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ABSTRACT

Understanding algebraic invariants is an age-old method to better understand topolog-
ical spaces. One such algebraic invariant for surfaces S is its (extended) mapping class
group, denoted by Mod(S). It is defined as the group of homeomorphisms of S, upto
isotopy. There are sevaral known combinatorial models for studying Mod(S). Two
such models are the curve complex C(S) and the pants complex CP (S). The automor-
phism groups of both these combinatorial objects encode complete information about
the group structure of Mod(S) for most surfaces.

In the following thesis, we will introduce the mapping class groups, the curve com-
plex and the pants complex of a surface, and study their properties. We will study the
result that for almost all closed, oriented, finite-type surfaces S, AutCP (S) ∼= Mod(S).
This is based on the work of Margalit [12].
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1. PRELIMINARIES

In this chapter, we develop the basic theory of curves and mapping class groups. It is

based on [2, Chapter 1-3].

1.1 Curves on surfaces

The aim of this section is to give an overview of curves on hyperbolic surfaces. In par-

ticular, we consider isotopy classes of simple closed curves through their geodesic rep-

resentatives. We will study the geometric intersection number between isotopy classes

of simple closed curves. We will also see some results about collections of such curves

and study cut-surfaces.

Definition 1.1. A surface S is a 2-dimensional manifold, that is, a second countable,

Hausdorff space such that for every x ∈ S, there is a neighbourhood U ⊂ S that is

homeomorphic to R2.

We shall consider compact, connected, orientable surfaces. A closed surface is one

that is compact and without boundary. We give the following classification theorem

about such surfaces without proof.

Theorem 1.2 (Classification of Surfaces). Any closed, connected, orientable surface is

homeomorphic to the connected sum of a 2-dimensional sphere with g ≥ 0 tori. Any

compact, connected, orientable surface is obtained from a closed surface by removing b ≥

0 open disks with disjoint closures. The set of compact surfaces (upto homeomorphisms)

is in bijective correspondence with the set {(g, b) : g, b ≥ 0}.
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Henceforth, we will use S = Sg,b to denote a compact, connected, orientable surface

of genus g ≥ 0 with b ≥ 0 boundary components.

(a) g = 0. (b) g = 1. (c) g = 2.

Fig. 1.1: Closed surfaces Sg for g = 0, 1, 2.

It is well-known that any compact surface can be triangulated [13]. (That is, it is

homeomorphic to a surface “built” from triangles.) Since Sg,b is a compact surface, its

triangulation leads to the following topological invariant.

Definition 1.3. The Euler characteristic χ(S) of a surface S = Sg,b is defined as χ(S) =

2− 2g − b.

Example 1.4. Let S = Sg,b.

1. If χ(S) > 0, that is 2 > 2g + b ≥ 0, then g = 0 and b = 0 or 1. That is, S is a

sphere or a closed disk.

2. If χ(S) = 0, that is 2 = 2g + b, then either g = 1 or b = 2. That is, S is either

the torus or an annulus.

Besides these finitely many exceptions, the remaining surfaces satisfy χ(S) < 0. The

following theorem is about such surfaces (see [2, Chapter-1]).

Theorem 1.5. Any surface S with χ(S) < 0 admits a hyperbolic metric.

Now, we define curves on surfaces and cut-surfaces.

Definition 1.6. A closed curve on a surface S is the image of a continuous map from

S1 to S. If this map is injective, we say that the closed curve is simple.
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Definition 1.7. A closed curve is said to be essential if it cannot be homotoped to a

point and peripheral if it cannot be homotoped to a boundary component. A non-trivial

closed curve is one that is essential and non-peripheral.

Fig. 1.2: The curves α and β are non-trivial while the curve γ is trivial on S1,1.

We can cut a given surface along a closed curve to get one or more subsurfaces.

These new surfaces are called cut-surfaces, defined as follows.

Definition 1.8. Given a simple closed curve α in a surface S, the surface obtained by

cutting S along α is a compact surface Sα equipped with a homeomorphism h between

two of its boundary components, so that:

1. Sα/(x ∼ h(x)) ≈ S, and

2. the image of these distinguished boundary components under this quotient map

is α,

is called a cut-surface.
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Fig. 1.3: A collection of simple closed curves and the associated cut-surfaces.

When cut along a simple closed curve, the cut-surface may have more than one con-

nected components. If it does, then the simple closed curve is called a separating curve;

otherwise it is called a non-separating curve. In the Figure 1.3, α is separating while β

is non-separating. A consequence is the following.

Theorem 1.9. There is an orientation-preserving homeomorphism of a surface S taking

one simple closed curve to another if and only if the corresponding cut surfaces (which

may be disconnected) are homeomorphic.

Henceforth, for surfaces with χ(S) < 0, we will assume S endowed with a hyperbolic

metric.

Theorem 1.10. Let S be a surface with χ(S) < 0. If α is a closed curve in S that is

not peripheral, then α is homotopic to a unique geodesic closed curve γ. Moreover, if

α is simple, so is γ.

Definition 1.11. An isotopy between two simple closed curves α1, α2 is a homotopy αt

between them so that each αt is a simple closed curve for every t ∈ [0, 1].

Proposition 1.12. Let α and β be two non-trivial simple closed curves on a surface S.

Then α is isotopic to β if and only if α is homotopic to β.
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Thus, geodesics are the natural representatives of isotopy classes of non-peripheral

simple closed curves. Let α and β be a pair of transverse, oriented, simple closed curves

in S. Let their free homotopy classes be a and b, respectively.

Definition 1.13. The geometric intersection number i(a, b) of a and b is the minimal

number of intersection points between a representative curve in the class a and a rep-

resentative curve in the class b, that is:

i(a, b) = min{|α ∩ β| : α ∈ a, β ∈ b}.

Fig. 1.4: Two curves a and b with i(a, b) = 3.

Definition 1.14. We say two curves α and β of free homotopy classes a and b are in

minimal position if they intersect exactly i(a, b) many times.

Two natural questions then arise:

1. How do we know two curves are in minimal position?

2. Given two intersecting curves, how do we find curves homotopic to them that are

in minimal position?
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Fig. 1.5: Two curves not in minimal position.

Definition 1.15. We say that two transverse simple closed curves α and β in a surface

S form a bigon if there is an embedded disk in S whose boundary is the union of an

arc of α and an arc of β intersecting in exactly two points.

Fig. 1.6: A bigon formed by arcs of two curves.

Proposition 1.16. Two transverse simple closed curves in a surface S are in minimal

position if and only if they do not form a bigon.

Fig. 1.7: Two curves in minimal position.

Since geodesics do not form bigons, the following holds true.

Proposition 1.17. Distinct simple closed geodesics in a surface S with χ(S) < 0 are in

minimal position.
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Thus, to find geometric intersection numbers, we consider the geodesic representative

of the isotopy classes of curves.

Proposition 1.18. For a surface S with χ(S) < 0, the maximum number of disjoint

simple closed curves upto isotopy is 3g + b− 3.

Fig. 1.8: 3g + b− 3 disjoint non-isotopic simple closed curves on Sg.

The above proposition follows from considering the geodesic representatives as shown in

Figure 1.8. By cutting along these 3g+ b−3 curves, we obtain a collection of 2g+ b−2

cut-surfaces homeomorphic to S0,3. There is no non-trivial simple closed curve lying on

S0,3. Thus, no more disjoint curves can be added to the collection of curves (geodesics)

shown in Figure 1.8. This fact will be used extensively in the later chapters.

1.2 Mapping class groups

We now move on to defining the mapping class group of surfaces, give examples of

mapping classes, and explicitly compute it for some surfaces.

Definition 1.19. The mapping class group of S, denoted by Mod+(S), is defined as

the group of isotopy classes of orientation-preserving self-homeomorphisms of S which

preserve the boundary components of S setwise. The elements of this group are called

mapping classes.

Example 1.20. The following examples can be found discussed in detail in the book [2].

1. For a closed disk D2 = S0,1, Mod+(D2) is trivial.

2. For an annulus A = S0,2, Mod+(S) is trivial.
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3. For S = S1,0, Mod+(S) ∼= SL2(Z).

4. For S = S0,3, Mod+(S) ∼= Σ3, the symmetric group on 3 letters.

Now we define an explicit mapping class called the Dehn twist. Define the twist map

T : A→ A with A = S1 × [0, 1] by T (ω, ρ) = (ω + 2πρ, ρ).

Fig. 1.9: The Dehn twist of b about a curve a.

We define a Dehn twist (see Figure 1.9) as follows.

Definition 1.21. Let N be a closed annular neighbourhood of a simple closed curve α

in a surface S. Choose an orientation-preserving homeomorphism ψ : A → N . Define

a Dehn twist about α, Tα : S → S as

Tα(x) =


ψ ◦ T ◦ ψ−1(x), if x ∈ N

x, otherwise,

(1.1)

where T is the twist map.

Remark 1.22. The map Tα is independent of the choice of the annular neighbourhood

N of α. Moreover, if two curves belong to the same isotopy class, then the respective

Dehn twists about them are isotopic. Henceforth, we will make no distinction between

the Dehn twist about curves that are isotopic. Thus, Dehn twists (about an isotopy

class of simple closed curves) are well-defined mapping classes.

Now, we define a bigger group than Mod+(S) that also contains mapping classes

represented by orientation-reversing homeomorphisms.

Definition 1.23. The extended mapping class group of S, denoted by Mod(S), is defined

as the group of isotopy classes of self-homeomorphisms of S.
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We have the following split short exact sequence

1 −→ Mod+(S) −→ Mod(S)
d−→ Z2 → 1.

Mod+(S) is the kernel of the map d and hence, a normal subgroup of Mod(S) of index

2. Following are some examples of Mod(S).

1. For S = S0,0, we have Mod(S) = Z2.

2. For S = S1,0, Mod(S) = GL2(Z). This is the same for S = S1,1.

3. For S = S0,3, Mod(S) = Σ3 ⋊ Z2.



2. THE CURVE COMPLEX C(S)

In 1980, William J. Harvey introduced [3] the idea of the curve complex of a surface

while studying Teichmüller spaces of Reimann surfaces. The curve complex is a com-

binatorial model that has been used to study algebraic and geometric properties of the

extended mapping class group. The curve complex has many important properties that

make it a useful tool for studying the topology of surfaces. For example, the dimension

of the curve complex is related to the complexity of the surface [3] and its connectivity

was a key idea in the proof of finite generation of the mapping class group [1] [9]. In

this chapter, we will develop the basics of simplicial complexes to understand the curve

complex and prove that it is connected. We will also define the Farey graph, which will

be useful in proving the main theorems of Chapter 3.

2.1 Simplicial complex

In this section, we will define simplicial complexes. Simplicial complexes are fundamen-

tal objects in mathematics that play a central role in fields such as algebraic topology

and combinatorics.

Definition 2.1. An k-simplex is the smallest convex set of k + 1 points in Rn which do

not lie in the same (k − 1)-dimensional hyperplane.

Example 2.2. The k-simplices are thus generalised triangles.

1. 0-simplex is a point.

2. 1-simplex is a line segment.
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3. 2-simplex is a triangle.

4. 3-simplex is a tetrahedron.

Fig. 2.1: k-simplices for k = 0, 1, 2, 3.

Definition 2.3. The convex hull of any nonempty subset of the k+1 points that define

an k-simplex is called a face of the simplex.

Fig. 2.2: A 2-face of a 3-simplex.

Definition 2.4. A simplicial complex K is a set of simplices satisfying the following

conditions:

1. If K contains a simplex σ, then K also contains every face of σ.

2. The non-empty intersection of any two simplices σ1 and σ2 in K is a face of both

σ1 and σ2.

A simplicial complex is, thus, a collection of generalised n-triangles (simplices) that fit

together in a way that is consistent with their faces.
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Definition 2.5. The dimension of a simplicial complex is the highest dimension of any

of its simplices.

Fig. 2.3: A simplicial complex of dimension 3.

2.2 Curve complex of a surface

In this section, we study the curve complex of a surface S and see it as a combinatorial

model for Mod(S).

Definition 2.6. A curve complex is an abstract simplicial complex associated to a surface

S, defined as follows.

1. The vertices are the isotopy classes of non-trivial simple closed curves in S (to be

used interchangeably from here on).

2. There is an edge between any two vertices representing isotopy classes a and b if

i(a, b) is the minimum geometric intersection number, say t, that can be achieved

by any two simple closed curves on the surface S.

3. A set of (n + 1) vertices {v0, v1, . . . , vn} span an n-simplex if i(vi, vj) = t for all

0 ≤ i, j ≤ n, i ̸= j.

We will denote the curve complex of a surface S by C(S) and its 1-skeleton, consisting

of vertices and edges, by C1(S).
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Example 2.7. The following are examples of how some curves look in the curve complex

of a given surface.

Fig. 2.4: Three curves on S1,0 and the corresponding subgraph in C(S1.0).

Fig. 2.5: Four curves on S2,0 and the corresponding subgraph in C(S2.0).

2.2.1 The Farey graph

In this section, we will define the Farey graph and prove that the 1-skeleton of curve

complex of a torus is isomorphic to the Farey graph.

Definition 2.8. The Farey graph F is the graph with vertices Q ∪ {∞}. Two vertices

a/b and c/d share an edge if ∣∣∣a
b
− c

d

∣∣∣ = ∣∣∣∣ 1bd
∣∣∣∣ .
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Fig. 2.6: Edges in the Farey graph.

Since R∪{∞} is homeomorphic to the circle (by one-point compactification), and Q is

dense in R, we can place the vertices of the Farey graph on a dense subset of the circle

and place edges on geodesics according to the Poincaré disc model of H2 as shown in

the Figure 2.7.

Fig. 2.7: The Farey graph on a Poincaré disc model.
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Proposition 2.9. The 1-skeleton of curve complex of a torus is the Farey graph.

Proof. The fundamental group of the torus, π1(S1,0) is Z2. The primitive elements of

Z2 represent the isotopy classes of non-trivial simple closed curves in S1,0. Therefore,

the set of vertices of C(S1,0) are in a one-to-one correspondence with the set {(p, q) ∈

Z2 : gcd(p, q) = 1} = Q ∪ {∞}. There is an edge between two vertices a = (1, 0) and

b = (p′, q′) if i(a, b) = |q′|. This can be seen by lifting the curves to the universal cover

R2 of S1,0.

Given (p, q) such that gcd(p, q) = 1, there exists a, b ∈ Z such that ap + bq = 1.

Thus, there is a p× q matrix A

A = Ap,q =

 a b

−q p

 ∈ SL2(Z)

such that A(p q)t = (1 0)t. Thus, A is an orientation-preserving homeomorphism of

R2 that preserves Z2. Therefore, it induces an orientation-preserving homeomorphism

A′ : R2/Z2 → R2/Z2. Let A′ take (p′, q′) to (p̃′, q̃′)

 a b

−q p


p
q

 =

1

0

 ,

 a b

−q p


p′
q′

 =

p̃′
q̃′

 .

Since homeomorphisms preserves the geometric intersection number, we have

i((1, 0), (p̃′, q̃′)) = i((p, q), (p′, q′)) = |q̃′| = |pq′ − p′q|. (2.1)

Thus, there is an edge between two vertices in C(S2,0) if and only if they share an edge

in the Farey graph.

From Proposition 1.18, we know that the number of (isotopy classes of) disjoint

non-trivial simple closed curves on Sg,b is 3g + b− 3.

Remark 2.10. The following cases describe the curve complex of a surface on which the

minimal intersection number is positive.
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1. C(S0,b) is an graph for b = 0, 1 as there are no nontrivial curves.

2. The curve complex of S0,4 and S1,1 is the Farey graph.

Remark 2.11. We will use the isotopy classes of nontrivial simple closed curves and the

associated vertex in the curve complex interchangeably.

2.2.2 Connectedness of C(S)

We now restrict our attention to hyperbolic surfaces S of genus g with b boundary

components such that 3g+ b ≥ 5 as we have dealt with the other cases in Remark 2.10.

Then, C(S) has the following four basic properties.

1. C(S) is an infinite complex. This can be seen as follows: given a curve a ∈ C(S),

there exists a b such that a and b intersect once. Taking Dehn twist of a about

the curve b gives infinitely many vertices in the curve complex.

2. C(S) IS LOCALLY INFINITE. That is, for each vertex in the curve complex,

there are infinitely many edges attached to it. Given a vertex a, take another

vertex b such that ab forms an edge. Dehn twists of b about a curve disjoint from

a and intersecting b once gives infinite number of half-edges emerging from a.

3. C(S) is full, that is, if v0, v1, .., vn be (n + 1)-vertices such that i(vi, vj) = 0, for

0 ≤ i, j ≤ n + 1, then they form an n-simplex. It follows from the definition of

C(S).

4. C(S) is finite-dimensional and dim(C(Sg,b)) = 3g + b− 4. This follows from the

fact that there are at most 3g + b− 3 many pairwise disjoint curves on Sg,b.

Remark 2.12. Simplicial maps are defined between two simplicial complexes by taking

the set of vertices to the set of vertices, edges to edges, and k-simplices to k-simplices.

If these maps are bijections, then the pre-image of every k-simplex is also a k-simplex.

The way C(S) is defined (Property 3) implies that a simplicial map on the whole

complex can be thought of a simplicial maps at the 1-skeleton level extended linearly
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to higher-dimensional simplices. Thus, the automorphism group of the curve complex

Aut(C(S)) is isomorphic to the automorphism group of its 1-skeleton Aut(C1(S)).

Theorem 2.13 (Harvey [3]). For 3g + b ≥ 5, the curve complex C(Sg,b) is connected.

We note that the statement of the Theorem 2.13 is equivalent to saying that given any

a, b ∈ C(S), there is a sequence of isotopy classes

a = c1, c2, .., ck = b

such that i(ci, ci+1) = 0, for 1 ≤ i ≤ k. The following proof is due to Lickorish [10].

Proof. We prove this result by induction on i(a, b).

If i(a, b) = 0, then there is nothing to prove. If i(a, b) = 1, then a closed neighbor-

hood of a ∪ b is a torus with one boundary component. Take c to be the isotopy class

of this boundary component. Since 3g + b ≥ 5, the curve c is non-trivial.

We assume that i(a, b) ≥ 2. Let α and β be simple closed curves in minimal

position representing a and b. Consider two points of their intersection x and y that

are consecutive along β. Orient α and β near x and y so that it makes sense to talk

about the index of their intersection points, +1 or −1, as shown in the Figure 2.8.

Fig. 2.8: Oriented curves α and β.

Case 1: If indices at both points of intersection are of the same sign, then we choose a

γ which is as follows. Let γ be a simple closed curve such that it stays to the right of

α except on one part of the arc xy, where it intersects α once to skip one intersection
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point with β, as shown in Figure 2.9. The curve γ is non-trivial since it intersects α

once minimally.

Fig. 2.9: The curve γ in Case 1.

Case 2: If both indices at the points of intersection x and y are not of the same sign,

then we choose the simple closed curve γ as follows. Consider the distinct closed curves

γ1 and γ2 as shown in Figure 2.10. Both γ1 and γ2 are essential, otherwise there would

be a bigon. If γ1 and γ2 are non-peripheral, we are done. If not, choose γ3 and γ4 on

the other side of α as shown in the Figure 2.10. Again, both γ3 and γ4 are essential,

otherwise there would be a bigon. Both γ3 and γ4 cannot be peripheral, otherwise we

get S = S0,4 which s not possible since 3g + b ≥ 5. Without loss of generality, say γ3 is

non-peripheral, and let γ = γ3.

Fig. 2.10: The curves γ1, γ2, γ3 and γ4 in Case 2.
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We denote the isotopy class of the γ chosen in the above cases by c. Since i(a, c) < i(a, b)

and i(b, c) < i(a, b), by induction hypothesis, there is a path from a to c and another

from c to b. Thus, a, b, c is the required sequence.

Owing to its connectedness, there is a natural way to define the notion of distance

on C(S). We give each edge a length of 1, then define distance between any two vertices

to be the length of the shortest path between them. This leads us to the following result

by Hempel [6]:

Theorem 2.14. Let S = Sg,b with 3g + b ≥ 5 and let C(S) be its curve complex. For

vertices x, y representing isotopy classes of non-trivial simple closed curves of C(S) with

the geometric intersection number i(x, y) > 0, we have

d(x, y) ≤ 2 + 2log2(i(x, y)),

where d(x, y) denotes the distance between the vertices x, y in C(S).

2.2.3 Action of Mod(S) on C(S)

The mapping class group acts on the curve complex by acting on the curve associated

with each vertex. This action is well-defined because homeomorphisms preserve the

geometric intersection number between curves. The following result by Ivanov [7],

Korkmaz [8] and Luo [11] describes the curve complex of a surface as a combinatorial

model for its extended mapping class group.

Theorem 2.15 (Ivanov [7], Korkmaz [8], Luo [11]). Let S ̸= S0,3 be an orientable surface

with χ(S) < 0 and η : Mod(S) → Aut(C(S)) be the natural map. Then the following

statements hold.

(i) η is surjective when S ̸= S1,2.

(ii) ker(η) ∼= Z2 for S ∈ {S1,1, S1,2, S2,0}, ker(η) ∼= Z2

⊕
Z2 for S = S0,4, and ker(η)

is trivial otherwise.
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(iii) Im(η) = Aut∗(C(S)) ≨ Aut(C(S)) when S = S1,2 , where Aut∗(C(S)) is the

subgroup of Aut(C(S)) which preserves the set of vertices of C(S).

Thus, Mod(S) acts on C(S) by permuting its vertices. Theorem 2.15 will play a

central role in establishing that the pants complex, a complex we will define shortly,

shares a similar relationship with Mod(S).



3. THE PANTS COMPLEX CP (S)

In this chapter, we develop the theory of a 2-dimensional cell complex associated to a

surface, the pants complex. Its 1-skeleton was introduced by Hatcher and Thurston to

give a proof of the fact that Mod(S) is finitely presented [5]. Our goal is to see this

complex as a combinatorial model for Mod(S). This chapter is primarily based on the

work of Margalit [12].

3.1 Pair of pants

Let S = Sg,b be an orientable surface of genus g with b boundary components and

χ(S) < 0. Recall that the extended mapping class group of S, denoted by Mod(S), is

defined as the group of isotopy classes of self-homeomorphisms of S.

A pair of pants is any surface that is homeomorphic to S0,3 (see Figure 3.1). In this

section, we will understand how to decompose a surface into pairs of pants, and study

a simplicial complex called the pants graph associated with this decomposition.

Fig. 3.1: A pair of pants.

Definition 3.1. A pants decomposition of S is a maximal collection of distinct isotopy

classes of pairwise disjoint nontrivial simple closed curves on S.
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Proposition 3.2. The number of pair of pants in the complement of the pants decompo-

sition is 2g + b− 2.

The dimension of the curve complex for Sg,b is 3g + b − 4. This is because a pants

decomposition corresponds to a top simplex in the curve complex. We also note that

there may be infinitely many ways to cut a surface into pairs of pants. For example,

given a pants decomposition {α1, α2, . . .} with α1 lying on the subsurface S1,1, consider

the Dehn twist T n
c (α1) of α1 about a curve c intersecting α1 minimally once. Then

{T n
c(α1), α2, . . .} is a distinct pants decomposition of S for each n ∈ N.

We aim to construct a graph with vertices representing pants decompositions of the

surface. Therefore, we need to define when two vertices are joined by an edge.

Definition 3.3. Given two pants decompositions p and p′ of S, we say that they differ

by an elementary move if:

(i) They differ by one curve, say α1 and α′
1.

(ii) The geometric interaction number between α1 and α
′
1 is minimal on the subsurface

that they lie on in the complement of p ∩ p′.

Let α1 and α′
1 lie on the subsurface S ′ of S. Then S = S1,1 or S0,4 depending upon

whether α1 forms the boundary of one pair of pants or two pair of pants, respectively.

For S ′ = S1,1, minimal intersection means i(α1, α
′
1) = 1, and for S = S0,4, it means

i(α1, α
′
1) = 2. We will represent an elementary move by α1 −→ α′

1. Since the curve

complex of S, where S = S1,1 or S0,4, is the Farey graph, there are infinitely but

countably many elementary moves of the form α1 −→ ⋆.

Definition 3.4. The pants graph of S, denoted C1
P (S), is an abstract graph with ver-

tices as pants decompositions and edges when two pants decompositions differ by an

elementary move.

For S = S1,0, S1,1 and S0,4, the definitions of C1
P (S) and the 1-skeleton of C(S), thus,

coincide, which are all abstractly isomorphic to the Farey Graph.



3. The Pants Complex CP (S) 30

Theorem 3.5. Let S = Sg,b be an orientable surface of genus g with b boundary compo-

nents and Euler characteristic χ(S) < 0. Then Aut(C1
P (S))

∼= Aut(C(S)).

To construct an isomorphism ϕ : Aut(C1
P (S)) → Aut(C(S)), we will prove that the

set of abstract marked Farey graphs in C1
P (S) surjects onto the set of isotopy classes of

non-trivial simple closed curves, denoted by C(0)(S). An abstract marked Farey graph

is an ordered pair (F,X), where X is a vertex in C1
P (S) and F is a subgraph of C1

P (S)

abstractly isomorphic to the Farey graph.

Remark 3.6. Since a Farey graph is essentially made up of chain-connected triangles,

let us first understand what triangles represent in a pants graph. Suppose P ,Q and

R are the vertices of a triangle in C1
P (S), and let P = {α1

1, α2, . . . , αn}, then Q =

{α2
1, α2, . . . , αn} such that i(α1

1, α
2
1) > 0 is minimal. Similarly, we must have R =

{α3
1, α2, . . . , αn}. Thus, the vertices in a triangle in C1

P (S) has pants decompositions

with (n− 1) curves common, and only one moving curve.

Lemma 3.7. There is a natural surjection f from the set of abstract marked Farey graphs

in C1
P (S) to C

(0)(S).

Proof. The Farey graph is chain-connected, that is, any two triangles in the graph can

be connected by a sequence of triangles such that consecutive triangles share an edge.

Since the pants decomposition associated to the vertices in a triangle have only one

moving curve, chain-connectedness implies that every vertex of the Farey graph has the

pants decomposition of the form {⋆, α2, α3, . . . , αn}. Given a Farey graph, a marked

vertex corresponds to a unique moving curve, say α, which corresponds to a vertex v

in C(S). Let f be a map that assigns to a marked Farey graph (F,X) in C1
P (S) this

unique vertex v of C(S).

Now, given any vertex v in the curve complex of S associated to a curve β, con-

sider any pants decomposition containing β, say {β, β2, . . . , βn}, associated to a vertex

X ′ in C1
P (s). Now consider the subgraph F ′ formed by all the vertices of the form

{⋆, β2, . . . , βn} . Since S \ {β2, . . . , βn} is n − 1 pairs of pants and a S1,1 or S0,4, F
′ is
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an abstract Farey graph. Thus, for any v in C(0)(S), there is a (F ′, X ′) associated to

it.

Notation 3.8. For any abstract marked Farey graph (F,X) in C1
P (S), we will denote

f((F,X)) = v(F,X).

Now, we define the map ϕ : Aut(C1
P (S)) → Aut(C(S)) as follows.

Definition 3.9. The map ϕ : Aut(C1
P (S)) → Aut(C(S)) is defined as

ϕ(A) (v) = (f ◦ A ◦ f−1) (v).

Since f is not injective, in the next section we show that ϕ is well-defined.

3.2 Relation between CP (S) and C(S)

In this section, we will prove that the map ϕ : Aut(C1
P (S)) → Aut(C(S)) is well-defined.

To do so, we will give a classification of small circuits. We will also attach 2-cells to

the pants graph based on sequences of elementary moves, resulting in a 2-dimensional

cell complex.

3.2.1 Construction of CP (S)

We define two elementary moves and then describe the five basic sequences of these

elementary moves which we recognise as the 2-cells attached to C1
P (S).

Definition 3.10. Let P be a pants decomposition of S containing a curve α such that

S \ α has S1,1 as a connected component. Then there exists a β such that β intersects

α in exactly one point transversely and does not intersect any other curve in P . The

elementary move associated with α −→ β is called a simple move or an S-move.
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α

β

Fig. 3.2: An S-move.

Definition 3.11. Let P be a pants decomposition of S containing a curve α such that

S \ α has S0,4 as a connected component. Then there exists a β such that β intersects

α in exactly two points transversely and does not intersect any other curve in P . The

elementary move associated with α −→ β is called an associative move or an A-move.

α
β

Fig. 3.3: An A-move.

It was shown by Hatcher and Thurston [5] that any two pants decompositions can be

joined by a finite sequence of elementary moves. Later, Hatcher [4] proved that any

sequence of moves joining two pants decompositions can be obtained from another such

sequence by finitely many insertions or deletions of the five basic sequences of moves

described below. We will attach the following 2-cells to the pants graph, corresponding

to these five sequences of moves.
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(i) Triangular: (3S) or (3A)

α1 α′
1

α′′
1

P Q

R

Fig. 3.4: A triangle corresponding to a 3S-move.

α1 α′
1

α′′
1

P Q

R

Fig. 3.5: A triangle corresponding to a 3A-move.
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(ii) Square: (C)

α1

α2

α′
1

α2

α1

α′
2

α′
1

α′
2

P Q

R S

Fig. 3.6: A square corresponding to moves on disjoint subsurfaces.

(iii) Pentagonal: (5A)

α1 α2

α1

α′
2

α′′
1

α′
2

α′′
1

α′′
2

α′′
2

α2
P

Q

RS

T

Fig. 3.7: A pentagon corresponding to a 5A-move.
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(iv) Hexagonal: (6AS)

{α′
1, α

′
2}

{α′
1, α2}

{α1, α2}

{α′′
2, α

′
2}

{α′′
2, α

′′
1}

{α2, α
′′
1}

P

Q

R S

T

U

Fig. 3.8: A hexagon corresponding to a 6AS-move.

Definition 3.12. The 2-dimensional cell complex obtained by pasting 2-cells to the pants

graph as described above is called the pants complex. The pants complex of a surface

S is denoted by CP (S).

We define the action of extended mapping class group on the pants graph via a map

θ as follows. For [g] ∈ Mod(S) and a map θ : Mod(S) → Aut(CP (S)), we have

θ([g]) : C1
P (S) → C1

P (S) defined as

θ([g])({α1, α2, . . . , αn}) = {g(α1), g(α2), . . . , g(αn)}.

The well-definedness of θ follows from the fact that homeomorphisms preserve geometric

intersection number between isotopy classes of curves.

Now, we introduce the notion of circuits and alternating sequences.
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Definition 3.13. A circuit is a subgraph of C1
P (S) that is homeomorphic to a circle.

We define triangles, squares, pentagons and hexagons to be circuits of the appropriate

number of vertices. The following lemma characterizes the triangular 2-cells in the

pants complex.

Lemma 3.14. Every triangle in C1
P (S) is the boundary of a triangular 2-cell of CP (S).

Proof. By Remark 3.6, since the vertices of a triangle PQR correspond to the pants de-

compositions {α1
1, α2, . . . , αn}, {α2

1, α2, . . . , αn} and {α3
1, α2, . . . , αn}, respectively, such

that α1
1, α

2
1 and α

3
1 lie on a common subsurface in the complement of the common (n−1)

curves. On this common subsurface, they intersect minimally as the pants decomposi-

tions associated to P , Q and R differ by an elementary move. Thus, PQR corresponds

to a triangular 2-cell.

3.2.2 Action of Aut(CP (S)) on C(S)

In this section, we prove that the map ϕ is well-defined. To do so, we first state and

prove results about small circuits and rely on the fact that the pants graph is connected.

Remark 3.15. We can associate any edge in C1
P (S) to a unique Farey graph in the

following way. Consider an edge PR in C1
P (S). The elementary move associated with

the edge fixes a moving curve, denoted by ⋆. Let the associated abstract Farey graph

be the subgraph with the vertices as {⋆, α2, . . . , αn}. Clearly, the edge PR belongs to

this Farey graph.

Definition 3.16. A sequence of consecutive vertices P1, P2, . . . , Pm in a circuit is called

alternating if for 1 < i < m, the unique Farey graph containing the edge Pi−1Pi is

not the same as the unique Farey graph containing the edge PiPi+1. Equivalently, the

pants decompositions associated to the vertices Pi−1, Pi and Pi+1 do not have any (n−1)

curves in common.

Remark 3.17. A sequence PQR is alternating if and only if given PQ of the form

⋆ −→ α, QR is not of the form α −→ ⋆.
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Definition 3.18. A circuit with the property that any three vertices form an alternating

sequence is called an alternating circuit.

Definition 3.19. A small circuit in C1
P (S) is a circuit with at most six edges. Triangles,

squares, pentagons and hexagons are small circuits with 3, 4, 5 and 6 edges, respectively.

Definition 3.20. A 2-curve small circuit is a small circuit such that the pants decompo-

sitions corresponding to its vertices have (n− 2) curves in common. That is, the pants

decomposition of its vertices is of the form {⋆, ⋆, α3, . . . , αn}.

Lemma 3.21. Automorphisms of C1
P (S) preserve alternating sequences.

Proof. Let A ∈ Aut(C1
P (S)). Observe that A preserves circuits and sequences. Consider

an alternating sequence P1, P2, . . . , Pm. Suppose A(Pi−1Pi) and A(PiPi+1) belong to the

same Farey graph F for some 1 < i < m. Consider the restriction of the automorphism

A
∣∣
A−1(F )

: A−1(F ) → F . Then Pi−1Pi and PiPi+1 belong to the same Farey graph

A−1(F ), which is a contradiction. Thus, A must preserve alternating sequences.

We have the following partial characterization of the small circuits that is preserved

by any automorphism of the pants complex.

Lemma 3.22. Any small circuit which is not a 2-curve small circuit is an alternating

hexagon.

Proof. Let ζ be a small circuit which is not a 2-curve small circuit and let one of its

vertices be associated with the pants decomposition P = {α1, α2, . . . , αn}. Without

loss of generality, let α1
r1−→ α′

1, α2
r2−→ α′

2, and α3
r3−→ α′

3 be three elementary moves

in ζ. To be a circuit, it has edges corresponding to the moves ⋆
r′1−→ α1, ⋆

r′2−→ α2 and

⋆
r′3−→ α3. These are six distinct moves because i(α′

i, αi) > 0 and i(αi, αj) = 0, and

therefore, αi ̸= α′
j for any 1 ≤ i, j ≤ 3. Thus, there are at least six edges in ζ. Since

it is a small circuit, ζ has exactly 6 edges. That is, ζ is a hexagon. Now, we have to

prove that ζ is alternating.

We claim that r′i is given by α′
i −→ αi for i = 1, 2, 3. Suppose the claim is not true

and r′1 is α′
2 −→ α1. Then, i(α′

2, α1) > 0 and i(α′
2, α2) > 0. Out of α1, α

′
1, α2, α3, α

′
3, we
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deduce that α′
2 can appear in a pants decomposition only with α′

1, α3 and α
′
3. Therefore,

the only possibilities for r′1 are:

{α′
2, α

′
1, α3}

r′1−→ {α1, α
′
1, α3}

or {α′
2, α3, α

′
3}

r′1−→ {α1, α3, α
′
3}

or {α′
2, α

′
1, α

′
3}

r′1−→ {α1, α
′
1, α

′
3}.

For i = 1, 2, 3, since αi and α
′
i cannot appear in the same pants decomposition, none of

the above three cases are possible. Thus, the claim is true.

Now, either ζ is alternating or ri and r
′
i appear as consecutive edges for at least one

i. The latter cannot happen since it would imply that number of edges in ζ is less than

six. Thus, ζ is an alternating hexagon.

The following lemma is an immediate consequence of Lemmas 3.21- 3.22.

Lemma 3.23. If A ∈ Aut(C1
P (S)) and ζ is a small circuit which is not an alternating

hexagon, then A(ζ) is a 2-curve small circuit.

To prove the following proposition, we will use the fact that C1
P (S) is connected [5].

Given any non-trivial simple closed curve α on a surface S with χ(S) < 0, S ′ = S \ α

also has χ(S) < 0. Therefore, C1
P (S

′) is connected.

Proposition 3.24. The map ϕ : Aut(C1
P (S)) → Aut(C(S)) as in Definition 3.9 is well-

defined.

Proof. We recall from Definition 3.9 that for A ∈ Aut(C1
P (S)) and v ∈ C(0)(S), we have

ϕ : Aut(C1
P (S)) → Aut(C(S)) defined as ϕ(A)(v) = (f ◦A◦f−1)(v). We show that given

v ∈ C(0)(S), ϕ(A)(v) is independent of the choice of the abstract marked Farey graph

in f−1(v). Let v ∈ C(0)(S) be associated to the curve α1 on S. Let two distinct marked

Farey graphs (Fv, X), (F ′
v, X

′) ∈ f−1(v). Let p and p′ be the pants decompositions

associated to the vertices X and X ′ in C1
P (S). Owing to the connectedness of S \ α1,

we may assume that p and p′ differ by an elementary move, say α2 −→ α′
2.
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Suppose there exists a 2-curve small circuit ζ which is not an alternating hexagon

such that four of its vertices, say WXX ′Y , form an alternating sequence, with WX ∈

(Fv, X) and X ′Y ∈ (F ′
v, X

′) as shown in Figure 3.9.

Fv

F ′
v

X
W

X ′

Y
Fig. 3.9: The 2-curve small circuit ζ containing WXX ′Y .

Suppose (A(Fv), A(X)) corresponds to a curve β1 and A(X) is associated to the pants

decomposition {β1, β2, . . . , βn}. We show that (A(F ′
v), A(X

′)) corresponds to the same

curve β1. Since A(W )A(X) forms an edge in (A(Fv), A(X)), it corresponds to a move

⋆ −→ β1. Since A(W )A(X)A(X ′) is an alternating sequence, A(X)A(X ′) corresponds

to a move of the form β2 −→ ⋆, say β2 −→ β′
2. Again, since A(X)A(X ′)A(Y ) forms

an alternating sequence, A(X ′)A(Y ) cannot have β′
2 as the moving curve. But since

this sequence is part of a 2-curve small circuit, we get that A(X ′)A(Y ) is associated

to the elementary move of the form β1 −→ ⋆, that is, the moving curve associated to

the abstract marked Farey graph is β1. Thus, ϕ is well-defined, if such a 2-curve small

circuit exists.

Now, we find a 2-curve small circuit that is not an alternating hexagon and has four

vertices that form an alternating sequence. Let S ′ = S \ {α3, α4, . . . , αn}, then α1 and

α2 on S ′ have the following possibilities.

(i) α1 and α2 on disconnected components of S ′.

(ii) α1 and α2 lie on S0,5.

(iii) α1 and α2 lie on S1,2 and one of α1, α2 or α′
2 is separating.
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(iv) α1 and α2 lie on S1,2 and all of α1, α2 or α′
2 are non-separating.

The last two cases follow from the fact that if α1 and α2 lie on a connected component

with genus g′ and b′ boundary components, then 3g′ + b′ − 3 = 2. To find the 2-curve

small circuit ζ, we take the boundary of the obvious 2-cells in each case, as follows.

In (i) and (ii), let ζ be the boundary of a square 2-cell and a pentagonal 2-cell containing

X and X ′, respectively.

In (iii), observe that a curve is separating on S1,2 if and only if it is separating on

S. Moreover, exactly one of α1, α2 and α′
2 can be separating. This is because two

separating curves in S1,2 can’t differ by an elementary move, and S0,3 cannot have two

separating curves. So, without loss of generality, we have the following two subcases:

(a) α1 is separating.

(b) α2 is separating. (The subcase when α′
2 is separating is analogous to this case).

In both cases, choose ζ to be the hexagonal 2-cell (see Figure 3.8) . In case (a), let X

and U correspond to T and U , and in case (b), they should correspond to S and T ,

respectively.

Case (iv) can be reduced to Case (iii) in the following manner. We claim that

any elementary move on S1,2 of the form {α1, α2} −→ {α1, α
′
2} with α1, α2, α

′
2 all non-

separating, can be realised by a pair of elementary moves of the form {α1, α2} −→

{α1, α
′′
2} −→ {α1, α

′
2} where α′′

2 is a separating curve.

α1 α2
α′
2

α′′
2

Fig. 3.10: Reduction of Case (iv) to Case (iii).
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α1

α2

α′
2

Fig. 3.11: Curves α1, α2 and α′
2 in Case (iv).

To complete the proof of well-definedness, we also show that ϕ(A) ∈ Aut(C(S)). By

Remark 2.12 , it suffices to show that ϕ(A) is in Aut(C1(S)). Let v and w be vertices in

C(S) such that they form an edge in C(S). Let Fv and Fw be the Farey graphs associ-

ated with the pants decompositions of the form {⋆, β, γ3, . . . , γn} and {α, ⋆, γ3, . . . , γn}.

They intersect at the vertex X = {α, β, γ3, . . . , γn} in C1
P (S). The marked Farey graphs

(Fv, X) and (Fw, X) correspond to the vertices v and w that are joined by an edge. We

claim that the vertices in C(S) associated with the marked Farey graphs (A(Fv), A(X))

and (A(Fw), A(X)), say v′ and w′, are also joined by an edge. This is true because the

curves corresponding to v′ and w′ occur together in the pants decomposition associated

to the vertex A(X).

3.3 Identifying 2-cells of CP (S) using its 1-cells

The aim of this section is to recognise the 2-cells of CP (S) simply by considering the

combinatorics of its 1-skeleton, C1
P (S). The idea is to obtain a result analogous to

Remark 2.13. Let S = Sg,b be an orientable surface with χ(S) < 0. The number of

curves in any pants decomposition of S is n = 3g+ b−3. Recall that a circuit in C1
P (S)

is a subgraph homeomorphic to a circle and triangles, squares, pentagons and hexagons

are circuits with the appropriate number of vertices.

We have already shown that a triangular 2-cell can be recognised as a triangle in
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the 1-skeleton of the pants complex. We observe that the square and pentagonal 2-cells

have boundaries as alternating squares and alternating pentagons, respectively.

Lemma 3.25. Every alternating square in C1
P (S) is the boundary of a square 2-cell in

CP (S).

Proof. Let ABCD be an alternating square. By Lemma 3.22 , it is a 2-curve small

circuit. Let the (n − 2) common curves be α3, . . . , αn. Using the alternating property

of the circuit, A −→ B −→ C −→ D −→ A is of the form

{α1, α2} −→ {α1, α
′
2} −→ {α′

1, α
′
2} −→ {α′

1, α2} −→ {α1, α2}.

We show that α1 and α2 lie on disconnected subsurfaces. Assume that S ′ = S \

{α3, . . . , αn} is a connected subsurface of S containing {α1, α2}. Because 3g′+b′−3 = 2

for S ′ = Sg′,b′ , S
′ must be S0,5 or S1,2. If S ′ = S0,5, there is only one topological

possibility for α1 and α2. If S ′ = S1,2, there are two possibilities for α1 and α2, case

3 and case 4 in Proposition 3.24. In each of these cases, by observing the subsurface

S ′\α2, it is clear that there is no α
′
1 disjoint from α2 and α

′
2 that intersects α1 minimally,

which is not possible. Hence, α1 and α2 lie on disconnected subsurfaces.

Lemma 3.26. Every alternating pentagon in C1
P (S) is the boundary of a pentagonal

2-cell in CP (S).

Proof. Step (i): Let ABCDE be an alternating pentagon in C1
P (S). By Lemma 3.22,

ABCDE is a 2-curve small circuit. Let the (n−2) common curves be α3, . . . , αn. Using

the alternating property of the circuit, A −→ B −→ C −→ D −→ E −→ A is of the form

{α1, α2} −→ {α1, α
′
2} −→ {α′

1, α
′
2} −→ {α′

1, α
′′
2} −→ {α′′

2, α2} −→ {α1, α2}.

Since BCD and EAB are alternating, α2 ∈ E and α′
1 /∈ E. Also, α′

1 ∈ D and α′
2 /∈ D.

Step (ii): We observe that K = α1α
′
1α2α

′
2α

′′
2α1 forms a sequence such that adjacent

curves differ by an elementary move (intersect minimally) and non-adjacent curves are
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disjoint. We also observe that α1 and α2 cannot lie on different subsurfaces since α′
1

intersects them both non-trivially. Therefore, they must lie on S0,5 or S1,2.

Step (iii): Suppose γ1γ2γ3γ4γ5γ1 is a sequence of curves such that consecutive curves

intersect minimally and others are disjoint. We will show that such a sequence of curves

cannot lie on S1,2. Since two separating curves on S1,2 intersect at least four times (in

the neighbourhood of the boundary components), at most one of these curves can be

separating. So we divide this case into two subcases:

(a) Exactly one curve in the sequence K is separating.

(b) No curve in the sequence K is separating.

Case (a): In this case, suppose γ1 is the separating curve, then S1,2 \ γ1 = S1,1 ∪

S0.3. Since i(γ1, γ4) = i(γ1, γ3) = 0, and γ3, γ4 intersect minimally on S1,1, we have

i(γ3, γ4) = 1. We will say a curve is of (p, q)-type if it is of (p, q)-type if we ignore the

boundary components and just consider them on a torus. Suppose γ3 is (1, 0)-type (this

assumption works by the Theorem 1.9), and γ4 be of (0, 1)-type, as in Figure 3.12. Since

γ2 and γ4 are both non-separating on S1,2 with i(γ2, γ4) = 0, γ2 must be of (0, q)-type.

Similarly, γ5 must be of (p, 0)-type. But this implies that i(γ2, γ5) > 0, which is not

possible.

γ2

γ3

γ1

Fig. 3.12: The curve γ1 is separating in Case (a).

Case (b): Let all the curves in the sequence K be non-separating. The complement of

any curve is homeomorphic to S0,4, and therefore, adjacent curves inK intersect exactly
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twice. As explained in the proof of Proposition 3.24, all elementary moves involving

three nonseparating curves on S1,2 are topologically equivalent. Thus, without loss of

generality, we assume that γ1, γ3 and γ4 are the curves as in the Figure 3.13.

γ1

γ3γ4

Fig. 3.13: The curve γ1 is nonseparating in Case (b).

If S1,2 is cut along γ1 and γ4, we get two pairs of pants such that their boundary com-

ponents are γ1, γ4, and the boundaries of S1,2. Since i(γ1, γ2) = 2, the two components

of γ2 form an essential arcs of both pairs of pants and intersect the boundaries formed

by γ1. However, any essential arc with end points on γ1 will intersect γ3 at least twice

in each pair of pants (see Figure 3.14). Thus, i(γ2, γ3) ≥ 4, which is not possible.

γ1

γ3 γ4

γ1

γ3γ4

Fig. 3.14: The curve γ3 on S \ {γ1, γ4} in Case (b).

Step (iv): Thus, the only possibility is that α1 and α2 lie on S0,5. Now, we show that the

sequence of curves K must be equivalent to the sequence in the definition of pentagonal

2-cells. The complement of any curve of K on S0,5 is S0,4, hence adjacent curves in K
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Fig. 3.15: An example of a square triplet.

intersect twice. Therefore, K is the boundary of a pentagonal 2-cell.

We note that contrary to square and pentagonal 2-cells, the boundary of a hexagonal

2-cell is not an alternating hexagon as the pants decompositions associated to the

vertices Q,P, U have (n− 1) curves in common. However, we say that the boundary of

a hexagonal 2-cell is almost alternating, as we define shortly.

Definition 3.27. A square triplet is a set of three vertices in the pants graph C1
P (S),

which lie on a common square in a Farey graph but not on a common triangle. The

unique point that has edges connected to two points is called the central point. The

other two points are called outer points.

Example 3.28. The vertices (1, 0), (0, 1) and (2, 1) form a square triplet, as shown in

Figure 3.15.

Remark 3.29. All square triplets are equivalent on the pants graph of S1,1 and S0,4 upto

the action of Mod(S).

Definition 3.30. An almost-alternating hexagon in C1
P (S) is a hexagon with an alter-

nating sequence of 6 vertices, and a sequence of 3 vertices that form a square triplet.
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Lemma 3.31. Every almost-alternating hexagon in C1
P (S) is the boundary of a hexagonal

2-cell in CP (S).

Proof. Let ABCDEFA form an almost alternating hexagon with FAB forming a

square triplet. Then ABCDEF must be the alternating sequence.

Step 1: We find the configuration of the curves. Since an almost alternating hexagon

is not alternating, it is a 2-curve small circuit. Let {α3, . . . , αn} be the (n− 2) common

curves and A = {α1, α2}. Since FAB forms a square triplet, we have B = {α′
1, α2}, F =

{α′′
1, α2}, and i(α′

1, α
′′
1) is not minimal. Since C = {α′

1, α
′
2} and BCD is alternating, we

have α′
1 /∈ D but α′

2 ∈ D. Similarly, since EFA is alternating, we have α′′
1 ∈ E. Thus,

the pants decompositions associated to the hexagon ABCDEFA is

{α1, α2} −→ {α′
1, α2} −→ {α′

1, α
′
2} −→ {α′′

2, α
′
2} −→ {α′′

2, α
′′
1} −→ {α2, α

′′
1} −→ {α1, α2}.

Step 2: We show that α1 and α2 do not lie on disjoint subsurfaces. We observe that

there is a chain of curves connecting α1 to α2 in S \ {α3, . . . αn}, as follows.

α1 −→ α′′
1 −→ α′

2 −→ α2.

Therefore, α1 and α2 must lie on a connected subsurface.

Step 3: Assume that α1 and α2 do lie on S0,5. FAB forms the square triplet such that

α2 ∈ F,A,B. If we take S0,5\α2 = S0,4, then FAB lies on the pants graph associated to

the subsurface S0,4. Since squares are characterized by the topological property of the

curves in the associated pants decompositions (the geometric intersection numbers), any

two squares in C1
P (S0,4) are topologically equivalent. Thus, the pants decompositions

associated to F,A and B are as in Figure 3.16. In this figure, let a boundary component

be represented by a puncture and a curve be represented by an arc. To recover the

curve, take a boundary of a small neighbourhood of the arc. In such a presentation, it

is easy to see that α′
2 and α′′

2 must be represented by arcs which have an endpoint at

the puncture a. This implies that i(α′
2, α

′′
2) > 0, which is not possible since they both
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α1

α2

α′
1

α2

α2

α′′
2

a a

a

F

A
B

Fig. 3.16: The square triplet FAB as in Step 3.

appear in the pants decomposition associated to the vertex D. Thus, α1 and α2 must

lie on S1,2.

Step 4: Suppose α2 is separating on S1,2, then S1,2 \ α2 = S0,3 ∪ S1,1. Then, {α1}, {α′
1}

and {α′′
1} are pants decompositions of S1,1, whose associated vertices in C1

P (S1,1) form

a square triplet. Since square triplets are topologically unique, assume that α1, α
′
1 and

α′′
1 are of (2, 1), (0, 1) and (1, 0)-type, respectively. As in the proof of Lemma 3.26, we

can assume α1, α
′
1 and α′′

1 to be of the same type on S1,2 as well.

Since there are elementary moves of the form α2 −→ α′
2 and α′′

2 −→ α2, and two

separating curves on S1,2 must intersect at least four times, we have that α′
2 and α′′

2

must both be nonseparating. Also, since curves of different types intersect at least ones,

and {α′
2, α

′
1} and {α′′

2, α
′′
1} are pants decompositions of S1,2, we have that α′

2 and α′′
2

must be of the type (0, 1) and (1, 0), respectively. But α′
2 and α′′

2 appear in a pants

decomposition together, which is not possible. Therefore, α2 is nonseparating.

Step 5: Assume that α1 is separating on S1,2. Since all pants decompositions of S1,2

containing a separating curve are topologically equivalent, α1 and α2 must be as shown

in the Figure 3.17. Since, i(α′
1, α1) = 2 and i(α′

1, α2) = 0, we have α′
1 as shown in

Figure 3.17. Since FAB forms a square triplet, the choice of α′′
1 is topologically unique,
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and is as shown in the Figure 3.17. Therefore, i(α′
2, α

′
1) = 0 and α2 −→ α′

2 and α
′
2 −→ α′′

1

form elementary moves. It follows from the proof of Lemma 3.26 that there can be no

such α′
2 on S1,2. Therefore, α1 is nonseparating.

α1

α′
1α′′

1

α2

Fig. 3.17: Curves α1 as in Step 5.

Step 6: Suppose that α1, α2 are nonseparating on S1,2. Without loss of generality,

assume they are as shown in the Figure 3.18. If we assume that α′
1 is nonseparating

on S1,2, then because α1 −→ α′
1 in an elementary move, the choice of α′

1 is topologically

unique. Since FAB forms a square triplet in C1
P (S0,4) = S \ α2, we have i(α1, α

′′
1) =

i(α1, α
′
1) = 2 and i(α′

1, α
′′
1) > 2. Then the choice of α′

1 and α′′
1 should be as shown in

the Figure 3.18.

α′
1

α1

α′′
1

α2

Fig. 3.18: Nonseparating curve α′
1 in Step 6.

Since i(α′
2, α

′
1) = 0, and α′

2 −→ α′′
1 and α2 −→ α′

2 appear as elementary moves, it follows
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as in proof of Proposition 3.24 that no such α′
2 can exist. Thus, α′

1 must be separating.

Similarly, it follows that α′′
1 must be separating.

Step 7: We show that the choices of α1, α
′
1, α

′′
1, α2, α

′
2, α

′′
2 on S1,2 are topologically unique.

By Step 4, 5 and 6, it follows that α1, α2, α
′
1, α

′′
1 are as shown in the Figure 3.19.

α2 α1

α′
1

α′′
1

α′′
2

α′
2

Fig. 3.19: Curves as in Step 7.

The curves α′
2 and α′′

2 are non-separating since they have intersection number 2 with

each separating curve α′
1 and α′′

1. Since α′
2 appears in a pants decomposition with α′

1

and α′′
2, these curves have intersection number 0 with α′

2. With α2 and α′′
1, it has

intersection numbers 1 and 2, respectively. A similar analysis for α′′
2 gives us the unique

choice of these curves, which is as shown in the Figure 3.19, that corresponds to the

circuit associated with a hexagonal 2-cell.

3.4 Main results

We now state the results that follow as a consequence of the theory developed in the

previous sections. The following theorem is a direct consequence of the Lemmas 3.14,

3.25, 3.26 and 3.31.

Theorem 3.32. If S is an orientable surface with χ(S) < 0, then:

Aut(CP (S)) ∼= Aut(C1
P (S)).
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Theorem 3.33. If S ̸= S0,3 is an orientable surface with χ(S) < 0, and θ : Mod(S) →

Aut(CP (S)) is the natural map, then the following statements hold.

(i) θ is surjective.

(ii) ker(θ) ∼= Z2 for S ∈ {S1,1, S1,2, S2,0}, ker(θ) ∼= Z2

⊕
Z2 for S = S0,4, and ker(θ)

is trivial otherwise.

To prove the Theorem 3.33, we will prove a series of lemmas to show that the map ϕ is

an isomorphism of groups. We will consider the following diagram which we will show

to be commutative.

Mod(S)

Aut(CP (S)) Aut(C1
p(S)) Aut(C(S))

θ η

i ϕ

(3.1)

Here, i is the isomorphism given by the Theorem 3.32 and η is the map in Theorem 2.15.

Lemma 3.34. The map ϕ is a group homomorphism.

Proof. For A,B ∈ Aut(C1
P (S)) and v, w ∈ C(0)(S), let f−1(v) contain (F,X) and

f−1(w) contain (B(F ), B(X)). Then, ϕ(AB)(v) corresponds to the vertex in C(S)

associated with (AB(F ), AB(X)). We observe that ϕ(A)ϕ(B)(v) = ϕ(A)(w) = (f ◦A◦

f−1)(w). Since we have already shown that ϕ is well-defined irrespective of the choice

of the marked Farey graph under f−1, we can choose f−1(w) = (B(F ), B(X)). Thus,

ϕ is a homomorphism.

Lemma 3.35. The map ϕ is surjective.

Proof. Let [g] ∈ Mod(S), and v be the vertex associated to a curve α1 on S. Then

(ϕ ◦ i ◦ θ)([g])(v) = ϕ(i ◦ θ([g]))(v) = f ◦ (i ◦ θ[g]) ◦ f−1(v) (3.2)

is the vertex corresponding to the marked Farey graph (i ◦ θ [g] (Fv), i ◦ θ [g] (Xv)). If

Xv = {α1, α2, . . . , αn} and Fv = {⋆, α2, . . . , αn}, then (i ◦ θ [g] (Fv), i ◦ θ [g] (Xv)) cor-

responds to the marked Farey graph ({⋆, g(α2), . . . , g(αn)}, {g(α1), g(α2), . . . , g(αn)}).
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Thus, (ϕ ◦ i ◦ θ) ([g]) (v) = η ([g]) (v), and Diagram 3.1 commutes. Then, surjectivity

of the map ϕ follows from the surjectivity of the map η.

Lemma 3.36. The map ϕ is injective.

Proof. For A ∈ Aut(C1
P (S)), let ϕ(A) is be trivial in Aut(C(S)), that is, A ∈ kerϕ. Let

X be a vertex in C1
P (S) associated to the pants decomposition {α1, α2, . . . , αn}. Let vi

be the vertex in the curve complex associated to the curve αi for 1 ≤ i ≤ n. For the

Farey graph Fvi = {α1, . . . , αi−1, ⋆, αi+1, . . . , αn}, each (Fvi , X) corresponds to αi such

that the intersection of all Fvi ’s is X in C1
P (S). Since (A(Fvi), A(X)) is a marked Farey

graphs corresponding to vi and ϕ(A) is identity, the intersection point of all A(Fvi)’s is

A(X) = {α1, α2, . . . , αn} = X. That is, A is the identity of Aut(C1
P (S)). Hence, the

kernel of ϕ is trivial, implying that ϕ is injective.

Proposition 3.37. ϕ is an isomorphism of groups.

Finally, we prove Theorem 3.33.

Proof. The commutativity of Diagram 3.1 is shown in the proof of Lemma 3.35. Here, i

and ϕ are isomorphisms (from Proposition 3.37 and Theorem 3.32), and η is surjective

for S ̸= S1,2. For S = S1,2, the image of η is the subgroup Aut∗C(S) of Aut(C(S))

which preserves the set of vertices of C(S) associated to nonseparating curves on S.

We will show that image of ϕ lies in Aut∗C(S).

Let v be a vertex of C(S) associated to a nonseparating curve α and X ∈ C1
P (S) be

the vertex associated to the pants decomposition {α, β}, where β is also nonseparating,

with (Fv, X) ∈ f−1(v). Since α, β lie on S1,2, there exists a hexagonal 2-cell containing

X, where X is the center of the square triplet in the circuit. By Lemma 3.31, it follows

that α is nonseparating. Since almost-alternating and non-alternating sequences are

preserved by Aut(C1
P (S)), the independence of ϕ from the choice of marked Farey

graph under f−1 proves that image of ϕ lies in Aut∗C(S). Thus, θ is surjective. The

second part follows from the second part of the Theorem 2.15.
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