimilar topo-models. Let T

be a topo-bisimulation between them, such that T ⊆ X ×X ′. Consider the

set

S =

{
φ is a formula

∣∣∣∣∣
For each x ∈ X, and x′ ∈ X ′, we have,

xTx′ implies (M,x � φ iff M ′, x′ � φ)

}
.

We prove by induction that S is the set of all modal formulas.

Let p be a propositional variable. Let xTx′, for x ∈ X, and x′ ∈ X ′.

By condition (1) of Definition 3.2.1, we have, x ∈ v(p) iff x′ ∈ v′(p), that is,

M,x � p iff M ′, x′ � p. So, p ∈ S, and hence, S contains all propositional

variables.

Next, we move on to the case for ∧ and ¬. Assume φ, ψ ∈ S as the
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induction hypothesis. If xTx′, then we have

M,x � ¬φ ⇔M,x 2 φ

⇔M,x′ 2 φ (induction hypothesis)

⇔M ′, x′ � ¬φ, and

M,x � φ ∧ ψ ⇔M,x � φ and M,x � ψ

⇔M ′, x′ � φ and M ′, x′ � ψ (induction hypothesis)

⇔M ′, x′ � φ ∧ ψ.

So, if φ, ψ ∈ S, then ¬φ, φ ∧ ψ ∈ S.

Now, we prove the induction step for ♦. We first prove that M,x � ♦φ

implies M ′, x′ � ♦φ. Let M,x � ♦φ. We need to prove M ′, x′ � ♦φ, that is,

if U ′ ∈ τ such that x′ ∈ U ′, then there exists y′ ∈ U ′ such that M ′, y′ � φ.

Let U ′
o ∈ τ ′ be arbitrary such that x′ ∈ U ′

o. As T is a topo-bisimulation, by

the back condition, for the open set U ′
o ∈ τ ′, we get that there exists Uo ∈ τ

containing x such that for each y ∈ Uo, there exists a corresponding y′ ∈ U ′
o

with yTy′. As M,x � ♦φ and x ∈ Uo, by definition of satisfaction of ♦φ on

x, there exists yo ∈ Uo such that M, yo � φ. By the back condition, for each

y ∈ Uo, there exists y′ ∈ U ′
o such that yTy′. So, for yo ∈ Uo, we get that

there exists y′o ∈ U ′
o such that yoTy

′
o. By the induction hypothesis, and the

previous two statements, we get M ′, y′o � φ. As U ′
o is arbitrary, and as we

have y′o ∈ U ′
o such that M ′, y′o � φ, so we get M ′, x′ � ♦φ.

Similarly, assuming M ′, x′ � ♦φ and by using the forth condition, we get

that M,x � ♦φ. So, we obtain M,x � ♦φ iff M ′, x′ � ♦φ, that is, ♦φ ∈ S.

Hence, by induction, S is the set of all formulas.

A natural question to ask is whether the converse of Theorem 3.2.4 holds.

We now see a partial converse.

Theorem 3.2.5. Let M and M ′ be two finite models, and let x ∈ X, and

x′ ∈ X ′ be such that for each φ, we have, M,x � φ iff M ′, x′ � φ. Then, there

exists a topo-bisimulation betweenM andM ′ such that the points x and x′ are

topo-bisimilar. That is, finite modally equivalent models are topo-bisimilar.
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Proof. Let M = 〈X, τ, v〉 and M ′ = 〈X ′, τ ′, v′〉 be two finite topo-models,

and x and x′ be arbitrary elements in X and X ′, respectively, such that

M,x � φ iff M ′, x′ � φ, for all modal formulas φ. We define

T =

{
(y, y′) ∈ X ×X ′

∣∣∣∣∣
for each modal formula φ,

M, y � φ iff M ′, y′ � φ

}
.

We claim that T forms a topo-bisimulation between M and M ′.

First, we prove the atomic clause for T . Let y ∈ X, and y′ ∈ X ′ be such

that yTy′. Then by definition of T , for any propositional variable p, we have

M, y � p iff M ′, y′ � p, that is, y ∈ v(p) iff y′ ∈ v′(p). So, the atomic clause

is satisfied by T .

Now, we prove the forth condition for T . Let y ∈ X, and y′ ∈ X ′ be such

that yTy′, and let y ∈ U ∈ τ . We need to prove that there exists U ′
o ∈ τ ′

containing y′ such that for each z′ ∈ U ′
o, there exists a corresponding z ∈ U

with zTz′. Assume on the contrary that this is not the case, that is, assume

for each U ′ ∈ τ ′ containing y′, there exists z′U ′ ∈ U ′ such that for no z ∈ U ,

we have zTz′U ′ .

By definition of T , the condition zTz′ not holding is equivalent to the

existence of a modal formula ψ, for which M, z � ψ iff M ′, z′ � ψ doesn’t

hold. So, we have that for each U ′ ∈ τ ′ containing y′, there exists z′U ′ ∈ U ′

and modal formulas ψz,z′,U ′ for each z ∈ U , such that M ′, z′ � ¬ψz,z′,U ′,

but M, z � ψz,z′,U ′. (Note that, if the opposite holds, that is, if we have

M, z 2 ψz,z′,U ′ and M ′, z′ � ψz,z′,U ′, we simply replace ψz,z′,U ′ with ¬ψz,z′,U ′.)

As M is a finite model, so in U there are finitely many points z, and

hence for each z′U ′, we get finitely many formulas ψz,z′,U ′. Let φz′,U ′ be the

formula ∨

z∈U

ψz,z′,U ′.

Then for each z ∈ U , we have M, z � φz′,U ′. This happens because for

each z0 ∈ U , we have a constituent formula ψz0,z′,U ′ which is true on z0. But,

M ′, z′ 2 φz′,U ′, as none of the constituent formulas ψz,z′,U ′ is true on z′. Thus,

M ′, z′ � ¬φz′,U ′.
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As M ′ is a finite model, we get that τ ′ is finite, which implies that we

have finitely many open sets U ′ ∈ τ ′, and hence finitely many corresponding

z′U ′s. Let these be denoted by z′1, . . . , z
′
n, and the open sets to which they

correspond be U ′
1, . . . , U

′
n, respectively. For the ease of notation, instead of

writing φz′
i
,U ′

i
, we will just write φz′

i
, for i ∈ {1, . . . , n}.

By the preceding paragraph, for all i ∈ {1, . . . , n}, and each z ∈ U, we

have M, z � φz′
i
, which implies

M, z � φz′
1
∧ · · · ∧ φz′n

.

For i ∈ {1, . . . , n}, as M ′, z′i � ¬φz′
i
, we get M ′, z′i 2 φz′

i
, which implies

M ′, z′i 2 φz′
1
∧ · · · ∧ φz′n

.

As there exists U ∈ τ containing y, such that for each z ∈ U , we have

M, z � φz′
1
∧ · · · ∧ φz′n

, we get

M, y � �(φz′
1
∧ · · · ∧ φz′n

).

But, for an arbitrary U ′ ∈ τ ′ which contains y′, we get that there exists

z′ ∈ {z′1, . . . , z
′
n} and z′ ∈ U ′ such that M ′, z′ 2 φz′

1
∧ · · · ∧ φz′n

. So, we get

M ′, y′ 2 �(φz′
1
∧ · · · ∧ φz′n

),

which contradicts the assumption that yTy′. Hence, our assumption that the

forth condition doesn’t hold is wrong. So, the forth condition holds for T .

For the back condition, consider the inverse relation T−1. Then y′T−1y

iff the statement M, y � φ iff M ′, y′ � φ, holds for all modal formulas φ.

Repeating the above steps for the forth condition of T for T−1, we get that

the forth condition holds also for T−1. As the forth condition for T−1 is just

the back condition for T , so the back condition holds for T .

Hence, T is a topo-bisimulation and as xTx′ holds by assumption, so we

have a topo-bisimulation between M and M ′ such that x and x′ are topo-

bisimilar points.
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Theorem 3.2.4 and Theorem 3.2.5 together yield the following.

Corollary 3.2.6. LetM = 〈X, τ, v〉 andM ′ = 〈X ′, τ ′, v′〉 be two topo-models

such that bothM andM ′ are finite. Let x ∈ X, and x′ ∈ X. Then there exists

a topo-bisimulation between M and M ′ such that x and x′ are topo-bisimilar

points iff for all modal formulas φ, we have M,x � φ iff M ′, x′ � φ.

As homeomorphisms preserve the topological structure fully, and as the un-

derlying topology decides the truth of a formula at a point, it is natural to

ask how topo-bisimulations and homeomorphisms are related.

3.3 Topo-bisimulations and

homeomorphisms

The next result asserts that homeomorphisms are at least as strong as topo-

bisimulations.

Theorem 3.3.1. If two topological spaces 〈X, τ〉 and 〈X ′, τ ′〉 are homeo-

morphic, then for each valuation v on 〈X, τ〉, there exists a correspond-

ing valuation v′ on 〈X ′, τ ′〉 such that the topo-models M = 〈X, τ, v〉 and

M ′ = 〈X ′τ ′, v′〉 are topo-bisimilar.

Proof. Let 〈X, τ〉 and 〈X ′, τ ′〉 be homeomorphic. Let f : X → X ′ be a

homeomorphism. Given a valuation v on X , for all propositional variables

p, we define

v′(p) = {f(x) | x ∈ v(p)}

which is the same as f(v(p)). Then v′ is a valuation on X ′. We define

T = {(x, f(x)) | x ∈ X}.

We claim T is a topo-bisimulation. By Remark 3.2.2, the atomic clause

condition is equivalent to having T (v(p)) ⊆ v′(p), and T−1(v′(p)) ⊆ v(p) for

each propositional variable p. But by the definition of T and v′, we have

T (v(p)) = f(v(p)) = v′(p),
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and

T−1(v′(p)) = f−1(v′(p)) = v(p).

Hence, the atomic clause is followed.

Now, we prove the forth and back conditions for T . By Remark 3.2.2, the

forth condition is equivalent to proving that T (U) is open for each U ∈ τ ,

and the back condition is equivalent to proving that the T−1(U ′) is open for

each U ′ ∈ τ ′. But this holds, as f is a homeomorphism, as T (U) = f(U),

and as T−1(U ′) = f−1(U ′), for each U ∈ τ, and U ′ ∈ τ ′. Thus, both the back

and the forth conditions are followed. Hence, T is a topo-bisimulation, and

M and M ′ are topo-bisimilar.

One may ask whether the converse of Theorem 3.3.1 holds. That is, whether

if 〈X, τ〉 and 〈X ′, τ ′〉 are topological spaces such that for each valuation v on

〈X, τ〉, there exists a corresponding valuation v′ on 〈X ′, τ ′〉 making the topo-

models topo-bisimilar, then the two topological spaces are homeomorphic.

The next example gives an answer in the negative.

Example 3.3.2. Consider two topological spaces 〈X, τ〉 and 〈X ′, τ ′〉 where

X = R, X ′ = R2, and τ and τ ′ are euclidean topologies on R and R2,

respectively. Let v be a valuation on 〈X, τ〉. For a propositional variable p,

we define

v′(p) = {(x, y) ∈ R2 | x ∈ v(p)}.

Then, v′ is a valuation on 〈X ′, τ ′〉. Also, we define

T = {(x, (x, y)) | x, y ∈ R}.

Then, T ⊆ R×R2. Note that, T associates to each real number, the vertical

line passing through that real number on the x-axis (as shown in Figure 3.6).

We claim T forms a total topo-bisimulation. Let x ∈ X, and z ∈ X ′ be

such that xTz. Then by definition of T , we have z = (x, y) for some y ∈ R.

Let p be a propositional variable. Then,

x ∈ v(p) ⇔ (x, y) ∈ v′(p) (by definition of v′) ⇔ z ∈ v′(p).
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〈X, τ, v〉

〈X ′, τ ′, v′〉

Fig. 3.6: The two topo-models.

So, the atomic clause is satisfied.

Now, we prove an assertion which will help us in proving the forth and

back conditions. Let I be an arbitrary indexing set, and let {Aλ}λ∈I be an

arbitrary collection of subsets of X . Then,

y ∈ T (
⋃

λ∈I

Aλ),

iff xTy for some x ∈
⋃

λ∈I

Aλ (by the definition of the T -image of a set)

iff xTy for some x ∈ Aλo
, and λo ∈ I

iff y ∈ T (Aλo
) for some λo ∈ I (by the definition of the T -image of a set)

iff

y ∈
⋃

λ∈I

T (Aλ).

So,

T (
⋃

λ∈I

Aλ) =
⋃

λ∈I

T (Aλ),

that is, T is distributive over an arbitrary union. As no property of T is used

here except that T is a relation, we get that any relation distributes over

unions.
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Now, we prove the forth condition by proving that the T -image of open

sets is open. Let a, r ∈ R such that r > 0. Consider a basic open set Br(a)

around a in 〈X, τ〉, where

Br(a) = {a′ ∈ X | |a− a′| < r}.

Then

T (Br(a)) = {(a′, y) ∈ R2 | |a− a′| < r},

which is a vertical strip not containing its boundary, and is an open set.

For an arbitrary open set U ∈ τ , U is a union of basic open sets. As T

distributes over unions, and as image of basic open sets under T is open, we

get T (U) ∈ τ ′. So, T follows the forth condition.

For the back condition we take a similar route. Let (a, b) ∈ R2, and

r ∈ R+. Consider a basic open set Br((a, b)) around (a, b), given by

Br((a, b)) = {(a′, b′) ∈ R2 |
√

(a− a′)2 + (b− b′)2 < r}.

Observe that if (z1, z2) ∈ R2 such that zT (z1, z2), then z1 = z, that is, if

(z1, z2) T
−1z, then z is a projection of (z1, z2) on the x-axis. So, T−1(Br((a, b)))

is a projection of the set Br((a, b)) on the x-axis, which is just

{a′ ∈ R | |a− a′| < r}. It should be noted that

{a′ ∈ R | |a− a′| < r} = Br(a),

and Br(a) is open in X . Thus, T−1(Br((a, b))) is open in X. Also T−1

distributes over unions. So by a similar reasoning as in the forth case, we

get that if we have an arbitrary U ′ ∈ τ ′, then T−1(U ′) ∈ τ. So, T follows

the back condition too, and hence, is a topo-bisimulation between the two

topo-models. It should also be noted that T is total.

Since R and R2 with the euclidean topology are not homeomorphic, the

converse of Theorem 3.3.1 does not hold. ⊣

This chapter dealt with defining the topological interpretation, and basic

results concerning topo-bisimulations and homeomorphisms. In the next
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chapter, we will see the first of the two soundness and completeness results

that we aim to describe.



4. SOUNDNESS AND

COMPLETENESS OF S4

In the first chapter, we saw that S4 is both sound and complete with respect

to the class of all reflexive transitive frames in the relational semantics. Just

as we have the notion of soundness and completeness with respect to the

relational semantics, we also have analogous notions with respect to the

topological semantics.

The main result of this chapter is - S4 is both sound and complete with

respect to the class of all topological spaces (from [10]). Thus, the formulas

that are valid in the class of all topological spaces are exactly the theorems

of S4. Before delving into the proof, we need some terminology.

Definition 4.0.1. Let X = 〈X, τ〉 be a topological space and letM = 〈X , v〉

be a topo-model. For a modal formula φ,

1. we say that φ is true in M = 〈X , v〉 if φ is true at every x ∈ X .

2. We say that φ is valid in X if φ is true in every topo-model based on

X .

3. Finally, we say that φ is valid in a class of topological spaces S if φ is

valid in every member of S (notation: S � φ).

⊣

Definition 4.0.2. A modal logic Λ is said to be sound with respect to a

class of topological spaces S if each member of Λ is valid in every member of

S, that is, for each modal formula φ, we have S � φ, whenever φ ∈ Λ. ⊣
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As an example, we prove later that S4 is sound with respect to the class of

all topological spaces.

Definition 4.0.3. A modal logic Λ is said to be complete with respect to a

class of topological spaces S if each modal formula which is valid on S, is also

a member of Λ, that is, for each modal formula φ, we have φ ∈ Λ, whenever

S � φ. ⊣

Thus, to prove that a normal logic KΓ is complete with respect to a class

of topological spaces S, we should prove that every formula φ which is valid

in S is a theorem of KΓ. But there is more than one way to prove that a

formula φ is a theorem of KΓ. This happens because there is more than one

way to define KΓ.

One of the ways in which KΓ is defined is by the ‘top down approach’,

that is, it is defined as the intersection of all normal logics containing Γ. If

we want to use this definition to prove that φ is a theorem of KΓ, then we

should prove that φ is contained in every normal logic containing Γ.

The other way in which KΓ is defined is the ‘bottom up approach’, that

is, it is defined as the set of formulas that can be derived from the set of

propositional tautologies, (K), (Dual), and Γ, by applying the rules of modus

ponens, uniform substitution, and generalisation, finitely many times. If we

want to use this definition to prove that φ is a theorem of KΓ, then we should

prove that φ can be derived from the set of formulas which only contain

the propositional tautologies, (K), (Dual), and Γ, by using modus ponens,

uniform substitution, and generalisation, which is a constructive endeavor

that is generally challenging.

The next remark gives another way to prove the completeness of a logic

with respect to a class of topological spaces.

Remark 4.0.4. An equivalent statement of the definition of completeness is

the following. A normal logic Λ is said to be complete with respect to a class

of topological spaces S if for each modal formula φ, we have S 2 φ, whenever

φ /∈ Λ. It should be noted that the above statement is the contra-positive of

the statement given in Definition 4.0.3. A modal formula φ is not valid on a

class of topological spaces S iff there is some member of S on which φ is not
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valid. Hence, one way of proving that a normal modal logic Λ is complete

with respect to a class of topological spaces S, is by showing that for every

modal formula φ which is not a theorem of Λ, we have a topological space

X = 〈X, τ〉 in S, a topo-model M = 〈X, τ, v〉 based on the space X , and an

x ∈ X such that M,x 2 φ holds. ⊣

In a later section of this chapter, we will use the above method to prove the

completeness of S4 with respect to the class of all topological spaces. The

next section deals with the soundness.

4.1 Soundness of S4

First, we recall some facts:

• Any normal modal logic contains the formulas (K) and (Dual), and is

closed under modus ponens, necessitation, and uniform substitution.

• The formulas (T), (4), (K), and (Dual) are

(T) �p→ p,
(4) �p→ ��p,
(K) �(p→ q) → (�p→ �q), and

(Dual) ♦p↔ ¬�¬p.

• S4 is the smallest normal modal logic containing the formulas (T) and

(4).

We later prove that S4 is complete with respect to the class of all topological

spaces. For the present, our aim is to prove that S4 is sound with respect to

the class of all topological spaces.

For that our path is as following. We know that S4 is the set of formulas

generated from propositional tautologies, (K), (Dual), (T), and (4), by ap-

plying the rules of modus ponens, necessitation, and uniform substitution,
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finitely many times. We first prove that the propositional tautologies, (T),

(4), (K), and (Dual) are valid in any class of topological spaces. Next, we

prove that this property of being valid in any class of topological spaces is

preserved under modus ponens, necessitation, and uniform substitution. As

a consequence, we get that all the theorems of S4 are valid in any class of

topological spaces, and hence, on the class of all topological spaces.

Proposition 4.1.1. The formulas (T), (4), (K), and (Dual) are valid in any

class of topological spaces.

Proof. Let S be a class of topological spaces.

We claim (T) is valid in S. (T) is given by �p→ p. Let X = 〈X, τ〉 ∈ S.

Let v be a valuation on X , and x ∈ X . We need to prove x � �p → p. Let

us assume x � �p. Then by definition, there exists a U ∈ τ containing x such

that for each y ∈ U , we have y � p. In particular as x ∈ U , we get x � p.

So, x � �p implies x � p. Hence, x � �p→ p. From the arbitrariness of x, v,

and X we get that (T) is valid in S.

By a similar line of reasoning, we show that (4) is valid in S. Let 〈X, τ, v〉

be a topo-model and x ∈ X . We need to show x � �p→ ��p. Let x � �p.

So by definition, there exists a U ∈ τ containing x such that for each y ∈ U ,

we have y � p. We claim that for each z ∈ U , we have z � �p. Let z ∈ U .

Then as for all y ∈ U , we have y � p, so there exists some U ∈ τ such that

z ∈ U and for each y ∈ U , we have y � p. So, we get z � �p. As z ∈ U

is arbitrary, we get that for each z ∈ U, we have z � �p. So, there exists a

U ∈ τ containing x such that for each z ∈ U , we have z � �p, and, we get

x � ��p. Hence, x � �p→ ��p. As x and the topo-model are arbitrary, so

(4) is valid in S.

Now we prove (K) is valid in S. Let X , v, x be arbitrary as in the previous

part. We need to prove x � �(p → q) → (�p → �q). Let x � �(p → q).

By definition, there exists a U ∈ τ containing x such that for each y ∈ U ,

we have y � p → q. Now, we need to prove x � �p → �q, which amounts

to proving that if x � �p, then x � �q. Let us assume that x � �p. So,

there exists a V ∈ τ containing x such that for each z ∈ V , we have z � p. It

remains to be shown that x � �q.
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Consider U ∩ V . As U, V ∈ τ and both contain x, and as τ is closed

under finite intersections, we have U ∩V ∈ τ, and x ∈ U ∩V. Let y ∈ U ∩V .

As U ∩ V ⊆ V, so we have y ∈ V . As for each z ∈ V , we have z � p, so in

particular we have y � p. Similarly, as U ∩V ⊆ U , and as we have v � p→ q

for each v ∈ U , so we get y � p → q. But, y � p → q is equivalent to the

statement that if y � p, then y � q. As y � p holds, so we get y � q, and

since y is arbitrary, we get that for each z ∈ U ∩ V, z � q. So, there exists a

U ∩ V ∈ τ containing x, such that for each z ∈ U ∩ V , we have z � q, and

so, we have x � �q. Hence, (K) is valid in S.

Next, we prove that (Dual) is valid in S. Let X , v, x be arbitrary as in

the previous part. We need to prove x � ♦p ↔ ¬�¬p, which is equivalent

to showing that x � ♦p iff x � ¬�¬p. We have, x � ♦p

iff for each U ∈ τ containing x, there exists y ∈ U with y � p

iff it is not the case that there exists a U ∈ τ containing x, such that for each

y ∈ U we have y 2 p

iff it is not the case that there exists a U ∈ τ containing x, such that for each

y ∈ U we have y � ¬p

iff it is not the case that x � �¬p

iff x 2 �¬p

iff x � ¬�¬p.

As x is arbitrary, so we get that (Dual) is valid in S.

Proposition 4.1.2. Propositional tautologies are valid in any class of topo-

logical spaces.

Proof. Let S be a class of topological spaces. Let X ∈ S, and let 〈X, τ, v〉 be

a topo-model based on X . Let x ∈ X . We define a propositional valuation

function v′x : P → {T, F} by

v′x(p) =




T, if x � p, and

F, otherwise

for all propositional variables p ∈ P . Then, we extend v′x uniquely to the set

of all propositional formulas using the Recursion theorem (Theorem 2.1.4).
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Without any ambiguity, we can call the extension as v′x.

Let

A = {φ is propositional formula | v′x(φ) = T iff x � φ}.

We claim that A is the set of all propositional formulas. We prove the

claim by induction on the set A.

For an arbitrary p ∈ P , by definition of v′x, we get p ∈ A. So, A contains

all the propositional variables.

Let φ, ψ ∈ A. This assumption is our induction hypothesis. Then,

v′x(¬φ) = T iff v′x(φ) = F. By the induction hypothesis, v′x(φ) = F iff x 2 φ.

Also, we have x 2 φ iff x � ¬φ. Together, we get v′x(¬φ) = T iff x � ¬φ. So,

A is closed under ¬.

Also, v′x(φ ∧ ψ) = T iff both v′x(φ) = T and v′x(ψ) = T. Applying the

induction hypothesis, we get v′x(φ ∧ ψ) = T iff both x � φ and x � ψ. Thus,

we get v′x(φ ∧ ψ) = T iff x � φ ∧ ψ. So φ ∧ ψ ∈ A, and hence, A is closed

under ∧. Hence by induction, A is the set of all propositional formulas.

For a propositional tautology κ, and for the above valuation v′x, we have

v′x(κ) = T, which is equivalent to x � κ. As κ,X , v, x all are arbitrary, we get

that propositional tautologies are valid in S.

Next, we move on to the rules of modus ponens, necessitation, and uniform

substitution. To handle uniform substitution, we first need to prove a lemma

which relates the truth of a modal formula with the truth of its substitution

instances.

Lemma 4.1.3. Let M = 〈X, τ, v〉 be a topo-model, σ be a substitution func-

tion, and v′ be a valuation on X defined by v′(p) = v(σ(p)), for all proposi-

tional variables p. For a topo-model M ′ = 〈X, τ, v′〉, for all modal formulas

φ, and for each x ∈ X, we have M,x � σ(φ) iff M ′, x � φ.

Proof. Let M,σ, v′, and M ′ be as given above. We prove the lemma by

induction on the set of modal formulas, that is, we prove that the set

A =

{
φ is a modal formula

∣∣∣∣∣
for each x ∈ X, we have

M,x � σ(φ) iff M ′, x � φ

}
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is the set of all modal formulas.

Let p be a propositional variable, and let x ∈ X . As

M,x � σ(p) ⇔ x ∈ v(σ(p))

⇔ x ∈ v′(p)

⇔M ′, x � p,

so p ∈ A. Hence, A contains all propositional variables.

Let φ, ψ ∈ A, and x ∈ X . As σ(¬φ) = ¬σ(φ), we get M,x � σ(¬φ) iff

M,x � ¬σ(φ). As M,x � ¬σ(φ) is equivalent to M,x 2 σ(φ), we get

M,x � σ(¬φ) iff M,x 2 σ(φ). As φ ∈ A, we have M,x 2 σ(φ) iff

M ′, x 2 φ. Thus, M,x � σ(¬φ) iff M ′, x 2 φ. Since M ′, x 2 φ is equivalent to

M ′, x � ¬φ, we get M,x � σ(¬φ) iff M ′, x � ¬φ. Hence, ¬φ ∈ A.

Similarly, as σ(φ ∧ ψ) = σ(φ) ∧ σ(ψ), we have, M,x � σ(φ ∧ ψ) is equiv-

alent to M,x � σ(φ) ∧ σ(ψ), which is equivalent to the statement that both

M,x � σ(φ) and M,x � σ(ψ) hold. As both φ and ψ are in A, the preceding

statement is equivalent to the statement that both M ′, x � φ and M ′, x � ψ

hold. Hence, φ ∧ ψ ∈ A.

For the modal case, as σ(♦φ) = ♦σ(φ), we have M,x � σ(♦φ) iff

M,x � ♦σ(φ). M, x � ♦σ(φ) means that for each U ∈ τ containing x,

there exists y ∈ U such that M, y � σ(φ). As φ ∈ A, we have for each

y ∈ X , and hence particularly for each U ∈ τ, and y ∈ U , we have

M, y � σ(φ) iff M ′, y � φ. So, M,x � ♦σ(φ) is equivalent to the statement

that for each U ∈ τ containing x, there exists a y ∈ U such that M ′, y � φ,

which in turn is equivalent to M ′, x � ♦φ. Hence, ♦φ ∈ A, and by induction,

A is the whole set of modal formulas.

An upshot of the above lemma is that if v′(p) = v(σ(p)) for all propositional

variables p, then

v′(φ) = v(σ(φ)),

for each modal formula φ. Thus, v and v′ extend in a coherent manner to

the set of all modal formulas.

The next result proves that validity in an arbitrary class of topological
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spaces remains preserved under the applications of the rules described earlier.

Proposition 4.1.4. The rules modus ponens, uniform substitution, and ne-

cessitation preserve validity of formulas in any class of topological spaces.

Proof. Let S be a class of topological spaces. We first prove that modus

ponens preserves validity in S, that is, if φ and φ → ψ are valid in S, then

ψ is also valid in S. Let us assume that φ and φ → ψ are valid in S. Let

X ∈ S, let 〈X, τ, v〉 be a model based on X , and let x ∈ X . We need to

prove x � ψ. As φ → ψ is valid in S, we get x � φ → ψ, that is, if x � φ

holds, then x � ψ holds. As φ is valid, we have x � φ. From the previous two

statements, we get x � ψ. As X , v, x are all arbitrary, we get that ψ is valid

in S. Thus, modus ponens preserves validity.

Next, using Lemma 4.1.3 we prove uniform substitution preserves validity

in S. Let φ be valid in S, and let ψ be a substitution instance of φ. This

means that there is some substitution function σ from the set of propositional

variables to the set of modal formulas whose extension σ satisfies σ(φ) = ψ.

The extension can be called σ as well because of the uniqueness of extension

by the Recursion theorem (2.1.4). Let X , v, x be arbitrary as in the above

part. We need to prove that for the topo-model M = 〈X, τ, v〉, we have

M,x � ψ, which is equivalent to M,x � σ(φ). We define a valuation v′ on X

by v′(p) = v(σ(p)) for all propositional variables p. LetM ′ be the topo-model

M ′ = 〈X, τ, v′〉. Then as φ is valid in S, we have M ′, x � φ. By Lemma 4.1.3,

this is equivalent to M,x � σ(φ). Hence, our claim is true, that is, uniform

substitution preserves validity in S.

Next, we prove necessitation preserves validity. Let X ∈ S, 〈X, τ, v〉 be a

topo-model based on X , and x ∈ X . Given a φ valid in S, we need to prove

�φ is valid in S. As all X , v, x are arbitrary, it suffices to prove x � �φ,

which means we need to prove that there exists U ∈ τ containing x, such

that for each y ∈ U , we have y � φ. We choose U to be X . We already have

X ∈ τ and x ∈ X . Also, as φ is valid in S, for each y ∈ X , we have y � φ. So,

X is a candidate for the required open set U , and we have x � �φ. Hence,

necessitation preserves validity in S. As S is arbitrary, so the result holds

for all classes of topological spaces.
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Let Top denote the class of all topological spaces. As (K), (Dual), (T), (4),

and the propositional tautologies are valid in an arbitrary class of topological

spaces, so they are valid in Top. Similarly, as the rules of modus ponens,

uniform substitution, and necessitation preserve validity in an arbitrary class

of topological spaces, so they preserve validity in Top. As a consequence, we

get the following result.

Corollary 4.1.5. S4 is sound with respect to Top.

The remaining part of this chapter deals with proving that S4 is complete

with respect to Top.

4.2 The Alexandroff Topology

We define a special class of topological spaces which will help us in proving

the completeness result.

Definition 4.2.1. A topological space X is called an Alexandroff space if

the intersection of any family of open subsets is open. ⊣

Example 4.2.2. Any discrete topological space is an Alexandroff space. ⊣

The next proposition gives us an alternate way to define an Alexandroff

space.

Proposition 4.2.3. X is an Alexandroff space iff every x ∈ X has a least

open neighborhood.

Proof. We first prove that if X is an Alexandroff space, then each x ∈ X has

a least open neighborhood. Let X be an Alexandroff space. We prove each

x ∈ X has a least open neighborhood. For x ∈ X , consider the family of

open sets

B = {U ∈ τ | x ∈ U}.

As X is Alexandroff, so
⋂

U∈B

U is open. Also

x ∈
⋂

U∈B

U,
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as for each U ∈ B, we have x ∈ U . For any V ∈ τ containing x, we have

V ∈ B, by definition of B. So for any neighborhood V of x, we get

⋂

U∈B

U ⊆ V.

Hence,
⋂

U∈B

U is the least open neighborhood of x. As x is arbitrary, we get

every x ∈ X has a least open neighborhood.

Conversely, let us assume that each x ∈ X has a least open neighborhood.

We want to prove X is Alexandroff. Let {Ui}i∈I be a family of open sets.

We need to prove
⋂

i∈I

Ui is open. If

⋂

i∈I

Ui = ∅,

then as ∅ ∈ τ, we are done. Let

⋂

i∈I

Ui 6= ∅.

We prove
⋂

i∈I

Ui is open by proving each point in
⋂

i∈I

Ui is an interior point.

Let

x ∈
⋂

i∈I

Ui.

Then, a least open neighborhood of x exists by assumption. Let it be Ux.

As x ∈
⋂

i∈I

Ui, for each i ∈ I, we get x ∈ Ui. As each Ui ∈ τ , and as Ux is a

least open neighborhood of x, so for each i ∈ I, we get Ux ⊆ Ui. So,

Ux ⊆
⋂

i∈I

Ui.

Therefore,

x ∈ Ux ⊆
⋂

i∈I

Ui,
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that is, x is an interior point. As x is arbitrary, we get

⋂

i∈I

Ui ∈ τ.

Hence, X is an Alexandroff space.

In the next example, we see the above criterion in action.

Example 4.2.4. Let Um = {1, · · · , m | m ∈ N}, and B = {Um | m ∈ N} as

shown in Figure 4.1.

b b b b
b b b

1 2 3 4
U2U1 U3

U4

Fig. 4.1: The family B.

We claim that B forms a basis for N, and the topology generated by B on N

is Alexandroff.

For n ∈ N, we have Un ∈ B, and n ∈ Un. So, each element of N is

contained in some element of B.

Let n ∈ N such that for some Uk, Ul ∈ B, we have n ∈ Uk ∩ Ul. By the

definition of Uk and Ul, this means n ≤ k, and n ≤ l. Hence, n ≤ min{k, l}.

By the definition of Uis, we get n ∈ Umin{k,l} ⊆ Uk ∩ Ul. So B forms a basis

for N.

Let τ be the topology generated by B. Our claim is 〈N, τ〉 forms an

Alexandroff space. We prove it by proving that each element in N has a least

open neighborhood. For any n ∈ N, as Un ∈ B, so Un ∈ τ, and hence, Un is

a neighborhood of n. We claim that Un is the least open neighborhood of n.

Let V ∈ τ contain n. As B is a basis, there is a basic open set Um containing

n, such that n ∈ Um ⊆ V. As n ∈ Um, we get n ≤ m, which implies Un ⊆ Um.
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So, Un ⊆ Um ⊆ V, which implies Un ⊆ V. As V is arbitrary, we get that Un

is the least open neighborhood of n. As n is arbitrary, we get that 〈N, τ〉 is

an Alexandroff space.

⊣

Alexandroff spaces have been introduced because each reflexive transitive

model can be thought of as a topo-model with an Alexandroff topology, such

that the logical information at each of the state is preserved. The next section

shows how to do this.

4.3 The Topo-completeness of S4

The aim of the section is to prove the completeness of S4 with respect to

Top, using Alexandroff spaces. For that, we first need a few definitions.

Definition 4.3.1. Let F = (X,R) be an S4-frame. A subset A of X is

called an upset of F if for each x, y ∈ X , if x ∈ A and xRy, then we have

y ∈ A. Dually, A is called a downset if for each x, y ∈ X , if x ∈ A and yRx,

then we have y ∈ A. ⊣

Informally, upsets are forward closed in terms of R, and downsets are back-

ward closed in terms of R.

Example 4.3.2. Consider the frame as shown in the Figure 4.2, where

X = {1, . . . , 6}, and R is depicted by arrows. The frame (X,R) is an S4-

frame as R is reflexive and transitive.

Here, {1, 2, 3} is a downset, and its complement {4, 5, 6} is an upset. Also,

{1, 3} is a downset, and its complement {2, 4, 5, 6} is an upset. ⊣

Using the upsets and downsets on an S4-frame (X,R), we can define a topol-

ogy on the set X in the following way.

Proposition 4.3.3. Let (X,R) be an S4-frame. Let τR be defined as

τR = {A ⊆ X | A is an upset}.

Then 〈X, τR〉 forms a topological space.
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b

b

bb

b

b1

2

3
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6

Fig. 4.2: The S4-frame.

Proof. We first prove ∅, X ∈ τR. As ∅ is empty, vacuously for each x ∈ ∅, if

xRy, then y ∈ ∅. So, ∅ ∈ τR. Also, as R ⊆ X×X, so for each x ∈ X , if xRy,

then y ∈ X . So, X ∈ τR.

Now we prove τR is closed under intersection. Let U, V ∈ τR. We claim

U ∩ V ∈ τR, that is, U ∩ V is an upset. Let x ∈ U ∩ V, and let xRy. Then

as U, V ∈ τR, so by definition of τR we get, U and V are upsets. So, we get

y ∈ U, and y ∈ V which implies y ∈ U ∩ V. Thus, we get U ∩ V ∈ τR. So, τR

is closed under intersection.

Now we prove τR is closed under arbitrary unions. Let {Ui}i∈I ⊆ τR, let

x ∈
⋃

i∈I

Ui,

and let xRy. As x ∈
⋃

i∈I

Ui, so there exists an io ∈ I such that x ∈ Uio . As

xRy and Uio ∈ τR, we get y ∈ Uio , which implies

y ∈
⋃

i∈I

Ui.

So, ⋃

i∈I

Ui ∈ τR.

Thus, we get that τR is closed under arbitrary unions. Hence, 〈X, τR〉 forms

a topological space.
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Next, we see how the closed sets look like. Let A ⊆ X be a closed set. Then

Ac is an open set, and hence, an upset. Let x ∈ A, and yRx. If y /∈ A,

then y ∈ Ac, and as Ac is an upset, and yRx holds, we get x ∈ Ac which

contradicts the assumption that x ∈ A. So y ∈ A, and thus, we get that A

is a downset. We have shown that complements of upsets are downsets. So,

the closed sets in τR are exactly the downsets.

The next result says that the upset topology on S4-frames is Alexandroff.

Proposition 4.3.4. 〈X, τR〉 forms an Alexandroff space.

Proof. We prove that τR is closed under arbitrary intersections. Let

{Ui}i∈I ⊆ τR. So, each Ui is an upset by definition. Let

x ∈
⋂

j∈I

Uj ,

and xRy. Let i ∈ I. As x ∈
⋂

j∈I

Uj , so x ∈ Ui. As xRy, and as Ui is an upset,

so we get y ∈ Ui. So for each i ∈ I, we have y ∈ Ui, which implies

y ∈
⋂

j∈I

Uj.

Hence, we get
⋂

j∈I

Uj is an upset. So τR is closed under arbitrary intersections,

and hence 〈X, τR〉 is Alexandroff.

The next remark describes how the smallest open neighborhood of a point

look like in this topology.

Remark 4.3.5. As 〈X, τR〉 is Alexandroff, each element has a least open

neighborhood. Consider the set

R(x) = {y ∈ X | xRy}.

The set R(x) consists of all the right neighbors of the element x with respect

to the relation R.
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1. We claim that R(x) is an upset and hence, is open. Let y ∈ R(x),

and for some z ∈ X, let yRz. By assumption, y ∈ R(x) holds, so by

the definition of R(x), we have xRy. As (X,R) is an S4-frame, so R

is transitive. As xRy holds, as yRz holds by assumption and as R is

transitive, so we get xRz. So by definition of R(x), we get z ∈ R(x).

As y, z are arbitrary, we get that R(x) is an upset and hence, is open.

2. We claim R(x) is the least open neighborhood of x. Let U ∈ τR contain

x. We prove R(x) ⊆ U . Let y ∈ R(x). Then, by definition of R(x), we

have xRy. As x ∈ U , as U is an upset, and as xRy, we get y ∈ U. As y

is arbitrary, we get R(x) ⊆ U. So, R(x) is the least open neighborhood

of x.

⊣

The next lemma asserts that this topology preserves the logical information

if the valuation is taken to be the same.

Lemma 4.3.6. LetM1 = (X,R, v) be a model based on the S4-frame (X,R).

Let τR be the topology generated by the upsets. LetM2 be the model 〈X, τR, v〉.

Then for all modal formulas φ, and for each x ∈ X, we have

M1, x � φ iffM2, x � φ.

Proof. We prove this by induction on the set of all modal formulas. Let

A = {φ is a modal formula | for each x ∈ X, we have M1, x � φ iffM2, x � φ}.

We prove by induction that A is the set of all modal formulas.

Let p be a propositional variable, and x ∈ X. Then M1, x � p iff

x ∈ v(p). As the valuation for both the models is the same, we have

x ∈ v(p) iff M2, x � p. Together, we get M1, x � p iff M2, x � p. So p ∈ A.

Let us assume φ, ψ ∈ A. This is our induction hypothesis.

Then M1, x � ¬φ iff M1, x 2 φ. As φ ∈ A by our induction hypothesis,

we get M1, x 2 φ iff M2, x 2 φ. Also, M2, x 2 φ iff M2, x � ¬φ. Together, we

get M1, x � ¬φ iff M2, x � ¬φ. As x is arbitrary, we get ¬φ ∈ A.
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Also, M1, x � φ ∧ ψ iff both M1, x � φ and M1, x � ψ. By the induction

hypothesis, both M1, x � φ and M2, x � ψ hold iff both M2, x � φ and

M2, x � ψ hold, which is equivalent toM2, x � φ∧ψ. Thus, we get φ∧ψ ∈ A.

Next, we prove ♦φ ∈ A. Let x ∈ X , and let M1, x � ♦φ. So, there

exists a y ∈ X such that xRy holds and M1, y � φ. As φ ∈ A, we have

M2, y � φ. Let U ∈ τR contain x. As xRy holds, so y ∈ R(x). By Proposition

4.3.4, τR is Alexandroff because R is reflexive and transitive. As R(x) is the

smallest open neighborhood of x by Remark 4.3.5, we have R(x) ⊆ U. So

y ∈ U. Thus, for each U ∈ τR containing x, there exists a y ∈ U such that

M2, y � φ. Hence, M2, x � ♦φ. So, M1, x � ♦φ implies M2, x � ♦φ.

Now, we assume M2, x � ♦φ. Then, for each U ∈ τR containing x,

there exists y ∈ U such that M2, y � φ. As R(x) ∈ τR, and x ∈ R(x),

particularly, we get that there exists a y ∈ R(x) such that M2, y � φ. The

statement y ∈ R(x) is equivalent to xRy, and by the induction hypothesis,

the statement M2, y � φ is equivalent to M1, y � φ. Together, we get that

there exists a y ∈ X such that xRy, and M1, y � φ. Hence, M1, x � ♦φ. So,

M2, x � ♦φ implies M1, x � ♦φ. Therefore, ♦φ ∈ A. Hence by induction, A

is the set of all modal formulas.

The above lemma states that truth of formulas remains conserved for the two

interpretations, if the models are related to each other by the construction

methods that we have introduced in this section. The next corollary is the

final result of the section, and establishes the fact that the theorems of S4

are exactly the formulas which are valid on Top. It should be noted that in

the following proof we use the fact that S4 is complete with respect to the

class of all reflexive transitive frames.

Corollary 4.3.7. S4 is complete with respect to Top.

Proof. We use the method explained in Remark 4.0.4. Let φ /∈ S4. As S4 is

complete with respect to the class of all reflexive-transitive frames (Propo-

sition 2.3.50), so we have a model M1 = 〈X,R, τ〉, and x ∈ X , such that

(X,R) is an S4-frame, and M1, x 2 φ. Consider the model M2 = 〈X, τR, v〉.

Then by Lemma 4.3.6, we have M2, x 2 φ. Thus, we have a topo-model on

which φ is falsifiable.
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Hence, S4 is complete with respect to Top.

The soundness and completeness result together imply that the theorems

of S4 are exactly the set of valid formulas on Top.

Each formula which is valid inTop corresponds to a property of a topolog-

ical space. For example, consider the formula (T) which is given by �p→ p.

As (T) is valid in Top, for any topo-model M = 〈X, τ, v〉, and for any

x ∈ X , we have x � �p implies x � p, that is, x ∈ v(�p) implies x ∈ v(p).

As v(�p) = Int(v(p)), we get x ∈ Int(v(p)) implies x ∈ v(p). Thus, we get

Int(v(p)) ⊆ v(p). As v is an arbitrary valuation, so v(p) is an arbitrary subset

of X . Hence for all A ⊆ X , we have Int(A) ⊆ A. Thus, the formula (T) cor-

responds to the property that the interior of a set is always contained in the

set itself. Similarly, every other formula, which is valid in Top, corresponds

to a property.

The soundness and completeness result has a two-way application.

• Since S4 is sound with respect to Top, so every theorem of S4 is valid

in every topological space. Therefore, using S4 we get to know the

properties of a topological space. Thus, we can use S4 to study Top.

• Since S4 is complete with respect to Top, so every formula valid in

Top is a theorem of S4. Therefore, if a property of a topological space

corresponds to a modal formula, then by completeness, that modal

formula is a theorem of S4. Thus, we can use Top to study S4.

The next chapter contains a more constructive proof of the same result.



5. THE CANONICAL

TOPO-MODEL PROOF

The last proof of the completeness of S4 with respect to Top relied on the

fact that S4 is complete with respect to the class of all reflexive transitive

frames. Another completeness proof exists, and it is independent of the

relational semantics results for S4. The proof is done by building one and

only one topo-model, which can falsify every formula which is not in S4.

This chapter discusses the proof in detail (taken from [10]).

5.1 The Canonical topo-model for S4

In this section, we construct a special topo-model which we will use to prove

the completeness of S4 with respect to the class of all topological spaces.

The construction is similar to the construction of the canonical model in the

case of relational semantics (can be found in [9]).

Recall that for a normal logic Λ, a set of formulas Γ is said to be Λ-

consistent if for no finite set {φ1, . . . , φn} ⊆ Γ, we have ⊢Λ (φ1∧. . .∧φn) → ⊥,

and a Λ-consistent set of formulas Γ is called maximally consistent if there

is no consistent set of formulas properly containing Γ. A formula φ is said to

be Λ-consistent if the set {φ} is Λ-consistent.

The next remark gives equivalent conditions for Λ-consistency of a set Γ.

Remark 5.1.1 (Equivalent conditions for consistency). It should be

noted that (p → ⊥) → ¬p is a propositional tautology. So by uniform

substitution, for arbitrary formulas φ1, . . . , φn, we have

⊢Λ ((φ1 ∧ . . . ∧ φn) → ⊥) → ¬(φ1 ∧ . . . ∧ φn).
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If Γ is not Λ-consistent, then we have formulas φ1, . . . , φn ∈ Γ, such that

⊢Λ (φ1 ∧ . . . ∧ φn) → ⊥. Then by modus ponens, we get ⊢Λ ¬(φ1 ∧ . . . ∧ φn).

Also, as ¬p→ p→ ⊥ is a propositional tautology, so by a similar reasoning

we get the converse, that is, if there are formulas φ1, . . . , φn ∈ Γ, such that

⊢Λ ¬(φ1 ∧ . . . ∧ φn), then we have ⊢Λ (φ1 ∧ . . . ∧ φn) → ⊥. So, in this case Γ

is not Λ-consistent.

Thus, Γ is Λ-consistent iff for no finite set {φ1, . . . , φn} ⊆ Γ, we have

⊢Λ ¬(φ1 ∧ . . . ∧ φn)

Similarly, as

¬(p1 ∧ . . . ∧ pn) → ¬p1 ∨ . . . ∨ ¬pn,

and

¬p1 ∨ . . . ∨ ¬pn → ¬(p1 ∧ . . . ∧ pn)

are propositional tautologies, so we get that Γ is not Λ-consistent iff there

are φ1, . . . , φn ∈ Γ such that ⊢Λ ¬φ1 ∨ . . . ∨ ¬φn. ⊣

The next lemma and corollary elucidate a property of maximally consistent

sets (or MCSs) which we’ll be using frequently in our proofs later.

Lemma 5.1.2. If Γ is a maximally consistent set of formulas for the normal

logic Λ, then for each formula φ, not both φ and ¬φ are in Γ.

Proof. Let Γ be a maximally consistent set. For a formula φ, assume both φ

and ¬φ are in Γ. We have the following proof that ¬(φ ∧ ¬φ) ∈ Λ.

1. ⊢Λ ¬(p ∧ ¬p) (Propositional tautology)

2. ⊢Λ ¬(φ ∧ ¬φ) (Uniform substitution: 1)

This implies that Γ is not consistent, which contradicts our assumption.

Thus, not both φ and ¬φ are in Γ.

Lemma 5.1.2 and Lemma 2.3.42 together yield the following corollary.

Corollary 5.1.3. If Γ is a maximally consistent set of formulas for the nor-

mal logic Λ, then for each formula φ, exactly one of φ or ¬φ is in Γ.
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We now proceed to construct the canonical topo-model for S4. From now

on, we fix our normal logic as S4. Thus, consistent means S4-consistent,

unless stated otherwise.

Definition 5.1.4. The canonical topological space is the pair X = 〈XL, τL〉

where:

• XL is the set of all maximally consistent sets.

• For each formula φ, we define

φ̂ = {x ∈ XL | φ ∈ x},

BL = {�̂φ | φ is a formula},

and τL to be the topology generated by taking BL as the basis.

⊣

The next lemma shows that BL indeed forms a basis.

Lemma 5.1.5. BL forms a basis.

Proof. We need to prove two things.

1. For each x ∈ XL, there is a corresponding formula φx such that

x ∈ �̂φx.

2. If x ∈ �̂φ∩�̂ψ, then there is a formula χ such that x ∈ �̂χ ⊆ �̂φ∩�̂ψ.

For the first part, it should be noted that ⊤ ∈ S4. This happens because ⊤

is a propositional tautology. As S4 is closed under necessitation, so we get

�⊤ ∈ S4. As for each maximally consistent set x, we have S4 ⊆ x by Lemma

2.3.42, so �⊤ ∈ x for each x ∈ XL, that is, x ∈ �̂⊤, for each x ∈ XL.

For the second part, let x ∈ XL be such that x ∈ �̂φ ∩ �̂ψ.

We first claim that �̂φ ∩ �̂ψ = ̂�(φ ∧ ψ). Proving this suffices, as then

for any x ∈ �̂φ ∩ �̂ψ, we have x ∈ ̂�(φ ∧ ψ) ⊆ �̂φ ∩ �̂ψ. Proving the above

is equivalent to proving that for any x ∈ XL, �φ ∈ x and �ψ ∈ x if and

only if �(φ ∧ ψ) ∈ x.
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To prove it, we will first prove that both �(φ ∧ ψ) → �φ ∧ �ψ, and

�φ ∧�ψ → �(φ ∧ ψ) are in S4. For �(φ ∧ ψ) → �φ ∧�ψ, we have

1. ⊢ p ∧ q → p (Propositional tautology)

2. ⊢ φ ∧ ψ → φ (Uniform substitution: 1)

3. ⊢ �(φ ∧ ψ → φ) (Generalization: 2)

4. ⊢ �(p→ q) → �p→ �q (K)

5. ⊢ �(φ ∧ ψ → φ) → �(φ ∧ ψ) → �φ (Uniform substitution: 4)

6. ⊢ �(φ ∧ ψ) → �φ (Modus Ponens: 3,5)

7. ⊢ p ∧ q → q (Propositional tautology)

8. ⊢ φ ∧ ψ → ψ (Uniform substitution: 7)

9. ⊢ �(φ ∧ ψ → ψ) (Generalization: 8)

10. ⊢ �(φ ∧ ψ → ψ) → �(φ ∧ ψ) → �ψ (Uniform substitution: 4)

11. ⊢ �(φ ∧ ψ) → �ψ (Modus Ponens: 9,10)

12. ⊢ (p→ q) → (p→ r) → (p→ (q ∧ r)) (Propositional tautology)

13. ⊢ (�(φ ∧ ψ) → �φ) → (�(φ ∧ ψ) → �ψ)

→ (�(φ ∧ ψ) → �φ ∧�ψ) (Uniform substitution: 12)

14. ⊢ (�(φ ∧ ψ) → �ψ) → (�(φ ∧ ψ) → �φ ∧�ψ) (Modus Ponens: 6,13)

15. ⊢ �(φ ∧ ψ) → �φ ∧�ψ (Modus Ponens: 11,14)
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For �φ ∧�ψ → �(φ ∧ ψ), we have

1. ⊢ p→ q → p ∧ q (Propositional tautology)

2. ⊢ �(p→ q → p ∧ q) (Generalization: 1)

3. ⊢ �(p→ q) → �p→ �q (K)

4. ⊢ �(p→ q → p ∧ q) → �p→ �(q → p ∧ q) (Uniform substitution :3)

5. ⊢ �p→ �(q → p ∧ q) (Modus Ponens: 2,4)

6. ⊢ �(q → p ∧ q) → �q → �(p ∧ q) (Uniform substitution: 3)

7. ⊢ (p→ q) → (q → r) → (p→ r) (Propositional tautology)

8. ⊢ (�p→ �(q → p ∧ q)) → (�(q → p ∧ q)

→ (�q → �(p ∧ q)) → (�p→ �q → �(p ∧ q)) (Uniform substitution: 7)

9. ⊢ (�(q → p ∧ q) → (�q → �(p ∧ q)))

→ (�p→ �q → �(p ∧ q)) (Modus Ponens: 5,8)

10. ⊢ �p→ �q → �(p ∧ q) (Modus Ponens: 6,9

11. ⊢ (p→ q → r) → (p ∧ q → r) (Propositional tautology)

12. ⊢ (�p→ �q → �(p ∧ q))

→ (�p ∧�q → �(p ∧ q)) (Uniform substitution: 11)

13. ⊢ �p ∧�q → �(p ∧ q) (Modus Ponens: 10,12)

14. ⊢ �φ ∧�ψ → �(φ ∧ ψ) (Uniform substitution: 13)

Hence, both �(φ ∧ ψ) → �φ ∧�ψ, and �φ ∧�ψ → �(φ ∧ ψ) are in S4.

To prove the first claim, let x ∈ XL such that �φ,�ψ ∈ x. We have the

proof of �φ → �ψ → �φ ∧�ψ as follows:

1. ⊢ p→ q → (p ∧ q) (Propositional Tautology)

2. ⊢ �φ → �ψ → �φ ∧�ψ (Uniform substitution: 1)

As S4 ⊆ x by Lemma 2.3.42, we get that �φ → �ψ → �φ ∧ �ψ ∈ x.

As x is closed under Modus Ponens by Lemma 2.3.42, and as �φ ∈ x by

assumption, so we get that �ψ → �φ ∧ �ψ ∈ x. As x is closed under

Modus Ponens by Lemma 2.3.42, and as �ψ ∈ x by assumption, so we get
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that �φ ∧ �ψ ∈ x. As S4 ⊆ x by Lemma 2.3.42, and as we have proved

�φ ∧ �ψ → �(φ ∧ ψ) ∈ S4, so we get that �φ ∧ �ψ → �(φ ∧ ψ) ∈ x. As

x is closed under Modus Ponens by Lemma 2.3.42, so we get �(φ ∧ ψ) ∈ x.

Thus, �φ,�ψ ∈ x implies �(φ ∧ ψ) ∈ x.

To prove the converse, assume �(φ ∧ ψ) ∈ x. As we have proved

�(φ ∧ ψ) → �φ ∧ �ψ ∈ S4, and as S4 ⊆ x by Lemma 2.3.42, so we

get that �(φ ∧ ψ) → �φ ∧ �ψ ∈ x. As x is closed under Modus Ponens

by Lemma 2.3.42, we get �φ ∧ �ψ ∈ x. It should be noted that p ∧ q → p

is a propositional tautology, and hence, is in S4. By Uniform Substitution,

�φ∧�ψ → �φ ∈ S4, and as S4 ⊆ x, we get �φ∧�ψ → �φ ∈ x. By Modus

Ponens, we get �φ ∈ x. Similarly, as p ∧ q → q is a propositional tautology,

so we get that �ψ ∈ x. Together we get that, �φ ∧�ψ ∈ x implies �φ ∈ x

and �ψ ∈ x. Hence, we get that �̂φ ∩ �̂ψ = ̂�(φ ∧ ψ). So, BL forms a

basis.

Thus, τL is well-defined topology. Next, we make a topo-model out of the

canonical topological space.

Definition 5.1.6. The canonical topo-model is the pairML = 〈X , vL〉, where

• X is the canonical topological space, and

• vL(p) = {x ∈ XL | p ∈ x}.

⊣

Having built the canonical topo-model, in the next section, we see what

formulas are true at each of the maximally consistent set (or MCS) in the

topo-model.

5.2 Completeness through the Canonical

Topo-Model

The valuation has been defined on the canonical topological space in such

a way that a propositional variable is true at an MCS if and only if that
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propositional variable is contained in the MCS. The next lemma asserts that

the valuation lifts in a similar manner to all the formulas.

Lemma 5.2.1 (Truth Lemma). For all modal formulas φ, and for all

x ∈ XL, we have ML, x � φ iff x ∈ φ̂.

Proof. The following proof is by induction. If p is a propositional variable,

then

ML, x � p iff x ∈ vL(p) iff p ∈ x iff x ∈ p̂.

Assume that for all x ∈ XL, we have ML, x � φ iff x ∈ φ̂, and

ML, x � ψ iff x ∈ ψ̂. This is our induction hypothesis. Then for an x ∈ XL

we have,

ML, x � ¬φ iff ML, x 2 φ

iff x /∈ φ̂ (induction hypothesis)

iff φ /∈ x

iff ¬φ ∈ x (by Corollary 5.1.3)

iff x ∈ ¬̂φ.

Before proving the case for ∧, we prove that for any x ∈ XL, and for arbitrary

formulas φ and ψ, we have φ∧ψ ∈ x iff φ ∈ x and ψ ∈ x. Assume φ∧ψ ∈ x.

As p∧q → p is a propositional tautology, so by uniform substitution we have

φ ∧ ψ → φ ∈ S4. As S4 ⊆ x by Lemma 2.3.42, we get φ ∧ ψ → φ ∈ x, and

as x is closed under Modus Ponens by Lemma 2.3.42, we get that φ ∈ x.

Also, p ∧ q → q is a propositional tautology. So by a similar reasoning, we

get ψ ∈ x. Hence, φ ∧ ψ ∈ x implies φ ∈ x & ψ ∈ x.

Conversely, assume that φ, ψ ∈ x. As p → q → p ∧ q is a propositional

tautology, by uniform substitution we get φ → ψ → φ ∧ ψ ∈ S4, and as

S4 ⊆ x, we get that φ → ψ → φ ∧ ψ ∈ x. As x is closed under Modus

Ponens, and both φ and ψ are in x by assumption, so by applying Modus

Ponens twice, we get φ ∧ ψ ∈ x. Thus, φ, ψ ∈ x implies φ ∧ ψ ∈ x. Together,

we get φ ∧ ψ ∈ x iff φ ∈ x and ψ ∈ x.
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Now we prove the case for ∧. For arbitrary x ∈ XL, we have

ML, x � φ ∧ ψ iff ML, x � φ and ML, x � ψ

iff x ∈ φ̂ and x ∈ ψ̂ (induction hypothesis)

iff φ ∈ x and ψ ∈ x

iff φ ∧ ψ ∈ x

iff x ∈ φ̂ ∧ ψ.

Next, we prove the case for �. We need to prove that for all x ∈ XL, we have

ML, x � �φ iff x ∈ �̂φ. Let x ∈ XL. First, we assume x ∈ �̂φ. We need to

prove thatML, x � �φ, that is, we need to prove that there is an open set U

containing x such that for each y ∈ U , we have ML, y � φ. By the induction

hypothesis, it suffices to prove that there is an open set U containing x, such

that U ⊆ φ̂.

Consider the basic open set �̂φ. As x ∈ �̂φ, so it is an open set around

x. For y ∈ �̂φ, by definition we have �φ ∈ y. As �p → p is the axiom (T),

by uniform substitution we get �φ → φ ∈ S4. As S4 ⊆ y by Lemma 2.3.42,

we get that �φ → φ ∈ y. By Modus Ponens, we get φ ∈ y, that is, y ∈ φ̂.

So, �̂φ ⊆ φ̂, that is, �̂φ is the needed U. So, x ∈ �̂φ implies ML, x � �φ.

Now, we assume ML, x � �φ. We need to prove x ∈ �̂φ. By definition,

ML, x � �φ implies that there is an open set U containing x such that for

each y ∈ U , we have ML, y � φ. As each open set is a union of basic open

sets, we get that there is a basic open set �̂ψ containing x such that for all

y ∈ �̂ψ, we have ML, y � φ. By the induction hypothesis, we get that there

is a formula ψ such that �ψ ∈ x and �̂ψ ⊆ φ̂, that is, for all maximally

consistent sets y, we have �ψ ∈ y implies φ ∈ y.

We first prove that the set {�ψ,¬φ} is inconsistent. Assume on the

contrary that it’s not. Then by the Lindenbaum’s Lemma (2.3.43), it can

be extended to a maximally consistent set. Calling it Σ, as �ψ ∈ Σ, and

as for an arbitrary maximally consistent set y, if �ψ ∈ y then φ ∈ y, so

we get φ ∈ Σ. Hence, φ,¬φ ∈ Σ. As ¬(p ∧ ¬p) is a propositional tautology,

by uniform substitution we get ⊢ ¬(φ ∧ ¬φ). Hence, we get that Σ is not
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consistent, which is a contradiction. So, {�ψ,¬φ} is inconsistent, and thus

we have the following three possibilities:

1. If ⊢ ¬(�ψ ∧ ¬φ) holds, then as ¬(p ∧ ¬q) → p → q is a proposi-

tional tautology, by Uniform substitution and Modus Ponens we get

⊢ �ψ → φ.

2. If ⊢ ¬�ψ holds, then as ¬p → p → q is a propositional tautology, by

Uniform substitution and Modus Ponens, we get ⊢ �ψ → φ.

3. If ⊢ ¬(¬φ) holds, then as ¬¬q → p → q is a propositional tautology,

by Uniform substitution and Modus Ponens, we get ⊢ �ψ → φ.

Hence, in all the cases we get ⊢ �ψ → φ. Next, using ⊢ �ψ → φ, we prove

that ⊢ �ψ → �φ.

1. ⊢ �ψ → φ

2. ⊢ �(�ψ → φ) (Generalization: 1)

3. ⊢ �(p→ q) → (�p→ �q) (K)

4. ⊢ �(�ψ → φ) → ��ψ → �φ (Uniform substitution: 3)

6. ⊢ ��ψ → �φ (Modus Ponens: 2,4)

7. ⊢ �p→ ��p (4)

8. ⊢ �ψ → ��ψ (Uniform substitution: 7)

9. ⊢ (p→ q) → (q → r) → (p→ r) (Propositional tautology)

10. ⊢ (�ψ → ��ψ) → (��ψ → �φ) → (�ψ → �φ) (Uniform substitution: 9)

11. ⊢ (��ψ → �φ) → (�ψ → �φ) (Modus Ponens: 8,10)

12. ⊢ �ψ → �φ (Modus Ponens: 6,11)

As S4 ⊆ x by Lemma 2.3.42, we get �ψ → �φ ∈ x. As x is closed un-

der Modus Ponens by Lemma 2.3.42, and as �ψ ∈ x, so we get �φ ∈ x,

that is, x ∈ �̂φ. Thus, ML, x � �φ implies x ∈ �̂φ. Together we get

ML, x � �φ iff x ∈ �̂φ. Thus by induction, for all formulas φ and all x ∈ XL,

we have ML, x � φ iff x ∈ φ̂.
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Now we know exactly which formulas are true at an MCS in the canonical

topo-model. Thus, to show that a formula is falsifiable on the canonical

topo-model it is enough to show that its negation is contained in some MCS.

The next corollary uses the above fact to prove the completeness.

Corollary 5.2.2 (Completeness). S4 is complete with respect to the class

of all topological spaces.

Proof. To prove completeness we use Remark 4.0.4, that if φ /∈ S4, then

there is a topo-modelM and a point x in the topo-model such thatM,x 2 φ.

Assume φ /∈ S4. We claim that {¬φ} is consistent. Assume on the contrary

that it is not. Then ⊢ ¬¬φ. As ¬¬p → p is a propositional tautology, so by

Uniform substitution and Modus Ponens, we get that ⊢ φ which contradicts

the assumption that φ /∈ S4. So {¬φ} is consistent.

By the Lindenbaum’s Lemma (2.3.43), {¬φ} can be extended to a max-

imally consistent set. Let it be Σ. Then as ¬φ ∈ Σ, by the Truth Lemma

(5.2.1), we have ML,Σ � ¬φ, which implies ML,Σ 2 φ. Hence, S4 is com-

plete with respect to the class of all topological spaces.

The canonical topo-model that we have described is an infinite topo-

model. To see this, consider the following. We have countably many propo-

sitional variables. Let us call them a1, a2, a3, . . . for convenience. It can be

shown that the sets

A1 = {¬a1, a2, a3, . . .},

A2 = {a1,¬a2, a3, . . .},

A3 = {a1, a2,¬a3, . . .},

...

are all consistent. Also, no two of them can be extended to the same MCS.

For m 6= n, if Am and An can be extended to the same MCS Σ, then as

¬am ∈ Am, we get ¬am ∈ Σ. But as am ∈ An, we get am ∈ Σ. Thus, both

am,¬am ∈ Σ, which contradicts the fact that Σ is consistent. So, each Ai

can only be to a unique MCS.
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Thus, we have infinitely many states in our canonical topo-model. One

question which may arise is whether S4 is complete with respect to the

class of all finite topological spaces. The next section answers this in the

affirmative.

5.3 Finite Topo-model Property of S4

We want to prove that S4 is complete with respect to the class of all finite

topological spaces, that is, every formula which is not a theorem of S4, is

falsifiable on a finite topo-model. For a formula φ, if φ /∈ S4, then as S4

is complete with respect to the class of all reflexive transitive frames, so φ

is falsifiable on a reflexive transitive model. In this section, we will see that

from that model we can extract a finite topo-model, such that φ is falsifiable

on the topo-model too. Thus, then ¬φ is satisfiable on a finite topo-model,

and consequently φ is falsifiable on a finite topo-model. This gives us the

needed completeness result. The detailed proof follows.

Proposition 5.3.1. S4 is complete with respect to the class of finite topo-

logical spaces.

Proof. Let ψ /∈ S4. Then, ψ is falsifiable on a reflexive transitive frame by

Proposition 2.3.50. Let φ denote the formula ¬ψ. So, we have a reflexive

transitive model M = (X,R, V ), and some x ∈ X , such that M, x � φ.

Let Σ denote the set of formulas containing only φ and all its subformulas.

We consider a model MΣ = (XΣ, R
t, VΣ) which is a filtration of the model

M through Σ, and where Rt is defined as the following: Rt|x1||x2| iff for all

formulas λ, if ♦λ ∈ Σ and M, x2 � λ ∨ ♦λ, then M, x1 � ♦λ.

As M is a reflexive transitive model, so by Theorem 2.3.33 we get that

MΣ is a transitive model, and by Remark 2.3.32 we get that MΣ is a reflexive

model. By Proposition 2.3.29, MΣ is a finite model, and by the Filtration

Theorem (2.3.30) we get that MΣ, |x| � φ. Together, we get that φ is true on

a finite reflexive transitive model.

Let M be the topo-model formed from MΣ by taking the upsets as open

sets. Then as MΣ, |x| � φ, so by Lemma 4.3.6 we have M, |x| � φ. Hence,
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φ is true on a finite topo-model, which implies ψ is falsifiable on a finite

topological space. Thus, S4 is complete with respect to the class of all finite

topological spaces.

What this says is that the set of formulas valid on the class of all topological

spaces, and the set of formulas valid on the class of all finite topological spaces

is the same. Essentially, no modal formula can help us in distinguishing

between a finite and an infinite space. Our interpretation is not strong enough

to capture the property of finiteness, and we cannot distinguish the two

different classes of spaces based on the logic alone.

In the next chapter we will see another soundness and completeness result

of S4 with respect to a different class of spaces. All these results together

highlight the limitations of the topological interpretation.



6. THE MCKINSEY-TARSKI

THEOREM

In this chapter, we see the McKinsey-Tarski theorem which is another sound-

ness and completeness result for S4. It was first proved in 1944 by J.C.C.

McKinsey and Alfred Tarski ([1]). Recall that a space is said to be separable

if it has a countable dense subset, and a space is said to be dense-in-itself if

every point is a limit point. The McKinsey-Tarski Theorem states that S4 is

sound and complete with respect to the class of all separable dense-in-itself

metric spaces.

The McKinsey-Tarski theorem is stronger than the soundness and com-

pleteness result of S4 with respect to the class of all topological spaces. To

see this, consider the following discussion. For a formula not in S4, by the

McKinsey-Tarski theorem, it is falsifiable on a dense-in-itself separable met-

ric space. As every dense-in-itself separable metric space is a topological

space, so we get that every formula not in S4 is falsifiable on a topological

space. Thus, the McKinsey-Tarski theorem implies that S4 is complete with

respect to the class of all topological spaces.

We will be seeing a recent proof of the McKinsey-Tarski theorem (de-

scribed in [10]). The crux of the proof is to falsify a formula which is not in

S4, on a topo-model based on Q equipped with the euclidean topology. As

Q equipped with the euclidean topology is a separable dense-in-itself metric

space, so we get the McKinsey-Tarski theorem. To understand the proof in

detail, we need a few definitions and results first.

Definition 6.0.1. A frame (X,R) is said to be rooted if there exists an r ∈ X

such that for each x ∈ X , we have rRx. ⊣
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Thus, a frame is said to be rooted if there exists a ‘root’. We will call reflexive

transitive frames as S4-frames.

Proposition 6.0.2. S4 is complete with respect to the class of all finite

rooted S4-frames.

Proof. In the proof of Proposition 5.3.1, we prove that if ψ /∈ S4, then there

is a finite S4-frame (XΣ, R
t), a valuation VΣ on XΣ, and |x| ∈ XΣ such that

for the model MΣ = (XΣ, R
t, VΣ), we have MΣ, |x| 2 ψ. Let

Rt(|x|) = {y ∈ XΣ | |x|Rty}.

Let R denote the restriction of Rt to Rt(|x|), and let V denote the restriction

of VΣ to Rt(|x|). Then M = (Rt(|x|), R, V ) is a submodel of MΣ.

By definition of Rt(|x|), we get that (Rt(|x|), R) is a rooted frame, as |x|

forms a root.

We claim M is a generated submodel of MΣ. Let y ∈ Rt(|x|), and let

yRz hold for some z ∈ XΣ. As R is a restriction of Rt, we have yRtz. As

y ∈ Rt(|x|), we get that xRty. As Rt is transitive, we get xRtz, that is,

z ∈ Rt(|x|). Hence, M is a generated submodel of MΣ. As MΣ is a reflexive

transitive model, by Proposition 2.3.24 we get that M is also a reflexive

transitive model. Also, as MΣ is a finite model, so M is a finite model. By

Proposition 2.3.23, we get that M, |x| 2 ψ. Hence, φ is falsifiable on a finite

rooted S4-frame, and so, S4 is complete with respect to the class of all finite

rooted S4-frames.

We will use this completeness result later to prove the completeness of S4

with respect to Q.

6.1 Dense linearly ordered sets with no

endpoints

In this section we prove an isomorphism result which will help us in transfer-

ring the completeness result of S4 with respect to the class of all finite rooted
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S4-frames to completeness with respect to Q equipped with the euclidean

topology.

Definition 6.1.1. A frame (X,<) is said to be a linear order if it follows

the following properties:

• (Transitivity) for all x, y, z ∈ X , if x < y and y < z, then x < z, and

• (Trichotomy) for all x, y ∈ X , exactly one of x < y, y < x, or x = y

hold.

A linear order is said to be dense if for all x, y ∈ X , if x < y, then there exists

a z ∈ X such that x < z < y. A linear order is said to have no endpoints if

for all x ∈ X , there exist y, z ∈ X such that y < x < z. ⊣

Example 6.1.2. (Q, <) and (R, <), where < is the usual ‘less than’, are

dense linearly ordered sets with no endpoints. (N, <), where < is the usual

‘less than’, is a linearly ordered set, but is neither dense nor has no endpoints.

⊣

Definition 6.1.3. For two linearly ordered sets (A,<A) and (B,<B), a func-

tion f : A→ B is said to be an order isomorphism if

• f is bijective, and

• for each a1, a2 ∈ A, we have a1 <A a2 iff f(a1) <B f(a2).

Two linearly ordered sets (A,<A) and (B,<B) are said to be order isomorphic

if there exists an order isomorphism from one to another. ⊣

Example 6.1.4. Any two finite linearly ordered sets with the same number

of elements are order isomorphic. ⊣

In this section, when we talk about an isomorphism between linearly ordered

sets, we mean order isomorphism. The next result proves that every count-

able dense linearly ordered set with no endpoints is isomorphic to Q with

the usual ‘less than’ order. The proof uses what is called the back and forth

method, and can be found in [11].
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Proposition 6.1.5. Any two countable dense linearly ordered sets with no

endpoints are isomorphic.

Proof. Let (A,<A) and (B,<B) be two countable dense linearly ordered sets

with no endpoints. As an abuse of notation, we will use < both for <A and

<B, and it must understood from the context what < stands for at that

particular instance.

It should be noted that a linearly ordered set with no endpoints can’t

be finite. This is because if it is indeed finite, then there has to be a least

and a greatest element, which contradicts the assumption that the set has no

endpoints. Hence, both A and B are countably infinite. Thus, the elements

of A and B can be enumerated as

A = {a1, a2, . . .},

and

B = {b1, b2, . . .}.

Recall that a partial function f from a set X to a set Y is just a function

from a set Z to the set Y , such that Z ⊆ X.We inductively define a sequence

of partial functions {fi}i∈N from A to B such that for each i ∈ N, we have

• dom(fi) is finite,

• fi is injective,

• fi ⊆ fi+1 and

• fi preserves order both ways, that is, if a1, a2 ∈ dom(fi), then

a1 < a2 iff fi(a1) < fi(a2).

We define

f1 = {(a1, b1)}.

Then dom(f1) is finite, f1 injective, and vacuously f1 preserves order both

ways. Assume that fk has been defined such that dom(fk) is finite, fk is in-

jective, and fk preserves order both ways. We construct fk+1 in the following

way.
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• For each a ∈ dom(fk), define

fk+1(a) = fk(a).

• If ak+1 ∈ dom(fk), we proceed to the next step. Else, as A is lin-

early ordered, so the elements of dom(fk)∪ {ak+1} can be written in a

sequence of increasing order. We have the following possibilities:

1. If the sequence is

a′1 < a′2 < . . . < a′i < ak+1 < a′i+1 < . . . < a′n.

Then as fk is order preserving by assumption, and as fk ⊆ fk+1,

we get fk+1(a
′
i) < fk+1(a

′
i+1). As B is dense, so there exists a b ∈ B

such that fk+1(a
′
i) < b < fk+1(a

′
i+1). We define fk+1(ak+1) to be b.

2. If the sequence is

ak+1 < a′1 < a′2 < . . . < a′n,

then as fk preserves order, and as fk ⊆ fk+1, similar to the pre-

vious case, we get fk+1(a
′
1) < . . . < fk+1(a

′
n). Then, as B has no

least point, we can choose a b ∈ B such that b < fk+1(a
′
1). We

define fk+1(ak+1) to be b.

3. If the sequence is

a′1 < a′2 < . . . < a′n < ak+1,

as B has no greatest point, similar to the previous case, there

exists a b ∈ B such that fk+1(a
′
n) < b. We define fk+1(ak+1) to be

b.

• If bk+1 ∈ ran(fk+1), then we are done. Else, as B is linearly ordered, so

the elements in ran(fk+1)∪{bk+1} can be put in a sequence of increasing

order. Here too, we get three cases.
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1. If the sequence is of the form

b′1 < . . . < b′i < bk+1 < b′i+1 < . . . < b′m,

then as fk preserves order in both the ways, and as fk ⊆ fk+1, we

get f−1
k+1(b

′
i) < f−1

k+1(b
′
i+1). As A is dense, so there exists an a ∈ A

such that f−1
k+1(b

′
i) < a < f−1

k+1(b
′
i+1). We define fk+1(a) to be bk+1.

2. If the sequence is

bk+1 < b′1 < . . . < b′m,

then as fk preserves the order both the ways, and as fk ⊆ fk+1,

similar to the previous case, we get f−1
k+1(b

′
1) < . . . < f−1

k+1(b
′
m).

Then, as A has no least element, we get that there exists an a ∈ A,

such that a < f−1
k+1(b

′
1). We define fk+1(a) to be bk+1.

3. If the sequence is

b′1 < b′2 < . . . < b′m < bk+1,

as A has no greatest point, similar to the previous case, there

exists an a ∈ A such that f−1
k+1(b

′
m) < a. We define fk+1(a) to be

bk+1.

In this way, we define fk+1.

As no more than one element has been added to dom(fk) to form dom(fk+1),

and as dom(fk) is finite by assumption, so dom(fk+1) is finite. Also, fk+1 is

injective as the order condition we put in choosing a and b makes sure that

a 6= f−1
k+1(b

′
j), and b 6= fk+1(a

′
l) for any 1 ≤ j ≤ m, and 1 ≤ l ≤ n. Finally, in

constructing fk+1 we have made sure that fk+1 preserves the order both the

ways.

Hence, we have constructed a sequence of partial functions {fi}i∈N from

A to B, such that for each i ∈ N, dom(fi) is finite, fi is injective and fi

preserves the order both the ways. We define

f =
⋃

i∈N

fi.
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We claim that f is an order isomorphism from A to B.

• For any ak ∈ A, we have ak ∈ dom(fk) ⊆ dom(f). So, dom(f) = A.

• We now prove that f is indeed a function. Assume on the contrary

that it is not. Then, there exists some a ∈ A such that for some

b, b′ ∈ B with b 6= b′, we have (a, b), (a, b′) ∈ f. As f =
⋃

i∈N

fi, so

there exist j, l ∈ N such that (a, b) ∈ fj, and (a, b′) ∈ fl. By the

inductive process, we have fj ⊆ fmax{j,l}, and fl ⊆ fmax{j,l}, which

implies (a, b), (a, b′) ∈ fmax{j,l}, which contradicts the fact that fmax{j,l}

is a partial function. So, our assumption is wrong, and f is indeed a

function.

• We now prove that f is injective. For k,m ∈ N with k 6= m, let there

be ak, am ∈ A such that for some b ∈ B, we have (ak, b), (am, b) ∈ f.

Then again there exist j, l ∈ N such that (ak, b) ∈ fj, and (am, b) ∈ fl,

which implies (ak, b), (am, b) ∈ fmax{j,l}, which contradicts the fact that

fmax{j,l} is injective. Hence, f is injective.

• For any bk ∈ B, as bk ∈ ran(fk) ⊆ ran(f), so ran(f) = B. Hence, f is

surjective.

• We now claim that f preserves the order both the ways. Let aj, al ∈ A

such that aj < al. Then we get aj, al ∈ dom(fmax{j,l}). As fmax{j,l} pre-

serves order both ways, we get fmax{j,l}(aj) < fmax{j,l}(al). As

fmax{j,l} ⊆ f , we get f(aj) < f(al).

Similarly, for bj , bl ∈ B such that bj < bl, as bj , bl ∈ ran(fmax{j,l}), and as

fmax{j,l} preserves order both ways, we have f−1
max{j,l}(bj) < f−1

max{j,l}(bl).

As fmax{j,l} ⊆ f , we get f−1(bj) < f−1(bl). Hence, f preserves order

both ways.

Thus, f is an order isomorphism and any two countable dense linearly ordered

sets with no endpoints are isomorphic.
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As (Q, <) is a countable linearly ordered dense set with no endpoints, so as a

consequence of the previous proposition we get that every countable linearly

ordered dense set with no endpoints is isomorphic to (Q, <).

6.2 Homeomorphism result of ordered sets

In this section, we see that we can put a topology on a countable dense

linearly ordered set with no endpoints such that it is homeomorphic to Q

with the euclidean topology.

Definition 6.2.1. For a linearly ordered set (X,<), and for each a, b ∈ X ,

we define

(a, b) = {x ∈ X | a < x < b}.

⊣

Lemma 6.2.2. If (X,<) is a linearly ordered set with no endpoints then

{(a, b) | a, b ∈ X} forms a basis.

Proof. As (X,<) has no endpoints, so for all x ∈ X , there exist a, b ∈ X

such that a < x < b, which implies x ∈ (a, b) ⊆ X.

Let x ∈ X such that x ∈ (a, b) ∩ (a′, b′) for some a, b, a′, b′ ∈ X. So

a < x < b, and a′ < x < b′. By trichotomy a and a′ are comparable, so

max{a, a′} exists. Similarly, min{b, b′} exists. Then we get

a < max{a, a′} < x < min{b, b′} < b,

and

a′ < max{a, a′} < x < min{b, b′} < b′.

Thus

x ∈ (max{a, a′},min{b, b′}) ⊆ (a, b) ∩ (a′, b′).

So, {(a, b) | a, b ∈ X} forms a basis for X .

Definition 6.2.3. We call the topology generated by the above basis as the

order topology on X . ⊣
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Example 6.2.4. For the euclidean topology on Q, the set of open intervals

forms a basis, which also forms a basis for the order topology on (Q, <).

Thus, the order topology and the euclidean topology on Q are the same. ⊣

We have already proved that there is just one linearly ordered set with no

endpoints upto isomorphism. As the order topology is entirely dependent

upon the order, it is no surprise that as topological spaces, every linearly

ordered set with no endpoints equipped with the order topology is home-

omorphic to Q with the order topology, which in turn is the same as the

euclidean topology on Q. The next propositions proves the same.

Proposition 6.2.5. Every countable dense linearly ordered set with no end-

points is homeomorphic to Q with the euclidean topology.

Proof. We prove that every countable dense linearly ordered set with no

endpoints is homeomorphic to Q with the order topology. As both the order

topology and euclidean topology are the same on Q, so the result follows.

Let (X,<) be a countable dense linearly ordered set with no endpoints.

By Proposition 6.1.5, there exists an order isomorphism f : X → Q. We

claim that this map f is a homeomorphism.

As f is an order isomorphism, hence it is bijective. We now prove that

the inverse image of open sets under f is open. It suffices to prove that the

inverse image of a basic open set under f is open. Let (p, q) ⊆ Q be a basic

open set. Then

x ∈ f−1(p, q) ⇔ f(x) ∈ (p, q)

⇔ p < f(x) < q

⇔ f−1(p) < x < f−1(q) (f preserves order both the ways)

⇔ x ∈ (f−1(p), f−1(q)).

Thus for each p, q ∈ Q such that p < q, we have f−1(p, q) = (f−1(p), f−1(q)).

Therefore, f−1 maps basic open sets to basic open sets.
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Similarly, for each a, b ∈ X such that a < b, we get

(f−1)−1(a, b) = f(a, b) = (f(a), f(b)).

Thus the inverse image of f−1 takes basic open sets to basic open sets. There-

fore, f is a homeomorphism, and X equipped with the order topology and

Q equipped with the order topology are homeomorphic.

6.3 S4 frames as an interior image of Q

In this section, we prove that every finite rooted S4-frame can be thought of

as the image of an interior map from Q. To prove the result, we first need to

construct a set which is homeomorphic to Q.

6.3.1 The Construction

Let F = (W,T ) be a finite rooted S4-frame. We construct a topological

space (Σ, τ) such that there is an onto interior map from Σ to W where W

is equipped with the Alexandroff topology induced from the relation T .

Construction of Σ

Let

Σ = {finite sequences on non-zero integers} .

Let Λ denote the empty sequence. Then Σ contains Λ. Some other elements

of Σ are 1, (−3)43, 2(−1)1, 2, and 21(−3)9(−8)73(−9)8126. To define the

topology τ on Σ, we first construct a linearly ordered set X . Using the order

on X , we put an order on Σ such that it forms a linearly ordered dense set

with no endpoints. Then, the topology τ is defined to be the order topology

on Σ.
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Construction of X

Let

L = R× (−∞, 0).

So, L is the lower half plane without the x-axis. Let

L0 = R× {0}.

So on the xy-plane, L0 represents the x-axis. Let

C = {[a, b] | a, b ∈ R}.

So, C is the set of all closed and bounded intervals in R. Consider the following

maps:

1. α : L→ C given by

α((x, y)) = [x+ y, x− y].

Identifying R with L0, what α does is, it maps each point in L to

the closed and bounded interval which forms the edge of the unique

isosceles right triangle, with the right angled vertex at (x, y).

(x, y)

α((x, y))

b

L0

L

x+ y x− y

Fig. 6.1: The map α.

2. β : C → L given by

β([a, b]) = (
a + b

2
,
a− b

2
).
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Identifying R with L0, what β does is, it maps each closed and bounded

interval to the point which forms the right angled vertex of the unique

right isosceles triangle with the hypotenuse as the interval [a, b].

a b

β([a, b])

b

L0

L

Fig. 6.2: The map β.

Then, α ◦ β : C → C is given by

α ◦ β([a, b]) = α

(
a+ b

2
,
a− b

2

)

=

[
a+ b

2
+
a− b

2
,
a+ b

2
−
a− b

2

]

= [a, b].

Thus, α ◦ β is the identity map on C. Similarly, β ◦ α is the identity map on

L.

So, the two sets C and L are in one-to-one correspondence with each

other. We will use all these maps, and Σ to define the needed set X . For

that, we first define a map h : Σ → L in an inductive manner. Define

h(Λ) = (0,−1).

To define h on the other elements of Σ, we need a few notations. Let

σ ∈ Σ, and let z be a non-zero integer. Let σ.z denote the finite sequence

formed by concatenating the sequence σ with z. For example, 123.5 denotes

the string 1235, and Λ.2 denotes the string 2.

Let us assume that h(σ) is defined, and let h(σ) = (x, y) = p. Using h(σ),
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we will define h(σ.z) for each non-zero integer z. We introduce some more

notations which we will be needing to define h(σ.z). For each n ∈ N, let

Ip−n =
[
x+

y

2n−1
, x+

y

2n

]
,

and

Ipn =
[
x−

y

2n
, x−

y

2n−1

]
.

Thus,

Ip−1 =
[
x+ y, x+

y

2

]
,

Ip1 =
[
x−

y

2
, x− y

]
,

Ip−2 =
[
x+

y

2
, x+

y

4

]
,

and

Ip2 =
[
x−

y

4
, x−

y

2

]
.

We define

h(σ.z) = β(Ipz ).

In this manner, we define h inductively on Σ. As each σ ∈ Σ can be con-

structed in an inductive manner from Λ by concatenating a non-zero integer

z finitely many times, and in a unique manner, hence h is a well-defined

function. Consider the projection map π1 : L→ R given by

π1((x, y)) = x.

We define

X = π1 ◦ h(Σ).

Identifying R with L, we can visualize the construction as shown in Figure

6.3.

As X ⊆ R, a natural order relation < is induced on X from R. The

properties of trichotomy and transitivity hold for elements in X , by virtue

of them holding in R. Hence, (X,<) also forms a linearly ordered set.
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b

b

b

b

b

b

b b b bb b b bbb
x+ y x− y

Ip−1 Ip−2 Ip1Ip2

h(σ) = p = (x, y)

h(σ.− 1)

h(σ.− 2)

h(σ.1)

h(σ.2)

π1((x, y)) π1(h(σ.2))π1(h(σ.− 1)) π1(h(σ.− 2)) π1(h(σ.1))

Fig. 6.3: The map h.

We define a relation < on Σ as follows. For σ, λ ∈ Σ,

σ < λ iff π1(h(σ)) < π1(h(λ)).

Thus, the order on Σ is the pullback of the order defined on X under the

map π1 ◦ h. We claim that (Σ, <) forms a countably infinite linearly ordered

dense set with no endpoints.

Σ is countably infinite

Σ can be partitioned into the sets S0, S1, . . ., where for a non-negative integer

m, Sm contains all finite sequences of length m. For example,

S0 = {Λ},

S1 = {−1,−2, . . . , 1, 2, . . .},

S2 = {−1(−1),−1(−2), . . . , (−1)1, (−1)2, . . . ,−2(−1),−2(−2), . . . }
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...

and so on. Then

Σ =
⋃

m∈N∪{0}

Sm.

S0 is a singleton, and for m ∈ N, Sm can be identified with (Z − {0})m. As

Z−{0} is countably infinite, hence (Z−{0})m is countably infinite for each

m ∈ N. Thus, each Sm is countable, and hence, Σ is a countably infinite.

(Σ, <) is a linearly ordered set

To establish this, we will use the fact thatX is a subset of R and (R, <) forms

a linearly ordered set. For each x, y, z ∈ X , the properties of trichotomy and

transitivity hold as they hold in (R, <). Thus, (X,<) forms a linearly ordered

set under the induced order <.

For transitivity in (Σ, <), let σ, τ, λ ∈ Σ such that σ < τ, and τ < λ. By

the definition of < on Σ, we have π1(h(σ)) < π1(h(τ)), and

π1(h(τ)) < π1(h(λ)). As π1(h(σ)), π1(h(τ)), π1(h(λ)) ∈ X , and as < is a

transitive relation on X , we get that π1(h(σ)) < π1(h(λ)), which implies

σ < λ. Hence, < is transitive on Σ.

For trichotomy, let σ, λ ∈ Σ. Then π1(h(σ)), π1(h(λ)) ∈ X . As (X,<) is

a linearly ordered set, by trichotomy exactly one of the following happens:

1. π1(h(σ)) < π1(h(λ)),

2. π1(h(λ)) < π1(h(σ)), or

3. π1(h(σ)) = π1(h(λ)).

By the definition of < on Σ, for the first case we get σ < λ, and for the

second case we get λ < σ. Next, we prove that the map π1 ◦ h is injective,

and hence the third case implies that σ = λ.

π1 ◦ h is an injective map

Before proving the injectivity, we will prove a series of lemmas which can be

found in [12]. Recall that by Z∗, we mean Z− {0}.
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Lemma 6.3.1. For any σ ∈ Σ, and z1, z2 ∈ Z∗ such that z1 6= z2, the set

Ih(σ)z1
∩ Ih(σ)z2

has at most one element.

Proof. Let σ ∈ Σ, and z ∈ Z∗. Let h(σ) = (x, y). Consider the case when

z > 0. Then

Ih(σ)z =
[
x−

y

2z
, x−

y

2z−1

]
.

Then for all z′ ∈ Z∗ such that z′ < 0, we have

I
h(σ)
z′ =

[
x+

y

2−z−1
, x+

y

2−z

]
.

As for each p ∈ Ih(σ)z , we have p > x, and as for each q ∈ I
h(σ)
z′ , we have

q < x, so we get

Ih(σ)z ∩ I
h(σ)
z′ = ∅.

If z − 1 ∈ Z∗, then we have

I
h(σ)
z−1 =

[
x−

y

2z−1
, x−

y

2z−2

]
.

Thus, we get

Ih(σ)z ∩ I
h(σ)
z−1 =

{
x−

y

2z−1

}
.

Similarly,

Ih(σ)z ∩ I
h(σ)
z+1 =

{
x−

y

2z

}
.

For any k > 1, we have

I
h(σ)
z+k =

[
x−

y

2z+k
, x−

y

2z+k−1

]
.

As k > 1, we have k − 1 > 0, and hence,

I
h(σ)
z+k ∩ Ih(σ)z = ∅.

Thus, for z > 0, and for any z′ ∈ Z∗ such that z 6= z′, we get that Ih(σ)z ∩I
h(σ)
z′

has at most one element. Similarly, we get the result for z < 0.
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Lemma 6.3.2. Let σ, τ ∈ Σ. We define a relation R on Σ given by

σRτ iff σ is a proper initial substring of τ.

Then the following statements are equivalent:

(1) σRτ.

(2) α ◦ h(τ) ( α ◦ h(σ).

(3) α ◦ h(τ) ⊆ α ◦ h(σ)− {π1 ◦ h(σ)}.

(4) Int(α ◦ h(τ)) ( Int(α ◦ h(σ)− {π1 ◦ h(σ)}).

Proof. We first prove that (1) and (2) are equivalent. Let σRτ. So

τ = σ.z1. · · · .zk for some z1, · · · , zk ∈ Z∗ and k > 0.

We claim that α ◦ h(σ.z1) ( α ◦ h(σ). We have

α ◦ h(σ.z1) = α(β(Ih(σ)z1
)),

and as α = β−1, so we get

α ◦ h(σ.z1) = Ih(σ)z1
.

Let h(σ) = (x, y). Then α ◦ h(σ) = [x+ y, x− y], and we get

Ih(σ)z1
( α ◦ h(σ),

for any z ∈ Z∗. Hence,

α ◦ h(σ.z1) ( α ◦ h(σ).

Continuing in this manner, we get

α ◦ h(σ.z1. · · · .zm) ( α ◦ h(σ.z1. · · · .zm−1)

for each m ≤ k. Together, we get α ◦ h(τ) ( α ◦ h(σ). Thus, (1) ⇒ (2).
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Now, we prove (2) ⇒ (1). To prove this, we prove the contra-positive,

that the negation of (1) ⇒ the negation of (2). Let (σ, τ) /∈ R. We have the

following cases:

• τRσ.

• (τ, σ) /∈ R.

If τRσ, then we have α ◦ h(τ) ( α ◦ h(σ) because (1) ⇒ (2). So, it is not

the case that α ◦ h(σ) ( α ◦ h(τ).

To handle the next case, we need a few notations. For any λ ∈ Σ, let l(λ)

denote the length of the finite sequence. For example, l(Λ) = 0, l(123) = 3,

and l(3(−6)2(−4)56(−5)23(−7)26) = 12. For any λ ∈ Σ, and for any positive

integer k ≤ l(λ), let λk denote the k-th entry of λ. For example (123)2 = 2,

and (3(−6)2(−4)56(−5)23(−7)26)10 = −7.

Consider the case (τ, σ) /∈ R. Then, there exists a longest ρ ∈ Σ such that

ρRσ and ρRτ. Also, then ρ 6= τ and ρ 6= σ, else τRσ and σRτ, respectively

which contradicts our assumption. (Note that ρ = Λ is also possible.)

Then as ρ 6= σ, we have that ρ.σl(ρ)+1 is an initial substring (not nec-

essarily proper) of σ. If it is a proper initial substring, from (1) ⇒ (2), we

get

α ◦ h(σ) ( α ◦ h(ρ.σl(ρ)+1).

If it is an initial substring but not proper, then σ = ρ.σl(ρ)+1, which implies

α ◦ h(σ) = α ◦ h(ρ.σl(ρ)+1).

In both the cases, we get

α ◦ h(σ) ⊆ α ◦ h(ρ.σl(ρ)+1).

By a similar reasoning, we get

α ◦ h(τ) ⊆ α ◦ h(ρ.τl(ρ)+1).
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Thus,

α ◦ h(σ) ∩ α ◦ h(τ) ⊆ α ◦ h(ρ.σl(ρ)+1) ∩ α ◦ h(ρ.τl(ρ)+1).

By Lemma 6.3.1, α ◦h(ρ.σl(ρ)+1)∩α ◦h(ρ.τl(ρ)+1) contains at most one point,

and as α ◦ h(τ) is a closed and bounded interval, so it contains more than

one point. Thus, it is not the case that α◦h(τ) ( α◦h(σ). Thus, (2) ⇒ (1).

Now, we prove that (1) ⇒ (3). Let us assume σRτ. Then, the finite

sequence σ.τl(σ)+1 is an initial substring of τ (not necessarily proper). If it is

an initial substring but not proper, we have

α ◦ h(σ.τl(σ)+1) = α ◦ h(τ),

and if it is a proper initial substring, from (1) ⇒ (2), we have

α ◦ h(τ) ( α ◦ h(σ.τl(σ)+1).

In any case,

α ◦ h(τ) ⊆ α ◦ h(σ.τl(σ)+1).

Let, h(σ) = (x, y). Then, π1 ◦ h(σ) = x. By the definition of Ih(σ)z , for any

z ∈ Z∗, we have x /∈ Ih(σ)z . Thus,

π1 ◦ h(σ) /∈ α ◦ h(σ.τl(σ)+1),

which implies

α ◦ h(σ.τl(σ)+1)− {π1 ◦ h(σ)} = α ◦ h(σ.τl(σ)+1).

As α ◦ h(τ) ⊆ α ◦ h(σ.τl(σ)+1), we get

α ◦ h(τ)− {π1 ◦ h(σ)} = α ◦ h(τ).

By assumption σRτ , and hence, from (1) ⇒ (2), we get

α ◦ h(τ) ( α ◦ h(σ).
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Thus,

α ◦ h(τ)− {π1 ◦ h(σ)} ( α ◦ h(σ)− {π1 ◦ h(σ)},

which implies

α ◦ h(τ) ( α ◦ h(σ)− {π1 ◦ h(σ)}.

Thus, (1) ⇒ (3).

Now we prove (3) ⇒ (4). Let us assume (3) holds, that is,

α ◦ h(τ) ( α ◦ h(σ)− {π1 ◦ h(σ)}.

Let h(σ) = (x, y). Then α ◦ h(σ) = [x+ y, x− y], and π1 ◦ h(σ) = x. Thus

α ◦ h(σ)− {π1 ◦ h(σ)} = [x+ y, x) ∪ (x, x− y].

Let h(τ) = (u, v). Then α ◦ h(τ) = [u + v, u − v]. Thus by the assumption

(3), we have

[u+ v, u− v] ( [x+ y, x) ∪ (x, x− y].

Thus [u + v, u − v] ( [x + y, x), or [u + v, u − v] ( (x, x − y]. Therefore

(u+ v, u− v) ( (x+ y, x), or (u+ v, u− v) ( (x, x− y). Hence,

(u+ v, u− v) ( (x+ y, x) ∪ (x, x− y).

So,

Int(α ◦ h(τ)) ( Int(α ◦ h(σ)− {π1 ◦ h(σ)}).

Thus, (3) ⇒ (4).

Now, we prove (4) ⇒ (2). Let us assume (4) holds, that is,

Int(α ◦ h(τ)) ( Int(α ◦ h(σ)− {π1 ◦ h(σ)}).

We first assume τ = σ. Let h(σ) = (x, y). Then α ◦ h(σ) = [x, y]. So by

assumption, we get

(x+ y, x− y) ( (x+ y, x− y)− {x},
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which is a contradiction. So τ 6= σ. As α ◦ h(σ)− {π1 ◦ h(σ)} ( α ◦ h(σ), so

Int(α ◦ h(σ)− {π1 ◦ h(σ)}) ⊆ Int(α ◦ h(σ)).

Using (3), we get

Int(α ◦ h(τ)) ( Int(α ◦ h(σ)).

Let h(τ) = (u, v).Then α◦h(τ) = [u+v, u−v].As Int(α◦h(τ)) ( Int(α◦h(σ)),

we have

(u+ v, u− v) ( (x+ y, x− y),

and so

[u+ v, u− v] ( [x+ y, x− y].

Thus,

α ◦ h(τ) ( α ◦ h(σ).

Hence, (4) ⇒ (2), and all the statements are equivalent.

Now we prove the injectivity of the function π1◦h, which will finally establish

the trichotomy of the relation < on Σ.

Proposition 6.3.3. The function π1 ◦ h : Σ → R is injective.

Proof. Let σ, τ ∈ Σ be distinct. We have the following possibilities.

1. σRτ.

2. τRσ.

3. Neither σRτ nor τRσ.

In the first case by Lemma 6.3.2, we have

π1 ◦ h(τ) ∈ α ◦ h(τ) ( α ◦ h(σ)− {π1 ◦ h(σ)}.

So π1 ◦ h(τ) 6= π1 ◦ h(σ). Similarly, for the second case we get

π1 ◦ h(τ) 6= π1 ◦ h(σ). For the last case, let ρ be the longest string such that
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both ρRτ and ρRσ hold. Note that ρ 6= σ and ρ 6= τ , else the assumption

that neither σRτ nor τRσ gets violated. Then

π1 ◦ h(σ) ∈ Int(α ◦ h(σ)),

since π1 ◦ h(σ) is the midpoint of α ◦ h(σ). Similarly, for τ we get

π1 ◦ h(τ) ∈ Int(α ◦ h(τ)).

By definition of ρ, we have ρ.σl(ρ)+1 6= ρ.σl(ρ)+1.

As ρ.σl(ρ)+1 is an initial substring (not necessarily proper) of σ, we get

π1 ◦ h(σ) ∈ Int(α ◦ h(σ)) ⊆ Int(α ◦ h(ρ.σl(ρ)+1)).

Similarly,

π1 ◦ h(τ) ∈ Int(α ◦ h(τ)) ⊆ Int(α ◦ h(ρ.τl(ρ)+1)).

Now, both α◦h(ρ.τl(ρ)+1) and α◦h(ρ.σl(ρ)+1) are closed and bounded intervals,

and if they intersect, they intersect only at one of each of their endpoints.

Int(α ◦ h(ρ.τl(ρ)+1)) and Int(α ◦ h(ρ.σl(ρ)+1)) are open bounded intervals, and

hence, they can’t intersect. So,

Int(α ◦ h(ρ.σl(ρ)+1)) ∩ Int(α ◦ h(ρ.τl(ρ)+1)) = ∅.

Therefore π1 ◦ h(σ) 6= π1 ◦ h(τ). Hence, in all the cases, we get π1 ◦ h(σ) 6=

π1 ◦ h(τ), which implies that π1 ◦ h is injective.

(Σ, <) is dense

Let σ, λ ∈ X such that σ < λ. This implies π1(h(σ)) < π1(h(λ)). We claim

there exists z ∈ Z such that z > 0 and π1(h(σ)) < π1(h(σ.z)) < π1(h(λ)).

Let z ∈ Z be arbitrary such that z > 0. If h(σ) = (x, y), then

π1(h(σ.z)) = π1(β(I
(x,y)
z )) = x−

3y

2z+1
.
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Thus

π1(h(σ.z))− π1(h(σ)) = −
3y

2z+1
,

which implies

π1(h(σ.z)) = π1(h(σ))−
3y

2z+1
.

So we can choose a large enough z0, such that

π1(h(σ))−
3y

2z0+1
< π1(h(λ)).

(Note that y < 0.) So, there exists z0 > 0 such that

π1(h(σ)) < π1(h(σ.z0)) < π1(h(λ)), which implies σ < σ.z0 < λ. Hence,

(Σ, <) is dense.

(Σ, <) has no endpoints

Let σ ∈ Σ. We claim σ.− 1 < σ < σ.1. Let h(σ) = (x, y). We have

π1(h(σ.1)) = π1(β(I
(x,y)
1 )) = π1(β(

[
x−

y

2
, x− y

]
)) = x−

3y

4
,

and

π1(h(σ.− 1)) = π1(β(I
(x,y)
−1 )) = π1(β(

[
x+ y, x+

y

2

]
)) = x+

3y

4
.

As y < 0, we have

x+
3y

4
< x < x−

3y

4
.

Thus, π1(h(σ. − 1)) < π1(h(σ)) < π1(h(σ)), which implies σ. − 1 < σ < σ.1.

Hence, (Σ, <) has no endpoints.

All of this together says that Σ, < is a linearly ordered dense set with no

endpoints. By Proposition 6.1.5 and Proposition 6.2.5, Σ equipped with the

order topology is homeomorphic to Q equipped with the euclidean topology.
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6.3.2 Interior Map from Σ to the frame

Let F = (W,T ) be a finite rooted S4-frame. We recursively define a function

f : Σ → W such that f becomes an interior map. As F is rooted, so there

exists an r ∈ W such that r is a root, that is, for each w ∈ W , we have rTw.

We define

f(Λ) = r.

The recursive step

Let σ ∈ Σ, and let f(σ) = w for some w ∈ W. Let

T (w) = {v ∈ W | Twv}.

Then as T is a reflexive relation, we have w ∈ T (w), and hence, T (w) 6= ∅.

Consider a function gw : N → T (w) such that for each v ∈ T (w), the set

g−1
w (v) is an infinite set. It should be noted that such a function always

exists. To see this, consider the following. As W is finite by assumption, and

as T (w) ⊆W , we get that T (w) is finite. Let

T (w) = {v1, v2, . . . , vn}.

Then, one of the candidates for gw is

(v1, v2, . . . , vn, v1, v2, . . . , vn, v1, . . .).

We define

f(σ.n) = f(σ.− n) = gw(n).

Thus for each z ∈ Z∗, we have f(σ.z) ∈ T (w). In this way f is defined.

f is onto

We claim that f is onto. For w ∈ W, as F is a rooted, there exists a root

r such that rTw. Then by definition of gr, there exists an n ∈ N such that

gr(n) = w, and by the definition of f , we have f(Λ.n) = w. As w is arbitrary,
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we get that f is onto.

Next, we prove a series of lemmas (can be found in [12]) which will help

us in proving that f is an interior map.

Lemma 6.3.4. The function π1 ◦ h : Σ → X is a homeomorphism where

both the spaces are equipped with the order topology.

Proof. We have already proved that π1 ◦ h is injective (Proposition 6.3.3).

As X is defined to be the range of π1 ◦h, we get that π1 ◦h is a bijective map

from Σ to X . Also, as the order defined on Σ is the pullback of the order

defined on X , so π1 ◦h is an order isomorphism. Using the steps in the proof

of Proposition 6.2.5, we get that π1 ◦ h is a homeomorphism.

Definition 6.3.5. We define a relation S on Σ as follows:

σSτ iff σ is an initial substring of τ.

⊣

It can be checked that S is a partial order, that is, it is reflexive, anti-

symmetric, and transitive.

The next lemma states that the subspace topology on X , and the order

topology on X are one and the same. This will help us later when we prove

that S(σ) is open in 〈Σ, µ〉, where µ is the order topology on Σ.

Lemma 6.3.6. Let τ1 denote the subspace topology on X, and let τ2 denote

the order topology on X. Then τ1 = τ2.

Proof. Consider a basic open interval

(π1 ◦ h(σ), π1 ◦ h(σ
′))π1◦h(Σ) ∈ τ2.

Then

(π1 ◦ h(σ), π1 ◦ h(σ
′))π1◦h(Σ) = (π1 ◦ h(σ), π1 ◦ h(σ

′))R ∩ π1 ◦ h(Σ) ∈ τ1.
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So τ2 ⊆ τ1. Now, we prove the other containment. Let U ∈ τ1 be a basic

open set of the form

U = (x, y)R ∩ π1 ◦ h(Σ).

Let z ∈ U . Then for some σ ∈ Σ, we have z = π1 ◦ h(σ). Then by using the

proof used to show that (Σ, <) is a dense order, we know we can choose a

large enough n ∈ N, such that

x < π1 ◦ h(σ.− n) < π1 ◦ h(σ) < π1 ◦ h(σ.n) < y.

Then

z ∈ (π1 ◦ h(σ.− n), π1 ◦ h(σ.n))π1◦h(Σ)) ⊆ U.

As

(π1 ◦ h(σ.− n), π1 ◦ h(σ.n))π1◦h(Σ) ∈ τ2,

so τ1 ⊆ τ2. Hence, τ1 = τ2.

Thus, the two topologies on X are the same.

Lemma 6.3.7. Let σ ∈ Σ. Then

1. π1 ◦ h(S(σ)) = α ◦ h(σ) ∩ π1 ◦ h(Σ) = IntR(α ◦ h(σ)) ∩ π1 ◦ h(Σ).

2. S(σ) is open in 〈Σ, µ〉.

Proof. 1. We first prove that

π1 ◦ h(S(σ)) ⊆ α ◦ h(σ) ∩ π1 ◦ h(Σ).

Let τ ∈ S(σ) be arbitrary. We prove the above containment by proving

that

π1 ◦ h(τ) ∈ α ◦ h(σ) ∩ π1 ◦ h(Σ).

As τ ∈ S(σ), so either τ = σ or τ ∈ R(σ), where ‘R’ is the proper

initial substring relation on Σ. If τ = σ, we get

π1 ◦ h(τ) = π1 ◦ h(σ) ∈ α ◦ h(σ).
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Thus, we have

π1 ◦ h(τ) ∈ α ◦ h(σ) ∩ π1 ◦ h(Σ).

Consider the case τ ∈ R(σ). Using Lemma 6.3.2, we get

π1 ◦ h(τ) ∈ α ◦ h(τ) ⊆ α ◦ h(σ).

Thus, in both the cases we get

π1 ◦ h(τ) ∈ α ◦ h(σ) ∩ π1 ◦ h(Σ).

So,

π1 ◦ h(S(σ)) ⊆ α ◦ h(σ) ∩ π1 ◦ h(Σ).

We now prove the other containment. Let

x ∈ α ◦ h(σ) ∩ π1 ◦ h(Σ).

We prove that x ∈ π1 ◦ h(S(σ)). As x ∈ π1 ◦ h(Σ) by assumption,

so we get that there exists some τ ∈ Σ such that π1 ◦ h(τ) = x, and

x ∈ α ◦ h(σ). We claim τ ∈ S(σ). Assume not. Then τ 6= σ. We have

the following cases:

• τRσ holds. Then by the Lemma 6.3.2, we have

α ◦ h(σ) ⊆ α ◦ h(τ)− {π1 ◦ h(τ)},

which implies π1 ◦ h(τ) /∈ α ◦ h(σ). But, this contradicts the as-

sumption that x ∈ α ◦ h(τ). So, this case is not possible.

• Neither τRσ nor σRτ holds. Let ρ be the longest common initial

segment of τ and σ. Then by assumption, we have ρ 6= σ and

ρ 6= τ. By Lemma 6.3.2, we have

π1 ◦ h(σ) ∈ α ◦ h(σ) ⊆ α ◦ h(ρ.σl(ρ)+1),
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and

π1 ◦ h(τ) ∈ α ◦ h(τ) ⊆ α ◦ h(ρ.τl(ρ)+1).

By the definition of ρ, we have ρ.τl(ρ)+1 6= σ.τl(ρ)+1. So, by Lemma

6.3.1, the intervals α ◦ h(ρ.τl(ρ)+1) and α ◦ h(σ.τl(ρ)+1) intersect at

at most one point, which if exists, is the one of the endpoints of

the closed intervals. As π1 ◦ h(τ) is not an endpoint of the closed

interval α ◦ h(ρ.τl(ρ)+1), we get that

π1 ◦ h(τ) /∈ α ◦ h(ρ.σl(ρ)+1).

As

α ◦ h(σ) ⊆ α ◦ h(ρ.σl(ρ)+1),

we get that π1 ◦ h(τ) /∈ α ◦ h(σ) which is a contradiction.

Thus, the only possibility is σRτ. So, either σ = τ or σRτ. Hence,

τ ∈ S(σ), which implies π1 ◦h(τ) ∈ π1 ◦h(Σ). Thus, x ∈ α ◦h(σ)∩π1 ◦

h(Σ) implies x ∈ π1 ◦ h(S(σ)). So, we get

α ◦ h(σ) ∩ π1 ◦ h(Σ) ⊆ π1 ◦ h(S(σ)).

Together we get the first equality, which is

α ◦ h(σ) ∩ π1 ◦ h(Σ) = π1 ◦ h(S(σ)).

For the other one, as IntR(α ◦ h(σ)) ⊆ α ◦ h(σ), we get

IntR(α ◦ h(σ)) ∩ π1 ◦ h(Σ) ⊆ α ◦ h(σ) ∩ π1 ◦ h(Σ).

We prove the other containment. Let

x ∈ α ◦ h(σ) ∩ π1 ◦ h(Σ).

Then by using the first equality, we get that there exists τ ∈ S(σ) such

that x = π1 ◦ h(τ). We have the following two cases:
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• If τ = σ, then

π1 ◦ h(τ) = π1 ◦ h(σ) ∈ IntR(α ◦ h(σ))

(this happens because π1 ◦ h(σ) is the midpoint of the closed in-

terval α ◦ h(σ)). Thus,

π1 ◦ h(τ) ∈ IntR(α ◦ h(σ)) ∩ π1 ◦ h(Σ).

As x is arbitrary, we get

α ◦ h(σ) ∩ π1 ◦ h(Σ) ⊆ IntR(α ◦ h(σ)) ∩ π1 ◦ h(Σ).

• If σRτ then by Lemma 6.3.2, we have

π1◦h(τ) ∈ IntR(α◦h(τ)) ( IntR(α◦h(σ))−{π1◦h(σ)} ⊆ IntR(α◦h(σ)).

Thus,

π1 ◦ h(τ) ∈ IntR(α ◦ h(σ)) ∩ π1 ◦ h(Σ).

Similar to the previous case, we get

α ◦ h(σ) ∩ π1 ◦ h(Σ) ⊆ IntR(α ◦ h(σ)) ∩ π1 ◦ h(Σ).

Thus, the second equality holds too.

2. By the first part, we have

π1 ◦ h(S(σ)) = IntR(α ◦ h(σ)) ∩ π1 ◦ h(Σ).

By Lemma 6.3.6, the set IntR(α ◦ h(σ))∩ π1 ◦ h(Σ) is open in X under

the order topology too. Thus, π1 ◦ h(S(σ)) is open in X under the

order topology. By Lemma 6.3.4, π1 ◦h is a homeomorphism. So, S(σ)

is open in 〈Σ, µ〉.
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Lemma 6.3.8. For each σ ∈ Σ, the set

{(σ.− n, σ.n) : n ∈ N}

is a countable local basis.

Proof. Let σ ∈ Σ, and (τ, τ ′) be a basic open set in (Σ, µ) such that σ ∈

(τ, τ ′). Then τ < σ < τ ′. By the reasoning used to prove that (Σ, <) is dense,

we get that there are n, n′ ∈ N such that

τ < σ.− n < σ < σ.n′ < τ ′.

Let n0 = max{n, n′}. Then by the construction of Σ, we have

π1 ◦ h(σ.− n) ≤ π1 ◦ h(σ.n0),

and

π1 ◦ h(σ.n
′) ≥ π1 ◦ h(σ.n0).

Thus, we have

τ < σ.− n0 < σ < σ.n0 < τ ′.

Also for any λ ∈ (σ.− n0, σ.n0), we have

τ < σ.− n0 < λ < σ.n0 < τ ′,

and thus we get σ ∈ (σ. − n0, σ.n0) ⊆ (τ, τ ′). Thus {(σ. − n, σ.n) | n ∈ N}

forms a local basis for σ.

We will use these lemmas to prove that f is an interior map. Let τ denote

the Alexandroff topology on the frame (X, T ).
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f is continuous

We claim that for each basic open set T (w) in 〈X, τ〉, we have

f−1(T (w)) =
⋃

wTf(σ)

S(σ).

Proving this suffices because by Lemma 6.3.7 we have that each S(σ) is open

in 〈Σ, µ〉. We first prove that

f−1(T (w)) ⊆
⋃

wTf(σ)

S(σ).

Let λ ∈ f−1(T (w)). So f(λ) ∈ T (w), which implies wTf(λ). As λ ∈ S(λ),

we get

λ ∈
⋃

wTf(σ)

S(σ).

Thus,

f−1(T (w)) ⊆
⋃

wTf(σ)

S(σ).

For the converse, let λ ∈ Σ such that wTf(λ). We claim S(λ) ⊆ f−1(T (w)).

Let δ ∈ S(λ) be arbitrary. Then δ = λ.z1.z2. . . . .zk for k ∈ N ∪ {0}, and

zi ∈ Z∗. We prove δ ∈ f−1(T (w)) by induction on k.

If k = 0, then δ = λ, and as f(λ) ∈ T (w) by assumption, so δ ∈

f−1(T (w)). Let us assume f(λ.z1 . . . zk−1) ∈ T (w). Then

f(λ.z1. . . . .zk) = gf(λ.z1.....zk−1)(|zk|) ∈ T (f(λ.z1. . . . .zk−1)).

As f(λ.z1. . . . .zk−1) ∈ T (w) by assumption, and as T is transitive, we have

T (f(λ.z1. . . . .zk−1)) ⊆ T (w)). Hence, f(λ.z1. . . . .zk) ∈ T (w).

So by induction, we have S(λ) ⊆ f−1(T (w)). Thus,

f−1(T (w)) =
⋃

wTf(σ)

S(σ),

and f is continuous.
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f is open

We now prove that f is an open map, that is, f maps open sets to open sets.

But before that, we prove a needed lemma.

Lemma 6.3.9. For σ ∈ Σ, and n ∈ N, we have (σ.− n, σ.n) ⊆ S(σ).

Proof. Let σ ∈ Σ, n ∈ N, and let λ ∈ (σ. − n, σ.n). Then σ. − n < λ < σ.n,

which implies

π1 ◦ h(σ.− n) < π1 ◦ h(λ) < π1 ◦ h(σ.n).

As

π1 ◦ h(σ.− n), π1 ◦ h(σ.n) ∈ α ◦ h(σ),

and as α ◦ h(σ) is a closed and bounded interval, we get that

π1 ◦ h(λ) ∈ α ◦ h(σ) ∩ π1 ◦ h(Σ).

By Lemma 6.3.7, we have

α ◦ h(σ) ∩ π1 ◦ h(Σ) = π1 ◦ h(S(σ)).

Thus, we get

π1 ◦ h(λ) ∈ π1 ◦ h(S(σ)),

which implies that there exists some λ′ ∈ S(σ) such that π1◦h(λ
′) = π1◦h(λ).

By Proposition 6.3.3, π1 ◦h is an injective map. Hence, λ′ = λ, which implies

λ ∈ S(σ). As λ is arbitrary, we get that (σ.− n, σ.n) ⊆ S(σ).

Now we prove that f is an open map. We claim that for each σ ∈ Σ, and

n ∈ N, we have f(σ. − n, σ.n) = T (f(σ)). Proving this suffices as for any

open set U in 〈Σ, µ〉, and σ ∈ U , by Lemma 6.3.8 there exists nσ ∈ N such

that (σ.− nσ, σ.nσ) ⊆ U. Thus

U =
⋃

σ∈U

(σ.− nσ, σ.nσ),
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and hence

f(U) =
⋃

σ∈U

f(σ.− nσ, σ.nσ).

So if f(σ.− nσ, σ.nσ) is open, then f(U) is open. As U is arbitrary, proving

what we claim proves that f is an open map. By definition of f , for each

λ ∈ Σ, and z ∈ Z∗, we have f(λ)Tf(λ.z), and as T is reflexive, we have

f(λ)Tf(λ). Thus, f(S(σ)) ⊆ T (f(σ)). So from Lemma 6.3.9, we get

f(σ.− n, σ.n) ⊆ f(S(σ)) ⊆ T (f(σ)).

Thus, one inclusion is proven. Now, we prove the other inclusion. Let w ∈

T (f(σ)). Then f(σ)Tw. By definition of f , g−1
f(σ)(w) is an infinite set, and

hence there exists an m ∈ N such that m > n and f(σ.m) = w. As m > n,

we have σ.m ∈ (σ.− n, σ.n), and hence w ∈ f(σ.− n, σ.n). As w is arbitrary,

we get T (f(σ)) ⊆ f(σ.− n, σ.n). Thus f(σ.− n, σ.n) = T (f(σ)), and f is an

open map.

As f is both a continuous map and an open map, we get that f is an

interior map from 〈Σ, µ〉 to the finite rooted S4-frame with the Alexandroff

topology. By Proposition 6.2.5, Q with the euclidean topology is homeo-

morphic to 〈Σ, µ〉. So we have a homeomorphism from 〈Σ, µ〉 to Q. Thus,

composing the latter map with the former map, we get the following result.

Proposition 6.3.10. Each finite rooted S4-frame with the Alexandroff topol-

ogy is an interior image of Q with the euclidean topology.

6.4 Constructing the Topo-bisimulation

By Proposition 6.0.2, we know that S4 is complete with respect to the class

of all finite rooted S4-frames. We will use this completeness to prove that

S4 is complete with respect to the topological space Q with the euclidean

topology. As Q with the euclidean topology forms a dense-in-itself separable

metric space, we get the McKinsey-Tarski theorem.

Theorem 6.4.1 (McKinsey-Tarski). S4 is sound and complete with re-

spect to the class of all dense-in-itself separable metric spaces.
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Proof. The soundness part is straight forward. This is because we have al-

ready proved that S4 is sound with respect to the class of arbitrary topolog-

ical spaces. Hence, S4 is sound with respect to the class of all dense-in-itself

separable metric spaces.

Now, we prove the completeness. Let φ /∈ S4. As S4 is complete with

respect to finite rooted S4-frames by Proposition 6.0.2, so there exists a

model M = (W,R, V ) such that (W,R) is a finite rooted S4-frame, and

w ∈ W such that M,w 2 φ.

Let τ represent the Alexandroff topology on the frame (W,R). Then by

Lemma 4.3.6, we get that for the topo-modelM = 〈W, τ, V 〉, we haveM, w 2

φ. Let ǫ represent the euclidean topology on Q. By Proposition 6.3.10, there

is an onto interior map f from 〈Q, ǫ〉 to 〈W, τ〉.

Using f , we now construct a topo-model based on Q, and a total topo-

bisimulation between the topo-model and M. We first define a valuation v

on Q. For each propositional variable p, we define

v(p) = f−1(V (p)).

Next, we define a relation Z ⊆ Q×W as

Z = {(q, f(q) | q ∈ Q}.

We claim that Z forms a total topo-bisimulation between the topo-models

〈Q, ǫ, v〉 and 〈W, τ, V 〉. It should be noted that in the definition of Z, q varies

in Q. Also, as f is onto, for each w ∈ W, f−1(w) is non-empty. Thus, Z is

total. To prove that Z is a topo-bisimulation, we will use Remark 3.2.2.

For the atomic clause, we need to prove that for each propositional vari-

able p, we have Z(v(p)) ⊆ V (p), and Z−1(V (p)) ⊆ v(p). By definition of Z,

we have Z(v(p)) = f(v(p)). As v(p) is defined to be f−1(V (p)), we get that

Z(v(p)) = f(f−1(V (p))) = V (p).

Similarly,

Z−1(V (p)) = f−1(V (p)) = v(p).



6. The McKinsey-Tarski Theorem 114

Hence, the atomic clause is followed.

For the forth condition we need to prove that for each open set U ∈ ǫ,

Z(U) is open, and for the back condition we need to prove that for each

open set V ∈ τ , Z−1(V ) is open. As for U ∈ ǫ, Z(U) = f(U), and for

V ∈ τ , Z−1(V ) = f−1(V ), and as f is an interior map, so the back and forth

conditions are satisfied. Hence, Z is a total topo-bisimulation.

Let MQ denote the topo-model 〈Q, ǫ, v〉. and let q0 be an element of

f−1(w). By Theorem 3.2.4, as M, w 2 φ, so we get MQ, q0 2 φ.

Therefore every formula not in S4 is falsifiable on a topo-model based on a

dense-in-itself separable metric space, and hence S4 is complete with respect

to the class of all dense-in-itself separable metric spaces.

An upshot of the McKinsey-Tarski Theorem is that our topological inter-

pretation of the basic modal language is too weak to capture the notions of

a space being separable, dense-in-itself, or metrizable, and to fully capture

these properties in the modal formulas we need more expressive interpreta-

tions.



7. CONCLUSION

The thesis aimed to describe the proofs of soundness and completeness of

S4 with respect to the class of all topological spaces, and the McKinsey-

Tarski theorem, which states that S4 is sound and complete with respect to

the class of all dense-in-itself separable metric spaces. The results yield an

approach to understand topological spaces using logic, and vice-versa. The

two results also highlight a limitation of the topological interpretation of

the basic modal language described in the thesis, that the interpretation is

too weak to encapsulate the property of a topological space being separable,

metrizable or dense-in-itself.

To tackle this problem, a number of alternate interpretations have been

proposed. McKinsey and Tarski proposed the derived set semantics in [1].

The derived set semantics is more expressive than the interpretation we have

seen in the thesis. To increase the expressive power it is common to add uni-

versal modality. In 1999, Shehtman showed that connectedness is expressible

by adding a universal modality [13].

Also, analogues of the McKinsey-Tarski theorem have been obtained.

The topology of Q can be thought of as the interval topology of a dense

linear order. It has been proved that S4 is complete with respect to arbi-

trary (nonempty) locally compact dense-in-itself generalized order spaces [14].

Some other directions worth exploring are topological products of modal log-

ics and their connection to fusions and products of modal logics, topological

semantics of predicate modal logics, and topological semantics of provability

logics.



APPENDIX
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I Topological Preliminaries

We briefly survey the basic topological concepts that are used. They can be

found in any textbook on general topology (see [15]).

Definition I.1. A topological space is a pair X = 〈X, τ〉, where X is a

nonempty set, and τ is a collection of subsets of X satisfying the following

three conditions:

1. ∅, X ∈ τ .

2. If U, V ∈ τ , then U ∩ V ∈ τ .

3. If {Ui}i∈I ∈ τ , then
⋃

i∈I

Ui ∈ τ.

⊣

The elements of τ are called open sets. The complement of open sets are

called closed sets. For any x in X , an open set containing x is called an open

neighborhood of x.

Definition I.2. Let X = 〈X, τ〉 be a topological space. A family B ⊆ τ is

called a basis for the topology X if and only if

1. for each x ∈ X , there exists a U ∈ B such that x ∈ U , and

2. for each U, V ∈ B, if x ∈ U ∩ V , then there exists a W ∈ B such that

x ∈ W ⊆ U ∩ V .

The elements of B are called basic open sets for the topology. ⊣

An equivalent definition of a basis for the topology is the following. A family

B ⊆ τ is called a basis for the topology if every open set can be represented

as the union of elements of a subfamily of B.

Definition I.3. Let X be a set, and B ⊆ P(X) such that elements of

B satisfy the conditions numbered 1 and 2 given in Definition I.2. Then

τ = {U ⊆ X | U is a union of elements of B} forms a topology on X . The

topology τ is said to be the topology generated by B on X . ⊣
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For a topological space 〈X, τ〉, any basis for the topology generates the same

topology. Also, if a basis generates a topology, then it forms a basis for the

topology. We also recall the following points:

• For A ⊆ X , a point x ∈ X is called an interior point of A if there is

an open neighborhood U of x such that U ⊆ A. Let Int(A) denote the

set of interior points of A. It is known that Int(A) is the biggest open

set contained in A, called the interior of A.

• A point x ∈ X is called a limit point of A ⊆ X , if for each open

neighborhood U of x, the set A ∩ (U − {x}) is non-empty. The set of

limit points of A is called the derivative of A, and is denoted by d(A).

• Let Cl(A) = A∪d(A). Then, x ∈ Cl(A) if and only if U∪A is nonempty

for each open neighborhood U of x, and Cl(A) is the smallest closed

set containing A, called the closure of A.

Let Int and Cl denote the interior and the closure operators on P(X), re-

spectively, where P(X) denotes the power set of X . Then the following are

satisfied for each A,B ⊆ X

Int(X) = X

Int(A ∩ B) = Int(A) ∩ Int(B)

Int(A) ⊆ A

Int(A) ⊆ Int(Int(A))

Cl(∅) = ∅

Cl(A ∪ B) = Cl(A) ∪ Cl(B)

A ⊆ Cl(A)

Cl(Cl(A)) ⊆ Cl(A)

Int(A) = X − Cl(X −A)

Definition I.4. Let X be topological space, and A be a subset of X . A is

called dense-in-itself if A ⊆ d(A). ⊣
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Definition I.5. Let X be a topological space.

1. X is called discrete if every subset of X is open.

2. X is called trivial if ∅ and X are the only open subsets of X .

3. X is called dense-in-itself if X ⊆ d(X).

4. X is called separable if there exists a countable dense subset of X .

⊣

Definition I.6. Let X = 〈X, τ〉 be a topological space. For Y ⊆ X , let

τ ′ = {B ⊆ Y | B = B′ ∩ Y for some B′ ∈ τ}. Then 〈Y, τ ′〉 forms a

topological space and τ ′ is called the subspace topology on Y . ⊣

Remark I.7. Let 〈X, τ〉 be a topological space and Y ⊆ X . Let Z ⊆ Y . We

say Z is open (closed) in Y if Z is an open (closed) subset of Y equipped

with the subspace topology. ⊣

Definition I.8. Let X and Y be topological spaces, and f : X → Y be a

function.

1. f is called continuous if U open in Y implies f−1(U) is open in X .

2. f is called open if U open in X implies f(U) open in Y .

3. f is called interior if it is both continuous and open.

4. f is called a homeomorphism if f is bijective and both f and f−1 are

continuous.

We call Y a continuous image of X if there is a continuous map from X to

Y . Open and interior images of X are defined analogously. ⊣

Definition I.9. Let {Xi}i∈I be a family of topological spaces.

• Let τ = {U ⊆
∏

i∈I

Xi | U is a union of the sets of the form
∏

i∈I

Ui where

each Ui is open in Xi and Ui 6= Xi for finitely many i ∈ I}. Then τ

forms a topology on
∏

i∈I

Xi and is called the product topology.
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• Let τ ′ = {U ⊆
∏

i∈I

Xi | U is a union of the sets of the form
∏

i∈I

Ui where

each Ui is open in Xi}. Then τ
′ forms a topology on

∏

i∈I

Xi and is called

the box topology.

⊣

Remark I.10. In the case of a finite family, the box topology is the same as

the product topology. ⊣

Definition I.11. Let 〈
∏

i∈I

Xi, τ〉 be a topological space. For each i ∈ I, we

have a map πi :
∏

j∈I

Xj → Xi given by πi((xj)j∈I) = xi, called the projection

map corresponding to the index i. ⊣

Remark I.12. For a family {Xi}i∈I , if
∏

i∈I

Xi is equipped with the box or the

product topology, then each projection map is both continuous and open. ⊣
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