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ABSTRACT

In this thesis, we study the paper titled “Browder type fixed point theorems and
Nash equilibria in generalized games” [10], which derives an existence theorem
for Nash equilibrium in generalized games with non-compact strategy sets from
any Hausdorff topological vector spaces. We will start by studying the well-
known Browder fixed point theorem [2] on Hausdorff topological vector spaces
and later study how one of its generalizations is equivalent to the Fan-Knaster-
Kuratowski-Mazurkiewicz Theorem [5]. These fixed-point theorems will form
the basis for the derivation of the main result of [10].
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Chapter 1

Fixed Point Theorems and

Existence of Nash Equilibrium

1.1 Introduction

Fixed point theory is vital in many branches of mathematics, particularly in

nonlinear analysis, topology, and mathematical game theory. Brouwer’s fixed

point theorem forms a basis for more general fixed point theorems like Kaku-

tani fixed point theorem [9]. Kakutani fixed point theorem is used to prove

the existence of equilibrium points in n-person games. We will start with an

introduction to mathematical game theory and the significance of the Nash

equilibrium. A Nash equilibrium occurs when we assume that players know

the equilibrium strategy of other players and still are not willing to change

their equilibrium strategy. Nash equilibrium can be seen as the fixed point of a

game’s strategy sets. Though Nash equilibrium has its origin in mathematics,
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it is widely applied in various fields such as economics and social sciences. We

will briefly discuss Sperner’s Lemma, derive crucial fixed point theorems and

end the first chapter by proving the existence of Nash equilibrium.

In the following chapter we study, the paper titled "Browder type fixed point

theorems and Nash equilibrium in generalized games" [10]. We present some

useful generalizations of the famous Browder fixed point theorem [2] on Haus-

dorff topological vector spaces. We also prove that one of the generalizations is

equivalent to well-known Fan–Knaster–Kuratowski–Mazurkiewicz theorem [5].

Most Nash equilibrium existence theorems for generalized games assume the

strategy spaces to be subsets of a Euclidean space or a locally convex Hausdorff

topological vector space or a metrizable locally convex vector space. We con-

clude the second chapter by deriving existence theorems for Nash equilibrium

in generalized games, where the strategy spaces are noncompact subsets of a

Hausdorff topological vector spaces.

1.2 Game Theory

Game theory is the study of interactive decision-making in conflict situations

between different players. In this chapter, we analyze the mathematical frame-

work of game theory and prove some well-known fixed point theorems. We

start by discussing some basic concepts of rational decision-making, the notion

of normal games, and the much-celebrated Nash equilibrium. This section is

based on [7, Chapter 2].

Interactive decision situations are characterized by the following elements:
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1. Players: A group of players.

2. Actions: A set of actions each players can choose from.

3. Outcomes: A set of possible results caused by any of the actions de-

scribed in the action set.

4. Preferences: Describes the player preference on the set of possible out-

comes.

The preference relation ⪰ is defined as a binary relation that describes the

player’s preferences, from the most desired to least desired outcomes. The

notation x ⪰ y means "x is preferred over y" or "x is at least as good as y".

To define rational preference relation, we need some essential axioms, including:

Axiom 1.2.1. (The Completeness Axiom) The preference relation ⪰ is com-

plete if any two outcomes x, y ∈ X can be ranked by the preference relation so

that either x ⪰ y or y ⪰ x or both.

Axiom 1.2.2. (The Transitivity Axiom) The preference relation ⪰ is transitive

if for any three outcomes x, y, z ∈ X, if x ⪰ y and y ⪰ z then x ⪰ z.

Definition 1. A preference relation that is complete and transitive is called a

rational preference relation.

Example 1.2.1. The ≥ relation over real numbers is a rational preference

relation.

Definition 2. A payoff function (or utility function) u : X → R represents the

preference relation ⪰ if for any pair x, y ∈ X, u(x) ≥ u(y) if and only if x ⪰ y.
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Remark 1.2.1. A player facing a decision problem with a payoff function u(.)

over actions is rational, if he chooses an action a ∈ A that maximizes his payoff.

That is, a∗ ∈ A is chosen if and only if u (a∗) ≥ u(a) for all a ∈ A.

1.2.1 Strategic Games

A strategic game describes interactive situations among several players. All

decisions taken by the players are simultaneous and independent. They are

characterized by the players’ strategies and their payoff functions. We assume

that each player is rational because the player tries to maximize the payoff.

Definition 3. A normal-form game is a game that includes three components

as follows:

1. A finite set of players, N = {1, 2, . . . , n}.

2. Action profile a = (a1, . . . , an) ∈ A = A1 × . . .×An; where Ai is a action

choice for individual i.

3. A set of payoff functions, {u1, u2, . . . , un}, each assigning a payoff value

to each combination of chosen actions, that is, a set of functions ui :

A1 × A2 × . . .× An → R for each i ∈ N.

We study some examples to better understand the notion of normal-form

games.

Example 1.2.2. (Prisoner’s Dilemma) Suppose that two suspects in a small

robbery are put into different cells. We know that they are guilty of the robbery,

but there is no evidence. Both of them are given a chance to confess. If both
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of them confess, then each will spend 10 years in jail. If only one confesses, she

will act as a witness against the other, receive no punishment, and the other

will spend 15 years in jail. On the other hand, if no one confesses, then each

of them will spend 1 year in jail.

We refer to the confession as "defect" (D) and to no confession as "not

defect" (ND). Then, the prisoner’s dilemma game is a strategic game with

players N = 1, 2, action set Ai = {ND,D}, and payoff functions

u1(ND,ND) = u2(ND,ND) = −1

u1(D,D) = u2(D,D) = −10

u1(ND,D) = u2(D,ND) = −15

u1(D,ND) = u2(ND,D) = 0.

Figure 1.1 gives a better representation of this game. The prisoner’s dilemma

Figure 1.1: The prisoner’s dilemma.

game is a classic example of game theory. The "cooperative" outcome (−1,−1)

is quite suitable for both players; it is the most they can get in the game. Al-

though, for each player, confessing leads to a strictly higher payoff than not

confessing, regardless of the strategy chosen by the other. Hence, a rational

decision-maker should always confess. Thus, if both players behave rationally,

they get payoffs (-10,-10), which are much worse than the payoffs in the "co-
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operative" outcome.

Example 1.2.3. (Matching pennies) This is a game in which two players have

to choose a natural number simultaneously and independently. If the sum of

the selected numbers is even, then the first player wins; if the sum is odd, the

second player wins. All that matters in this game is whether a player chooses

an even number (E) or an odd one (O). Thus, the game has players N = {1, 2},

action set Ai = {E,O}, and payoff functions

u1(E,E) = u1(O,O) = u2(O,E) = u2(E,O) = 1.

u2(E,E) = u2(O,O) = u1(O,E) = u1(E,O) = −1.

Figure 1.2 is a more convenient representation of this game.

Figure 1.2: The matching pennies game.

It would not be suitable to play any deterministic strategy in matching

pennies. To optimize, we need to choose an even number and odd number

alternatively, with a probability of 0.5. Thus, we need the notion of a mixed

strategy.

Definition 4. A strategy Si for agent i is a probability distribution over the

actions Ai. There are two kinds of strategies, namely:
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1. Pure Strategy: A strategy in which only one action is played with positive

probability.

2. Mixed Strategy: A strategy in which more than one action is played with

positive probability.

Let the set of all strategies for the player i be Si and S = S1 × . . .× Sn.

1.2.2 Best Response and Nash Equilirbrium

If the player knows the actions of others, then it is easy to pick for the player to

choose their own action. A strategy that leads to an outcome with the highest

payoff given the strategy of other players is called the best response strategy.

For each si ∈ Si, let s−i = (s1, . . . , si−1, si+1, . . . , sn). Thus, s = (s−i, si) ∈ S

and s−i ∈ S−i = S1 × . . .× Si−1 × Si+1 × . . .× Sn.

Definition 5. A response s∗i is said to be best response with respect to oppo-

nents’ strategies s−i, if ∀si ∈ Si,

ui (s
∗
i , s−i) ≥ ui (si, s−i) .

We denote best response as BRi for agent i. That is s∗i is best response if

s∗i ∈ BR (s−i)

Definition 6. A collection s = (s1, . . . , sn) of strategies is a Nash equilibrium,

if ∀i, si ∈ BR (s−i) .

The Nash equilibrium Theorem states that:
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Theorem 1.2.1 (Existence of Nash equilibrium). Any finite-player game with

finite strategies for all players has at least a Nash equilibrium.

Example 1.2.4. Consider the matching pennies game Example 1.2.3. Suppose

that the players, besides choosing E or O, have a mixed strategy L such that

they choose E with a probability of 0.5 and O with a probability of 0.5. Figure

1.3 give s a more convenient representation of this game. Note that:

Figure 1.3: The matching pennies game.

u1(L,L) =
1

4
u1(E,E) +

1

4
u1(E,O) +

1

4
u1(O,E) +

1

4
u1(O,O) = 0.

The game has a Nash equilibrium: (L,L). The mixed extension of Example

1.2.3 is a new game in which players can choose not only L but also any other

mixed strategy over {E,O}. But here, the only Nash equilibrium of the game

is (L,L).

1.2.3 Generalized Games

We will be dealing with generalized form of normal-form games and proving

Nash equilibrium existence theorems for generalized games.

Definition 7. A generalized game (Xi, Fi, ui)i∈I is a game with player set I

such that each player i ∈ I has strategy space Xi ; each player i has a payoff
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function ui : X −→ R that depends on xi as well as on x−i of all other players;

and for each i ∈ I, Fi : X−i 7→ 2Xi and player i’s strategy must belong to the

set Fi (x−i) ⊆ Xi that depends on the rival players’ strategies.

Definition 8. A vector x∗ = (x∗i )i∈I ∈ X =
∏

i∈I Xi is called a generalized

Nash equilibrium of a generalized game (Xi, Fi, ui)i∈I if

ui
(
x∗i , x

∗
−i

)
≥ ui

(
xi, x

∗
−i

)
,∀xi ∈ Fi

(
x∗−i

)
. (1.1)

1.3 Fixed Point Theorems

Kakutani’s and Brouwer’s fixed point theorem are two classical results from

fixed point theory that we will need to establish Nash’s Theorem (Theorem

1.2.1). We will first prove Sperner’s lemma and then use it to prove Brouwer’s

well-known fixed point theorem (Theorem 2.1.1), which states that every con-

tinuous map of an n-dimensional ball to itself has a fixed point. The first part

of this section is based on Jacob Fox’s notes [6].

Definition 9. An n-dimensional simplex is a convex linear combination of

n+ 1 points in a general position.

A simplex is a generalization of the notion of a triangle or tetrahedron in

dimensions 2 and 3, respectively, to higher dimensions.

Example 1.3.1. Given vertices v1, . . . , vn+1 ∈ Rn , the standard n-simplex is

given by the set:

S =

{
n+1∑
i=1

αivi : αi ≥ 0,
n+1∑
i=1

αi = 1

}
.
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Figure 1.4 shows a representation of the standard simplices up to the fourth

dimension.

Figure 1.4: n-dimensional simplices.

Definition 10. A simplicial subdivision of an n-dimensional simplex S is a

partition into smaller n-dimensional simplices (cells) such that any two cells

are either disjoint, or they share a full face of a certain dimension.

Definition 11. A proper coloring of a simplicial subdivision is an assignment

of n+1 colors to the vertices of the subdivision so that the vertices of S receive

all different colors, and points on each face of S use only the colors of the

vertices defining the respective face of S

Definition 12. A barycentric subdivision of an n-dimensional simplex consists

of (n+ 1)!n dimensional simplices.

Figure 1.5: Barycentric subdivision of a 2 simplex.
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1.3.1 Sperner’s Lemma

Lemma 1.3.1. (Sperner’s Lemma) Every properly colored simplicial subdivi-

sion contains a cell whose vertices have all different colors.

Proof. Let us call a cell of the subdivision a colored cell if its vertices get

different colors. We are done if we prove that the number of colored cells for

any proper coloring is odd.

For n = 1 that is the 1-dimensional simplex. We have a line segment, say

(a, b). After subdividing it into smaller segments, we color the vertices of the

subdivision with 2 different colors. Both a and b will have different colors.

Thus, going from a to b, we must switch colors an odd number of times to get

a different color for b. Hence, there is an odd number of small segments that

receive two different colors. Thus, there are an odd-numbered of colored cells.

For n = 2 that is the 2-dimensional simplex. We have a triangle, say A

and a properly colored simplicial subdivision with colors 1, 2 and 3. Let B

denote the number of cells colored (1, 2, 2) and (1, 1, 2), and C denote number

of colored cells. Consider edges in the subdivision whose endpoints receive

colors 1 and 2. Let X denote the number of boundary edges colored (1, 2), and

Y the number of interior edges colored (1, 2).

Here we can count in two different ways: For each cell of type B, we get

two edges colored (1, 2), while for each cell of type C, we get only such edge.

Note that this way, we count internal edges of type (1, 2) twice, whereas we

count boundary edges only once. We conclude that 2B + C = X + 2Y.

We know that no two vertices of A will have the same color. Between

vertices colored 1 and 2, there must be an odd number of edges colored (1, 2),
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following the same argument in the 1-dimensional case. Hence, X is odd. This

implies that no of colored cells C is odd.

In general, for n-dimensional simplex S, we use induction on n. We have

a proper coloring of a simplicial subdivision of S using n + 1 colors. Let C

denote the number of colored cells, using all n + 1 colors. Let B denote the

number of simplicial cells that are colored using 1, 2, ..., n so that exactly one

of these colors is used twice and the other colors once. Also, we consider

(n − 1) dimensional faces that use exactly the colors 1, 2, ..., n. Let X denote

the number of such faces on the boundary of S, and Y the number of such

faces inside S. Again, we count in two different ways.

Each cell of type C contributes exactly one face colored 1, 2, ..., n. Each cell

of type B contributes exactly two faces colored 1, 2, ..., n. However, inside faces

appear in two cells, while boundary faces appear in one cell. Hence, we get the

equation 2B + C = X + 2Y.

On the boundary, the only (n− 1) dimensional faces colored 1, 2, ..., n can

be on the face F ⊂ S whose vertices are colored 1, 2, ..., n. We use the in-

ductive hypothesis for F , which forms a properly colored (n − 1) dimensional

subdivision. By the hypothesis, F contains an odd number of colored (n− 1)-

dimensional cells, i.e., X is odd. We conclude that C is odd as well.

1.3.2 Brouwer’s Fixed Point Theorem

Theorem 1.3.1. (Brouwer’s Fixed Point Theorem) Let Bn denote an n -

dimensional ball. For any continuous map f : Bn → Bn, there is a point

x ∈ Bn such that f(x) = x.
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Proof. We will work with a simplex instead of a ball since they are homeo-

morphic. Let S be a simplex embedded in Rn+1 so that the vertices of S are

s1 = (1, 0, . . . , 0), s2 = (0, 1, . . . , 0), . . ., sn+1 = (0, 0, . . . , 1). Let f : S → S

be a continuous map and assume that it has no fixed point. We construct a

sequence of subdivisions of S that we denote by S1,S2,S3, . . .. Each Sj is a

subdivision of Sj−1, so that the size of each cell in Sj tends to zero as j → ∞.

Now we define a coloring of Sj. For each vertex x ∈ Sj, we assign a color

c(x) ∈ [n + 1] such that (f(x))c(x) < xc(x). To see that this is possible, note

that for each point x ∈ S,
∑
xi = 1, and also

∑
f(x)i = 1. Unless f(x) = x,

there are coordinates such that (f(x))i < xi and also (f(x))i′ > xi′ .

In case there are multiple coordinates such that (f(x))i < xi, we pick the

smallest i. We check that this is a proper coloring in Sperner’s lemma. For

vertices of S, si = (0, . . . , 1, . . . , 0), we have c(x) = i because i is the only

coordinate where (f(x))i < xi is possible. Similarly, for vertices on a certain

face say of S, e.g. x = co(si : i ∈ A), the only coordinates where (f(x))i < xi

are those where i ∈ A, and hence c(x) ∈ A. Here co(.) denotes the convex

hull of (.). Sperner’s lemma implies that there is a colored cell with vertices

x(j,1), . . . , x(j,n+1) ∈ Sj. In other words,
(
f
(
x(j,i)

))
i
< x

(j,i)
i for each i ∈ [n +

1]. Since this is true for each Sj, we get a sequence of points
{
x(j,1)

}
inside

a compact set S which has a convergent subsequence. We can assume that{
x(j,1)

}
itself is convergent.

Since the size of the cells in Sj tends to zero, the limits limj→∞ x(j,i) are

the same in fact for all i ∈ [n + 1]. Let’s call this common limit point x∗ =

limj→∞ x(j,i). We assumed that there is no fixed point, therefore f (x∗) ̸= x∗.
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This means that (f (x∗))i > x∗i for some coordinate i. But we know that(
f
(
x(j,i)

))
i
< x

(j,i)
i for all j and limj→∞ x(j,i) = x∗, which implies (f (x∗))i ≤ x∗i

by continuity. This contradicts the assumption that there is no fixed point.

1.3.3 Correspondences

We need some concepts and theorems related to correspondences, which will

be used in this and the following chapter. Best response is not a function as

there can be more than one strategy that belongs to BRi for player i, it is a

multivalued map.

Definition 13. A correspondence (or a set-valued map or a multivalued map)

F : X 7→ 2Y from X to Y , such that both X and Y are nonempty sets, is a

map that associates some x ∈ X to a subset F (x) of Y . The set F (x) is the

image of x under F .

Remark 1.3.1. A correspondence F : X 7→ 2Y from X to Y is nonempty-

valued, closed-valued, or convex-valued if, for each x ∈ X,F (x) is a nonempty,

closed, or convex subset of Y , respectively.

Definition 14. A correspondence F : X 7→ 2Y from X to Y is:

1. Upper hemicontinuous if, for each sequence {xn} ⊂ X converging to

x̄ ∈ X and each open set Y ∗ ⊂ Y such that F (x̄) ⊂ Y ∗, there is k0 ∈ N

such that, for each n ≥ n0, F (xn) ⊂ Y ∗. Equivalently, F : X 7→ 2Y

is upper hemicontinuous if for any open neighbourhood V of F (a), a ∈

X, {x ∈ X | F (x) ⊆ V } is open.
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2. Lower hemicontinuous if, for each sequence {xn} ⊂ X converging to

x̄ ∈ X and each open set Y ∗ ⊂ Y such that F (x̄) ∩ Y ∗ ̸= ∅, there

is n0 ∈ N such that, for each n ≥ n0, F (xn) ∩ Y ∗ ̸= ∅. Equivalently,

F : X 7→ 2Y is lower hemicontinuous if the set {x ∈ X | F (x) ∩ V ̸= ∅}

is open for every open set V of Y .

3. Continuous if, it is both upper hemicontinuous and lower hemicontinuous.

Definition 15. A correspondence F : X 7→ 2Y has:

1. open lower sections if, for every y ∈ Y the set F−1(y) = {x ∈ X | y ∈

F (x)} is open in X.

2. open upper sections if, the set F (x) is open in Y for every x ∈ X.

If correspondence F is a function (i.e., only selects singletons in 2Y ), both

upper and lower hemicontinuity properties reduce to the standard continuity

of functions.

We will also require the following fundamental theorems from real analysis and

general topology.

Theorem 1.3.2. (Tychonoff Theorem) The product of any collection of com-

pact topological spaces is compact with respect to the product topology.

Theorem 1.3.3. A closed subset of a compact set in a topological space is

compact.

Theorem 1.3.4. If {fn} is a sequence of continuous functions on X, and if

fn −→ f uniformly, then f is continuous.
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Theorem 1.3.5. If
∑
an is absolutely convergent and its value is s, then any

rearrangement of
∑
an will also have a value of s.

Theorem 1.3.6. (Bolzano–Weierstrass Theorem) Each bounded sequence in

Rn has a convergent subsequence.

Theorem 1.3.7. (Extreme Value Theorem) If a real-valued function is con-

tinuous on the closed interval, then must attain a maximum and a minimum,

each at least once.

Definition 16. A real-valued function f defined on a convex subset C ⊂ Rn

is said to be quasiconcave if for all real α ∈ R, the set {x ∈ C : f(x) ≥ α} is

convex.

Definition 17. Let ∆n−1 be an (n − 1)-dimensional simplex with n vertices

labeled as 1, . . . , n. A Knaster-Kuratowski-Mazurkiewicz covering is defined as

a set C1, . . . , Cn of closed sets such that for any I ⊆ {1, . . . , n}, the convex hull

of the vertices corresponding to I is covered by
⋃
Ci∈I .

Theorem 1.3.8. (Knaster-Kuratowski-Mazurkiewicz Theorem) In every KKM

covering, the common intersection of all n sets is nonempty, i.e:

n⋂
i=1

Ci ̸= ∅.

1.3.4 Kakutani’s Fixed Point Theorem

Theorem 1.3.9. (Kakutani’s Fixed Point Theorem) Let X be a non-empty,

compact and convex subset of a finite-dimensional Euclidean space and F :
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X → 2X be a non-empty, convex correspondence, such that F (x) is a subset X

and is upper hemicontinuous. Then, F has a fixed point, that is, there exists

some x ∈ X, such that x ∈ F (x).

Proof. We prove the theorem for a non-degenerate simplex X in Rn. Let

X = [ao, a1, . . . , an]. Now, for each integer p we consider the pth barycen-

tric subdivision of X and a continuous function f (p) as follows. If x is the

vertex of any cell in the subdivision, let y be an arbitrary point of F (x) and

set f (p)(x) = y ∈ F (x). If x is not such a vertex, then x lies in some cell of the

subdivision, say x ∈
[
a
(p)
0 , . . . a

(p)
n

]
. Then x is a convex combination of these

vertices, say

x =
n∑

j=0

λ
(p)
j a

(p)
j ;λ

(p)
j ≥ 0;

n∑
j=0

λ
(p)
j = 1,

and we get,

f (p)(x) =
n∑

j=0

λ
(p)
j f (p)

(
a
(p)
j

)
.

Since the barycentric coordinates of points are unique, if x lies on a common

face, the two definitions coincide on the common face. Now it is clear that the

various maps f (p) are continuous maps of the simplex X onto itself. Hence,

the Theorem 1.3.1 guarantees that each has a fixed point, say a point x(p)∗ such

that f (p)
(
x
(p)
∗

)
= x

(p)
∗ . Suppose that any of these fixed points is a vertex.

Therefore, it is a fixed point of F by construction, and the proof is complete.

On the other hand, if none of these points are vertices, then, for a given p, we

have

x(p)∗ =
n∑

j=0

λ
(p)
j a

(p)
j .
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So, using the definition of f (p) and the fact that x(p)∗ is its fixed point, we have

x(p)∗ =
n∑

j=0

λ
(p)
j y

(p)
j ,

where

y
(p)
j = f (p)

(
a
(p)
j

)
∈ F

(
a
(p)
j

)
, j = 0, 1, 2, . . . , n.

We now have 2(n + 1) sequences all of which lie in compact subsets of

Rn, namely the sequence of fixed points
{
x
(p)
∗

}∞

p=1
, the n sequences of their

barycentric coordinates
{
λ
(p)
j

}∞

p=1
for each j = 1, . . . , n and the n sequences{

y
(p)
j

}∞

p=1
for each j = 1, . . . , n. The first and last of these lie in the simplex X

which is closed and bounded. All the sequences of the barycentric coordinates

lie in the simplex of Rn. By a direct application of Theorem 1.3.6, we may

assume that all thee sequences converge as p→ ∞. Thus,

x(p)∗ → x∗ as p→ ∞,

λ
(p)
j → λj as p→ ∞, j = 1, . . . , n, , and

y
(p)
j → yj as p→ ∞, j = 1, . . . , n.

Now, as the diameter of the subcells approach 0 as p → ∞, the convergence

of the fixed points to x∗ implies that the vertices a(p)j → x∗ as p → ∞ for all

j = 1, . . . , n. Moreover we must have

x∗ =
n∑

j=0

λjyj.
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As F is upper hemicontinuous, we have

y
(p)
j ∈ F

(
a
(p)
j

)
, and a(p)j → x∗, y

(p)
j ∈ yj.

Hence we must have yj ∈ F (x∗). But F (x∗) is convex and we have x∗ is a

convex combination of the yj. Hence, x∗ ∈ F (x∗).

1.4 Nash Equilibrium Existence Theorem

In 1950, John Nash, the mathematician later featured in the book and film

"A Beautiful Mind," — wrote a two-page paper that transformed the theory

of economics. Nash’s equilibrium concept, which earned him a Nobel Prize

in economics in 1994, offers a unified framework for understanding strategic

behavior in economics and psychology, evolutionary biology, and a host of

other fields. We will prove Nash Equilibrium using Theorem 1.3.9.

Proof. (of Theorem 1.2.1) Recall that a mixed-strategy profile s∗ is a Nash

equilibrium if

ui (s
∗
i , s−i) ≥ ui (si, s−i)∀si ∈ Si.

In other words, s∗ is a Nash equilibrium if and only if s∗ ∈ BRi

(
s∗−i

)
, where

BRi

(
s∗−i

)
is the best response of player i, given that the other players’ strategies

are
(
s∗−i

)
.

We define the Best Response Correspondence B : S → 2S such that for all

s ∈ S, we have

B(s) = [BRi (s−i)]i∈N
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We will now prove that a mixed-strategy profile s∗ ∈ S is a Nash equilibrium if

and only if it is a fixed point of the best-response correspondence B, s∗ ∈ B (s∗).

To find the fixed point of the correspondence B, we apply Theorem 1.3.9 to

the best response correspondence B : S → 2S. We start by showing that B(s)

indeed satisfies all the conditions of Theorem 1.3.9. By definition,

S =
∏
i∈N

Si,

where each Si is a simplex of dimension |Si| − 1. Thus each Si is closed and

bounded, and thus compact. Their product set is also compact by Theorem

1.3.2. Also, S is the convex hull of the set of pure strategies. Hence, S is

convex. As Si is non-empty and compact, and ui is linear in x. Hence, ui is

continuous, and by Theorem 1.3.7, B(s) is non-empty.

B(s) ⊂ S is convex if and only if BRi (s−i) is convex for all i. Let s′i, s′′i ∈

BRi (s−i). Then, we have:

ui (s
′
i, s−i) ≥ ui (τi, s−i) for all τi ∈ Si

and

ui (s
′′
i , s−i) ≥ ui (τi, s−i) for all τi ∈ Si.

Thus, for all λ ∈ [0, 1], we have:

λui (s
′
i, s−i) + (1− λ)ui (s

′′
i , s−i) ≥ ui (τi, s−i)∀τi ∈ Si.
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By the linearity of ui, we have,

ui (λs
′
i + (1− λ)s′′i , s−i) ≥ ui (τi, s−i) ∀τi ∈ Si.

Therefore, λs′i + (1− λ)s′′i ∈ Bi(s− i), showing that B(s) is convex-valued.

Lastly, we need to show that B(s) is upper hemicontinuous. Suppose we

assume on the contrary that B(s) not be upper hemicontinuous. Then, there

exists a sequence (sn, ŝn) → (s, ŝ) with ŝn ∈ B (sn), but ŝi /∈ BRi (s−i) for

some i. This implies that there exists some s′i ∈ Si and some ϵ > 0 such that

ui (s
′
i, s−i) > ui (ŝi, s−i) + 3ϵ.

By continuity of ui and the fact that sn−i → s−i, we have for sufficiently large

n,

ui
(
s′i, s

n
−i

)
≥ ui (s

′
i, s−i)− ϵ.

Combining the preceding two relations and using the continuity of the ui, we

obtain, we obtain

ui
(
s′i, s

n
−i

)
> ui (ŝi, s−i) + 2ϵ ≥ ui

(
ŝni , s

n
−i

)
+ ϵ.

This contradicts the assumption that ŝni ∈ BRi

(
sn−i

)
. The existence of the

fixed point then follows from Theorem 1.3.9.
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Chapter 2

Nash Equilibrium in Generalized

Games

Most existence theorems for Nash equilibrium in generalized games require

the strategic spaces to be the Euclidean space or a locally convex Hausdorff

space. In this chapter, we explore the results in the paper [10] to derive Nash

equilibrium existence theorems for strategy spaces that are noncompact subsets

of a Hausdorff topological vector space.

2.1 Browder Fixed Point theorems

We will start by proving Browder fixed point theorem [2] on Hausdorff topolog-

ical vector spaces and later prove that one of its generalizations is equivalent

to Fan-Knaster-Kuratowski-Mazurkiewicz theorem (FKKM) [5].

Theorem 2.1.1. (Browder’s fixed point theorem [2]) Let K be a nonempty

compact convex subset of a Hausdorff topological vector space E. Suppose that

22



F : K 7→ 2K is a correspondence such that:

1. for each x ∈ K,F (x) is a nonempty convex subset of K and

2. for each y ∈ K,F−1(y) = {x | x ∈ K, y ∈ F (x)} is open in K (i.e., F

has open lower sections in K).

Then there exists x∗ ∈ K such that x∗ ∈ F (x∗).

Proof. For each y in K,F−1(y) is an open subset of K, and each x ∈ K lies in

at least one of these open subsets, by our hypothesis. Since K is compact there

exists a finite family {y1, . . . , yn} such that K = ∪n
j=1F

−1 (yj). Let {β1, . . . , βn}

be a partition of unity corresponding to this covering, i.e. each βj is a contin-

uous mapping of K into R1 which vanishes outside of F−1 (yj) , 0 ≤ βj(x) ≤ 1

for all x in K and all j with 1 ≤ j ≤ n, while
∑n

j=1 βj(x) = 1 for all x in K.

We define a continuous mapping f of K into K by setting

f(x) =
n∑

j=1

βj(x)yj.

Since each yj lies in K and f(x) is a convex linear combination of the points

yj, f(x) lies in K. Moreover, for each j such that βj(x) ̸= 0, x lies in F−1 (yj)

so that yj ∈ F (x). Hence, f(x) is a convex linear combination of points in the

convex set F (x) and therefore, f(x) ∈ F (x) for each x in K.

LetK0 be the finite dimensional simplex spanned by the n points {y1, . . . , yn}.

K0 is homeomorphic to a Euclidean ball. f maps K0 into K0, and by the The-

orem 1.3.1, f has a fixed point x0 in K0. For this point, we have

x0 = f (x0) ∈ F (x0) .
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Lemma 2.1.1. [4] Let X be an arbitrary set in a topological vector space E.

To each x ∈ X, let a closed set F (x) in E be given such that the convex hull of

every finite subset {x1, x2, . . . , xn} of X is contained in the corresponding union

∪n
i=1F (xi). If F (x) is compact for at least one x ∈ X, then ∩x∈XF (x) ̸= ∅.

Proof. We just need to show that ∩n
i=1F (xi) ̸= ∅ for any finite subset {x1, x2, . . . , xn}

ofX. Given {x1, x2, . . . , xn} ⊂ X, consider the (n−1)-simplex S = v1, v2, . . . , vn

with vertices v1 = (1, 0, 0, . . . , 0), v2 = (0, 1, 0, . . . , 0), . . . , vn = (0, 0, . . . , 0, 1).

We define a continuous mapping φ : S → Y such that φ (
∑n

i=1 αivi) =∑n
i=1 αixi for αi ≧ 0 and

∑n
i=1 αi = 1. Consider the n closed subsets Gi =

φ−1(F (xi)) for 1 ≤ i ≤ n of S. For any indices 1 ≤ i1 < i2 < · · · < ik ≤ n, the

(k− 1)-simplex vi2viz . . . vik is contained in Gi1 ∪Giz ∪ · · · ∪Gik ·. By Theorem

1.3.8, we have ∩n
i=1Gi ̸= ∅ and therefore, ∩n

i=1F (xi) ̸= ∅.

The following theorem, popularly known as the Fan-Knaster-Kuratowski-Mazurkiewicz

(FKKM) theorem [5], is an extension of the Brower’s fixed point theorem.

Tarafdar showed an equivalent statement of this theorem in [11].

Theorem 2.1.2. (FKKM theorem) [5] In a Hausdorff topological vector space,

let Y be a nonempty convex subset and ∅ ≠ X ⊆ Y . Let F : X 7→ 2Y be a

correspondence such that:

1. for each x ∈ X,F (x) is a relative closed subset of Y ,

2. the convex hull of each finite subset {x1, x2, . . . , xn} of Y is contained in

the corresponding union ∪n
i=1F (xi) and
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3. there is a nonempty subset X0 of X such that X0 is contained in a compact

convex subset of Y and the intersection ∩x∈X0F (x) is compact.

Then ∩x∈XF (x) ̸= ∅.

We now restate Theorem 2.1.2 in its contrapositive form by considering the

complement of F (x) in Y .

Theorem 2.1.3. ([5]) In a topological vector space, let Y be a convex set and let

∅ ≠ X ⊂ Y . For each x ∈ X, let A(x) be a relatively open subset of Y such that

∪x∈XA(x) = Y . If there exists a non-empty subset X0 of X such that Y \∪x∈X0

A(x) is compact or empty, and X0 is contained in a compact convex subset

C of Y , then there exists a non-empty finite subset {x1, x2, . . . , xn} of X such

that the convex hull of {x1, x2, . . . , xn} contains a point of the corresponding

intersection ∩n
i=1A (xi).

Proof. Let F (x) = Y \A(x) and let G(x) = C ∩ F (x). Suppose that the above

result is false. Consider the case ∪x∈X0A(x) = Y . The convex hull of every finite

subset {x1, x2, . . . , xn} of X is thus contained in Y \ ∩n
i=1 A (xi) = ∪n

i=1F (xi).

Consequently, the convex hull of every finite subset {x1, x2, . . . , xn} of X is

contained in C ∩ ∪n
i=1F (xi) = ∪n

i=1G (xi). For each x ∈ X,F (x) is closed in

Y (since A(x) be a relatively open subset of Y .) As C is a compact subset

of Y , G(x) = C ∩ F (x) is compact. Then, by Lemma 2.1.1, we would have

∩x∈XG(x) ̸= ∅, and therefore, ∩x∈XF (x) ̸= ∅. But this means that ∪x∈XA(x) ̸=

Y , contradicting our hypothesis.

Now, for the case when the complement of ∪x∈X0A(x) in Y is non-empty.

Let D = ∩x∈X0F (x) = Y \ ∪x∈X0 A(x). Then D is nonempty and compact.
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Suppose that the conclusion of the theorem is false, i.e., suppose that the convex

hull of every finite subset {x1, x2, . . . , xn} of X is contained in Y \ ∩n
i=1 A (xi)

= ∪n
i=1F (xi). From this assumption, we are going to show that ∩x∈XF (x) ̸= ∅,

which means ∪x∈XA(x) ̸= Y , a contradiction. Consider an arbitrary finite

subset {x1, x2, . . . , xn} of X. Let X1 = X0 ∪ {x1, x2, . . . , xn} and let K be the

convex hull of C ∪ {x1, x2, . . . , xn}. Since C is compact convex, K is compact.

Also, since C∪X is contained in the convex set Y , we have K ⊂ Y . For y ∈ X1,

let G(y) = K ∩ F (y). As F (y) is closed in Y and K is a compact subset of

Y,G(y) is compact. The convex hull of every finite subset {y1, y2, . . . , ym} of

X1 is contained in K ∩
(
∪m

j=1F (yj)
)
= ∪m

j=1G (yj). By Lemma 2.1.1, we have

∩y∈X1G(y) ̸= ∅. As

D ∩ (∩n
i=1F (xi)) ⊃ K ∩ (∩x∈X0F (x)) ∩ (∩n

i=1F (xi)) = ∩y∈X1G(y),

it follows that ∩n
i=1 [D ∩ F (xi)] ̸= ∅ for every finite subset {x1, x2, . . . , xn} of

X. Since D is compact, so is also D ∩ F (x). Hence, ∩x∈X [D ∩ F (x)] ̸= ∅ and

therefore, ∩x∈XF (x) ̸= ∅. Equivalently, we have ∪x∈XA(x) ̸= Y . Thus, the

assertion follows.

Definition 18. Let X and Y be two topological spaces. A correspondence

F : X 7→ 2Y is said to have:

1. transfer closed valued if for every x ∈ X and y ∈ F (x), there exists

x′ ∈ X such that y /∈ cl (F (x′)).

2. transfer open valued if for every x ∈ X and y ∈ F (x), there exists x′ ∈ X

such that y ∈ int (F (x′)).
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Remark 2.1.1. A correspondence F has open lower sections implies that F−1

is transfer open valued; a correspondence is transfer closed-valued if it is closed-

valued, and correspondence is transfer open-valued if it is open-valued. It is

easy to see that a correspondence F : X 7→ 2Y is transfer closed valued if and

only if the correspondence T : X 7→ 2Y defined by T (x) = Y \F (x) for each

x ∈ X is transfer open valued.

Definition 19. Let Y be a convex subset of E and let ∅ ̸= X ⊆ Y . A

correspondence F : X 7→ 2Y is said to be FS-convex on X if for every finite

subset {x1, x2, . . . , xn} of X the convex hull of {x1, x2, . . . , xn} is contained in

∪n
i=1 (F (xi)).

Remark 2.1.2. The FS-convexity of F implies that every point x ∈ X is a

fixed point of F (x), i.e., x ∈ F (x).

We denote the closure of a set A by cl(A) and the convex hull of a set A by

co(A). The following theorem is an extension of Theorem 2.1.2.

Theorem 2.1.4. ([12]) In a Hausdorff topological vector space, let Y be a

nonempty convex subset and ∅ ≠ X ⊆ Y . Let F : X 7→ 2Y be a correspondence

such that:

1. F is transfer closed valued,

2. the convex hull of each finite subset {x1, x2, . . . , xn} of X is contained in

the corresponding union ∪n
i=1 cl (F (xi)) or it is FS-convex on X, and

3. there is a nonempty subset X0 of X such that X0 is contained in a compact

convex subset of Y and the intersection ∩x∈X0cl(F (x)) is compact.
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Then ∩x∈XF (x) ̸= ∅.

Proof. First, we prove that ∩x∈XclY F (x) = ∩x∈XF (x). It is clear that ∩x∈XF (x) ⊂

∩x∈XclY F (x). It suffices ∩x∈X clY F (x) ⊂ ∩x∈XF (x). Suppose, by way of con-

tradiction, that there is some y in ∩x∈XclY F (x) but not in ∩x∈XF (x). Then

y /∈ F (x) for some x ∈ X. By our hypothesis, there is some x′ ∈ X such that

y /∈ clY F (x′), a contradiction. For x ∈ X, letK(x) = clY F (x). ThenK(x) sat-

isfies all conditions of Theorem 2.1.1 and thus, ∩x∈XF (x) = ∩x∈XK(x) ̸= ∅.

The following fixed point theorem generalizes the Theorem 2.1.1. We use Ac

to denote the complement of a set A.

Theorem 2.1.5. Let X be a nonempty convex subset of a Hausdorff topological

vector space. Let F : X 7→ 2X be a correspondence such that:

1. for each x ∈ X,F (x) is a nonempty convex subset of X,

2. F−1 is transfer open valued, and

3. there is a nonempty subset X0 of X such that X0 is contained in a compact

convex subset of X and the intersection ∩x∈X0 cl
(
(F−1(x))

c) is compact.

Then there exists an x∗ ∈ X such that x∗ ∈ F (x∗).

Proof. For each x ∈ X, define G(x) = (F−1(x))
c. Then G is transfer closed

valued as F−1 is transfer open valued. Since ∪x∈XF
−1(x) = X, it follows

that ∩x∈XG(x) = ∩x∈X (F−1(x))
c
= ∅. By Theorem 2.1.4, we must have a

finite subset {x1, . . . , xn} such that co(x1, . . . , xn) is not contained in the union

∪n
i=1cl (G (xi)). Thus, there exists λi ≥ 0 for i = 1, 2, . . . , n with

∑n
i=1 λi = 1
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such that x0 =
∑n

i=1 λixi /∈ ∪n
i=1cl (G (xi)), which implies that x0 /∈ G (xi) for

each i = 1, 2, . . ., n. It follows that x0 ∈ F−1 (xi) for each i = 1, 2, . . . , n, that

is, xi ∈ F (x0) for each i = 1, 2, . . . , n. Since F (x) is convex for every x ∈ X,

we have x0 =
∑n

i=1 λixi ∈ F (x0). Therefore, the assertion follows.

By taking X0 = X in Theorem 2.1.5, we obtain the following corollary.

Corollary 2.1.1. Let X be a nonempty convex compact subset of a Hausdorff

topological vector space. Let F : X 7→ 2X be a correspondence such that:

1. for each x ∈ X,F (x) is a nonempty convex subset of X and

2. F−1 is transfer open valued.

Then there exists an x∗ ∈ X such that x∗ ∈ F (x∗).

Proof. Since cl
(
(F−1(x))

c) of (F−1(x))
c is a closed subset of X for each x ∈

X,∩x∈Xcl
(
(F−1(x))

c) is a closed subset ofX. SinceX is compact, ∩x∈Xcl
(
(F−1(x))

c)
is compact by Theorem 1.3.3. Thus, by taking X0 = X, we see that the hy-

pothesis of Theorem 2.1.5 is satisfied. Therefore, it follows from Theorem 2.1.5

that there exists x∗ ∈ X such that x∗ ∈ F (x∗).

Another useful consequence of Theorem 2.1.5 is the following corollary.

Corollary 2.1.2. Let X be a nonempty convex subset of a Hausdorff topological

vector space. Let F : X 7→ 2X be a correspondence such that:

1. for each x ∈ X,F (x) is a nonempty convex subset of X,

2. F has open lower sections, and
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3. there is a nonempty subset X0 of X such that X0 is contained in a compact

convex subset of X and the intersection ∩x∈X0 (F
−1(x))

c is compact.

Then there exists x∗ ∈ X such that x∗ ∈ F (x∗).

Proof. We claim that a correspondence F : X 7→ 2Y having open lower sections

implies that F−1 : Y 7→ 2X is transfer open valued. Indeed if, F has open lower

sections then, F−1(y) = {x ∈ X | y ∈ F (x)} is open in X for every y ∈ Y .

To show that F−1 is transfer open valued, by Definition 18, we need to show

that for every y ∈ Y and x ∈ F−1(y) and there exists a ∈ Y such that

x ∈ int (F−1 (a)). This clearly holds by taking a = y since F−1(y) is open,

and the assertion follows. One can see from the claim that the hypothesis of

Corollary 2.1.2 implies the hypothesis of Theorem 2.1.5. Thus, our assertion

follows from Theorem 2.1.5.

Since a correspondence F has open lower sections implies that F−1 is trans-

fer open valued as shown above. Thus, Corollary 2.1.1 implies Theorem 2.1.1.

The following example shows that Corollary 2.1.1 is an extension of the Brow-

der fixed point theorem.

Example 2.1.1. Let X = [0, 1]. Define the correspondence F : X 7→ 2X

by F (x) = [0, x]. Then F (x) is nonempty convex for each x ∈ X. For each

y ∈ X,F−1(y) = [y, 1], which is closed in X. Thus, Theorem 2.1.1 cannot be

applied here since F−1(y) is not an open subset of X for any y > 0. However,

it is easy to see that F−1(y) is transfer open for each y ∈ X. Thus, F−1(y) is

transfer open valued. If follows from Corollary 2.1.1 that F has a fixed point.
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Definition 20. A correspondence φ : X 7→ 2Y is said to have the inclusion

open lower sections at x if there exists an open neighborhood Ox of x and

a correspondence ϕx : X 7→ 2Y such that ϕx has open lower sections and

∅ ≠ ϕx(z) ⊆ φ(z) for any z ∈ Ox. We say that φ has inclusion open lower

sections if it has inclusion open lower sections at every x ∈ X.

If a correspondence φ : X 7→ 2Y has open lower sections, then it has inclusion

open lower sections as one can choose ϕx = φ for all x ∈ X.

Lemma 2.1.2. [14] Let X, Y be linear topological spaces and f : X → 2Y be a

correspondence with open lower sections. Define the correspondence ψ : X →

2Y by ψ(x) = co(f(x)) for all x ∈ X. Then ψ has open lower sections.

Proof. Let y0 ∈ Y and x0 ∈ ψ−1 (y0). We shall exhibit an open set U in X

such that x0 ∈ U ⊂ ψ−1 (y0). Since y0 ∈ ψ (x0) = co(f (x0)), we can find

y1, . . . , yn in f (x0) and a1, . . . , an ∈ R such that ai ≧ 0,
∑n

i=1 ai = 1 and

y0 =
∑n

i=1 aiyi. For each i = 1, . . . , n; f−1 (yi) is open in X and x0 ∈ f−1 (yi).

Define U = ∩n
i=1f

−1 (yi). Then x0 ∈ U , for an open U in X.

To complete the proof we must show that U ⊂ ψ−1 (y0). Let x ∈ U , then

x ∈ f−1 (yi) or yi ∈ f(x) for all i = 1, . . . , n. Hence, y0 =
∑n

i=1 aiyi ∈ ψ(x),

i.e., x ∈ ψ−1 (y0). Consequently, x0 ∈ U ⊂ ψ−1 (y0).

The following theorem is a generalization of Theorem 2.1.1 and Corollary 2.1.1.

As in Definition 20, when a correspondence F has inclusion open lower sections

at x, we use Ox for the open neighborhood of x and ϕx for the correspondence

having open lower sections such that ∅ ≠ ϕx(z) ⊆ φ(z) for any z ∈ Ox.
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Theorem 2.1.6. Let X be a nonempty convex subset of a Hausdorff topological

vector space. Suppose that F : X 7→ 2X is a correspondence such that:

1. for each x ∈ X,F (x) is a nonempty convex subset of X,

2. F has inclusion open lower sections, and

3. there is a nonempty subset X0 of X such that X0 is contained in a compact

convex subset of X and the intersection ∩x∈X0 (ϕ
−1
x (x))

c is compact.

Then there exists an x∗ ∈ X such that x∗ ∈ F (x∗).

Proof. Since F has inclusion open lower sections, for each x ∈ X, there exists

an open neighborhood Ox of x and a correspondence ϕx : X 7→ 2X such that

ϕx has open lower sections and ∅ ≠ ϕx(z) ⊆ F (z) for any z ∈ Ox. Clearly,

the collection {Ox | x ∈ X} is an open cover of X. For each x ∈ X, let

I(x) = {xi | x ∈ Oxi
} and define φ(x) = co((∪xi∈I(x)co(ϕxi

(x)))). Clearly, φ(x)

is nonempty convex for each x ∈ X. Since F is convex valued and x ∈ Oxi
for

each xi ∈ I(x), we have φ(x) ⊆ F (x) for each x ∈ X.

We claim that φ has open lower sections. By Lemma 2.1.2, it suffices to

show that ∪xi∈I(x) co(ϕxi
) has open lower sections. For any x ∈ X, since ϕxi

has open lower sections, co(ϕxi
) has open lower sections for each xi ∈ I(x). It

follows that for each y ∈ X,
(
∪xi∈I(x)co(ϕxi

)
)−1

(y) = ∪xi∈I(x) (co(ϕxi
))−1 (y) is

open. Thus, ∪xi∈I(x)co(ϕxi
) has open lower sections and so φ has open lower

sections. Note that ϕx ⊆ φ(x) for each x ∈ X. We have ∩x∈X0 (φ
−1(x))

c ⊆

∩x∈X0 (ϕ
−1
x (x))

c. Since φ has open lower sections and ∩x∈X0 (ϕ
−1
x (x))

c is com-

pact by assumption 3, ∩x∈X0 (φ
−1(x))

c is a closed subset of a compact set.
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It follows that ∩x∈X0 (φ
−1(x))

c is compact. The assertion now follows from

Corollary 2.1.2 with F being replaced by φ.

Definition 21. [8] A correspondence φ : X 7→ 2Y has the local intersection

property at some x ∈ X if there exists an open set Ox such that x ∈ Ox and

∩x′∈Oxφ (x′) ̸= ∅, and φ is said to have the local intersection property if, this

property holds for every x ∈ X.

It is clear that φ has the local intersection property implies that φ has

inclusion open lower sections, as one can define ϕx for each x ∈ X as follows:

ϕx(z) = {y} with y ∈ ∩x′∈Oxφ (x′) for each z ∈ Ox and ϕx(z) = ∅ for any

z ∈ X\Ox. An immediate consequence of Theorem 2.1.6 is the following.

Theorem 2.1.7. Let X be a nonempty convex subset of a Hausdorff topological

vector space. Suppose that F : X 7→ 2X is a correspondence such that:

1. for each x ∈ X,F (x) is a nonempty convex subset of X,

2. F has the local intersection property, and

3. there is a nonempty subset X0 of X such that X0 is contained in a compact

convex subset of X and the intersection ∩x∈X0 (Ox)
c is compact.

Then there exists an x∗ ∈ X such that x∗ ∈ F (x∗).

Theorem 2.1.7 can be equivalently stated as follows.

Theorem 2.1.8. [11] Let X be a nonempty convex subset of a Hausdorff topo-

logical vector space. Suppose that F : X 7→ 2X is a correspondence such that:

1. for each x ∈ X,F (x) is a nonempty convex subset of X,
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2. for each y ∈ X,F−1(y) = {x ∈ X : y ∈ F (x)} contains a relatively open

subset Oy of X (Oy may be empty for some y),

3. Ux∈XOx = X, and

4. there exists a nonempty X0 ⊂ X such that X0 is contained in a compact

convex subset X1 of X and the set D = ∩x∈X0O
c
x is compact, (D could be

empty and as before Oc
x denotes the complement of Ox in X ).

Then there exists an x∗ ∈ X such that x∗ ∈ F (x∗).

2.2 Fan-Knaster-Kuratowski-Mazurkiewicz Equiv-

alent theorems

In this section, we will prove equivalence of Theorems 2.1.5, 2.1.7, and 2.1.2.

It is easy to see that Theorem 2.1.2 implies Theorem 2.1.5, as Theorem 2.1.4

is an extension of the FKKM theorem, and it implies Theorem 2.1.5.

Proof. (Theorem 2.1.5 =⇒ Theorem 2.1.2) Assume that the conditions of

Theorem 2.1.2 hold. We assume on the contrary, that ∩x∈XF (x) = ∅. Define

the set valued mapping f : Y 7→ 2Y by f(y) = {x ∈ X | y /∈ F (x)}. Clearly,

f(y) is a nonempty subset of Y for each y ∈ Y . Note that f−1(x) = (F (x))cY

(complement of F (x) with respect to Y ) for each x ∈ X. Since F is closed

valued, f−1 is open valued on Y . Since f−1(x) ∩ X is open relative to X if

f−1(x) is open relative to Y, f−1 is open valued on X when we view f as a

correspondence f : X 7→ 2X .
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Now, for each x ∈ X, define the correspondence G(x) = co(f(x)). Then for

any x, y ∈ X, f(x) ⊆ G(x) and f−1(y) ⊆ G−1(y). We claim that G−1 is transfer

open valued. Let x ∈ G−1(y). Then y ∈ G(x) = co(f(x)). Thus, there exist

x1, x2, . . . , xn and λ1, λ2, . . . , λn such that xi ∈ f(x) for all 1 ≤ i ≤ n,
∑n

i=1 λi =

1, and x =
∑n

i=1 λixi. So x ∈ f−1 (xi) for each i = 1, 2, . . . , n. Since f−1 is open

valued, f−1 (x1) is open which implies that x ∈ int (f−1 (x1)) ⊆ int (G−1 (x1)).

Thus, G−1 is transfer open valued. For each x ∈ X, since f(x) is nonempty,

G(x) is nonempty convex. Since f−1(x) = (F (x))c (in X) , (f−1(x))
c
= F (x),

which is closed in X. Recall that f−1(x) ⊆ G−1(x) for each x ∈ X, (G−1(x))
c ⊆

(f−1(x))
c and so cl

(
(G−1(x))

c) ⊆ cl
(
(f−1(x))

c)
= (f−1(x))

c for each x ∈ X.

By Theorems 1.3.3 and 2.1.2, we have that

∩x∈X0cl
((
G−1(x)

)c) ⊆ ∩x∈X0cl
((
f−1(x)

)c)
= ∩x∈X0F (x)

is compact. By Theorem 2.1.5, there exists x0 ∈ X such that x0 ∈ G (x0) =

co((f (x0))). It follows that there exist x1, x2, . . . , xn and λ1, λ2, . . . , λn such

that xi ∈ f (x0) for all i ≤ n,
∑n

i=1 λi = 1, and x0 =
∑n

i=1 λixi. This implies

that x0 /∈ F (xi) for all 1 ≤ i ≤ n, that is, x0 =
∑n

i=1 λixi /∈ ∪n
i=1F (xi),

contradicting assumption 2 of Theorem 2.1.2. Thus, ∩x∈XF (x) ̸= ∅.

We will now show that:

Proof. (Theorem 2.1.2 ⇐⇒ Theorem 2.1.7.) Let us assume that the conditions

of Theorem 2.1.2 hold. If possible, suppose that ∩x∈XF (x) = ∅. Then we can

define a set valued mapping f : Y → 2Y by f(y) = {x ∈ X : y /∈ F (x)}. Clearly

f(y) is a nonempty subset of Y for each y ∈ Y . It also follows that for each
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x ∈ Y, f−1(x) = (F (x))c = Ox is a relatively open set in Y . Let g : Y → 2Y

be the set valued mapping defined by g(y) = co(f(y)) for each y ∈ Y . Thus,

for each y ∈ Y , g(y) is a nonempty convex subset of Y and for each x ∈ Y ,

g−1(x) ⊃ f−1(x) = Ox. Also, ∩x∈XF (x) = ∅ implies ∪x∈XOx = Y and hence,

Ux∈YOx = Y . Finally, ∩x∈X0O
c
x = ∩x∈X0F (x) = D is compact. Hence, by

Theorem 2.1.8, there exists a point x0 ∈ X such that x0 ∈ g (x0) = co(f (x0)).

This implies that there exist points y1, y2, . . . , ym in K such that yi ∈ f (x0)

for i = 1, 2, . . . ,m, where x0 =
∑n

i=1 λiyi, λi ⩾ 0 for i = 1, 2, . . . ,m, and∑m
i=1 λi = 1. This means that x0 /∈ F (yi) for i = 1, 2, . . . ,m, i.e., x0 =∑m
i=1 λiyi /∈ ∪m

i=1F (yi), which contradicts our established fact that the convex

hull of each finite subset {y1, y2, . . . , yn} of X is contained in the corresponding

union ∪m
i=1F (yi). Thus, we have proved that ∩x∈KF (x) ̸= ∅.

Assume that the conditions of Theorem 2.1.8 hold. For each x ∈ X,F (x) =

Oc
x, which is a relatively closed set in X. Let us first consider the case when

D = ∅. Then by taking Y = X in Theorem 2.1.2 we must have a finite

subset {x1, x2, . . . , xn} of X such that the convex hull of {x1, x2, . . . , xn} is

not contained in the corresponding union ∪n
i=1F (xi), for otherwise D will be

nonempty by the first part of Theorem 2.1.2. This means that x0 =
∑n

i=1 λixi /∈

F (xi) = Oc
xi

for each i = 1, 2, . . . , n and for some λi ⩾ 0, i = 1, 2, . . . , n, with∑n
i=1 λi = 1. Thus, x0 ∈ Oxi

⊂ f−1 (xi), i.e., xi ∈ f (x0) for each i = 1, 2, . . . , n.

Hence, x0 ∈ f (x0) as f (x0) is convex and Theorem 2.1.8 is proved in this case.

Finally, let D ̸= ∅. If the convex hull of each finite subset {x1, x2, . . . , xn} of

X is contained in the corresponding union Un
i=1F (xi), then by Theorem 2.1.2

, ∩x∈XO
c
x = ∩x∈XF (x) ̸= ∅, which contradicts the condition 3 of Theorem
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2.1.8. Hence, there must exist a finite subset {x1, x2, . . . , xr} of X such that

the convex hull of {x1, x2, . . . , xr} is not contained in the corresponding union

∪r
i=1F (xi). Now repeating the same argument as in the first case, we obtain a

point x0 ∈ X such that x0 ∈ f (x0). This completes the proof.

2.3 Existence of Equilibrium for Noncompact

Stratergy Spaces

We now apply previously derived fixed point theorems to derive Nash equi-

librium theorems in generalized games with noncompact strategy sets on a

Hausdorff topological vector spaces. These existence theorems generalize some

well-known Nash equilibrium existence theorems like the existence theorem

by Cubiotti [3] and by Arrow and Debreu [1]. Arrow and Debreu’s theorem

for the abstract economy is a weaker but valuable version of Debreu’s social

equilibrium existence theorem.

Theorem 2.3.1. (Arrow and Debreu’s theorem [1]) Let N agents be character-

ized by a strategic space Xi for player i, 1 ≤ i ≤ N , and X = X1×X2×· · ·×XN .

For each player i, let ui : X −→ R be a payoff function and Fi (x−i) be a re-

stricted strategic space given other player actions x−i. If for all agents i, we

have:

1. Xi is nonempty, convex and compact subset of a Euclidean space,

2. Fi : X−i 7→ 2Xi is both upper and lower hemicontinuous in X−i,

3. for any x−i ∈ X−i, Fi (x−i) is nonempty, convex, and closed,
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4. ui is continuous, and

5. for any x ∈ X, xi −→ ui (xi, x−i) is quasiconcave on Fi (x−i).

Then there exists a Nash equilibrium in the generalized game.

Remark 2.3.1. We will denote fixed point set as ∆ = {x ∈ X | x ∈ F (x)},

where F (x) =
∏

i∈I Fi(x).

When X is compact that is, if each Xi is compact, Fi being upper hemicontin-

uous for each i ∈ I implies that ∆ is closed.

Instead of proving Arrow and Debreu’s theorem 2.3.1 and Cubiotti’s theo-

rem [3], we prove a generalization of both by replacing finite-dimensional Eu-

clidean spaces Rn with locally convex (possibly infinite-dimensional) Hausdorff

topological vector spaces. While also allowing for uncountable infinitely many

players.

Theorem 2.3.2. Let Γ = (Xi, Fi, ui)i∈I be a generalized game such that for

each i ∈ I (possibly uncountable):

1. Xi is a nonempty, convex, compact, and metrizable subset of a locally

convex Hausdorff topological vector space,

2. Fi : X−i 7→ 2Xi is lower hemicontinuous with nonempty convex values,

3. ui is continuous and ui (xi, x−i) is quasiconcave on Fi (x−i) and

4. the fixed point set ∆ = {x ∈ X | x ∈ F (x)} is closed.

Then Γ has a Nash equilibrium.
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In Theorem 2.3.2, we let go of the condition that Fi : X−i 7→ 2Xi is upper

hemicontinuous as compared to Theorem 2.3.1. An example given by Cubiotti

[3] provides a generalized game which satisfies the conditions in Theorems 2.3.1

and 2.3.2, but the F ′
is are not all upper hemicontinuous.

Example 2.3.1. [3] Let there be 2 players, N = 1, 2; X1 = X2 = [0, 1]. Let

F1 (x2) =
[
0, 1

2

]
and

F2 (x1) =


[
x1,

1
2

]
if x1 ∈

[
0, 1

2

]
[0, 1] if x1 ∈

(
1
2
, 1
]

Take u1 (x1, x2) = u2 (x1, x2) = x1+x2. Then all conditions for Theorems 2.3.1

and 2.3.2 are satisfied. Here, both F1 and F2 are lower hemicontinuous and

∆ =

{
(x1, x2) ∈ [0, 1]× [0, 1] | x1 ∈

[
0,

1

2

]
, x2 ∈

[
x1,

1

2

]}

is closed. However, F2 is not upper hemicontinuous. Therefore, we can only

apply Theorem 2.3.2

We need the following lemma to prove Theorem 2.3.2.

Lemma 2.3.1. Suppose that F : X 7→ 2Y and G : X 7→ 2Y are two correspon-

dences such that F is lower hemicontinuous and G has open upper sections.

Then H = F ∩G is lower hemicontinuous.

Proof. We just need to show for any open subset V in Y , {x ∈ X | (F ∩G)(x)∩
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V ̸= ∅} is open F . We see that:

{x ∈ X | (F ∩G)(x) ∩ V ̸= ∅}

= {x ∈ X | (F (x) ∩G(x)) ∩ V ̸= ∅}

= {x ∈ X | F (x) ∩ (G(x) ∩ V ) ̸= ∅}.

Since G(x) and V are open in Y,G(x) ∩ V is open in Y . Moreover, since F

is lower hemicontinuous {x ∈ X | F (x) ∩ (G(x) ∩ V ) ̸= ∅} is open in Y .

Thus, {x ∈ X | (F ∩ G)(x) ∩ V ̸= ∅} is open F and H = F ∩ G is lower

hemicontinuous.

Proof. (of Theorem 2.3.2) Xi is compact for each i ∈ I. By Theorem 1.3.2), if

we define X =
∏

i∈I Xi we get that X is compact. Let ∆Ui(x, y) = ui (yi, x−i)−

ui(x) for each i ∈ I and define Gi by

Gi(x) = {yi ∈ Xi | ∆Ui(x, y) > 0} . (2.1)

Since, ∆Ui(x, x) = ui (xi, x−i) − ui(x) = 0, xi /∈ Gi(x) for each x ∈ X. By

assumption 3, ui (xi, x−i) is quasiconcave which would imply that for each

x ∈ X, Gi(x) is convex.

Therefore, for each x ∈ X, xi /∈ Gi(x) = co((Gi(x))). Thus, xi /∈ co((Fi(x)∩

Gi(x))). In order to show that Γ has a Nash equilibrium, it suffices to show

that there exists x∗ ∈ X such that x∗ ∈ F (x∗) and Fi (x
∗)∩Gi (x

∗) = ∅ for each

i ∈ I. Moreover, Gi(x) is open for each x ∈ X for each i ∈ I, as ui is continuous

by assumption 3. Implying that Gi has open upper sections. Applying Lemma

2.3.1, we see that Hi = Fi ∩ Gi is lower hemicontinuous since, by assumption
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2, Fi is lower hemicontinuous.

Let, for each ε > 0,

Gε
i (x) = {yi ∈ Xi | ∆Ui(x, y) > ε} . (2.2)

It can easily be seen that Gε
i is convex, and has upper lower sections and by

similar arguments as above, we have Hε
i = Fi ∩Gε

i is lower hemicontinuous.

cl (co((Gε
i (x)))) = cl (Gε

i (x)) = {yi ∈ Xi | ∆Ui(x, y) ≥ ε} .

Thus, for each x ∈ X, xi /∈ cl (co((Gε
i (x)))), which implies that xi /∈ cl (co((Fi ∩Gε

i (x)))) ⊆

cl (co((Gε
i (x)))). Using Theorem 5 from [13] with Ai = Bi = Fi and Di = Xi for

the game (Xi, Fi, G
ε
i )i∈I , for any ε > 0, there exists a Nash equilibrium xε ∈ X.

Note that xε ∈ F (xε) and Fi (x
ε)∩Gε

i (x
ε) = ∅ for each i ∈ I and for any ε > 0.

Let ε = 1
m

for m ≥ 1, that is, x
1
m ∈ ∆ for each m ≥ 1. By assumption

4, ∆ is a closed, and it is subset of compact set X. Thus, ∆ is compact by

Theorem 1.3.3 and the sequence
{
x

1
m

}
m≥1

of ∆ has a convergent subsequence,

say x
1
m −→ x∗. Thus, x∗ ∈ ∆, as ∆ is closed, that is, x∗ ∈ F (x∗).

It remains to be shown that Fi (x
∗) ∩ Gi (x

∗) = ∅ for all i ∈ I. Suppose

we assume on the contrary that Fi (x
∗) ∩ Gi (x

∗) ̸= ∅ for some i ∈ I, such

that yi ∈ Fi (x
∗) ∩ Gi (x

∗). Then yi ∈ Gi (x
∗) and yi ∈ Fi (x

∗). In (2.1),

yi ∈ Gi (x
∗) implies that ∆Ui (x

∗, y) > 0 with y = (yi, y−i). As ui is continuous

and x
1
m −→ x∗, there exists integer m′ > 0 such that ∆Ui

(
x

1
m , y

)
> 1

m
for all
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m ≥ m′. Thus, yi ∈ P
1
m

(
x

1
m

)
. Since Fi is lower hemicontinuous, yi ∈ Fi (x

∗),

and x
1
m −→ x∗, which implies that for b = yi ∈ Fi (x

∗). So, there exists a

subsequence
{
x

1
mn

}
of the sequence

{
x

1
m

}
such that there exist bn ∈ Fi

(
x

1
mn

)
for n ≥ 1 with limn→∞ bn = b = yi. Since ∆Ui

(
x

1
m , y

)
> 1

m
for all m ≥ m′ and

limn→∞ bn = yi, there exists n0 ≥ 0 such that mn0 ≥ m′ and ∆Ui

(
x

1
mn , yn

)
>

1
mn

(where yni = bn), which implies that bn ∈ G
1

mn
i

(
x

1
mn

)
for n ≥ n0. Since

bn ∈ Fi

(
x

1
mn

)
for n ≥ 1, it follows that bn ∈ Fi

(
x

1
mn

)
∩ G

1
mn
i

(
x

1
mn

)
for

n ≥ n0, contradicting the fact Fi (x
ε) ∩ Gε

i (x
ε) = ∅ for each i ∈ I and for all

ε = 1
m

with m ≥ 1. Thus, we must have Fi (x
∗)∩Gi (x

∗) = ∅ for all i ∈ I, that

is, x∗ is a Nash equilibrium for the game.

Next, we state the existence of Nash equilibrium where the strategy set is a

subset of any Hausdroff’s space instead of a Euclidean space or a locally convex

Hausdorff vector space and relax the compactness condition on X by allowing

only countable players.

Theorem 2.3.3. Let Γ = (Xi, Fi, ui)i∈I be a generalized game such that for

each i ∈ I (countable):

1. Xi is nonempty, convex subset of a Hausdorff topological vector space,

2. Fi has nonempty convex values and F (x) =
∏

i∈I Fi(x) has open lower

sections,

3. the fixed point set ∆ = {x ∈ X | x ∈ F (x)} is closed and compact,

4. ui is bounded, continuous in x, and concave in xi, and
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5. there exists a nonempty X0 ⊆ X such that X0 is contained in a compact

convex subset X ′ of X and the set D = ∩x∈X0 (F
−1(x))

c is compact.

Then Γ has a Nash equilibrium.

To prove the Theorem 2.3.3, we need the following lemma, which is an infinite

analog to solving a quasi-equilibrium problem with the Nikaido-Isoda aggregate

function.

Let Γ = (Xi, Fi, ui)i∈I be a generalized game such that |uj(x)| ≤ Mj for each

j ∈ I and for all x ∈ X =
∏

i∈I Xi. For each i ∈ I, let

ϕi(x, y) = ui (yi, x−i)− ui(x) (2.3)

and

ϕ(x, y) =
∑
i∈I

1

2iMi

ϕi(x, y). (2.4)

Lemma 2.3.2. Let Γ = (Xi, Fi, ui)i∈I be a generalized game with I being count-

able and F (x) =
∏

i∈I Fi(x). Then x∗ ∈ X is a Nash equilibrium of Γ if and

only if x∗ ∈ F (x∗) and

ϕ (x∗, y) ≤ 0 for all y ∈ F (x∗) .

Proof. x∗ ∈ X is a Nash equilibrium if and only if ϕi (x
∗, y) = ui

(
yi, x

∗
−i

)
−

ui (x
∗) ≤ 0 for all y ∈ F (x∗) and every i ∈ I by (1.1). For all y ∈ F (x∗), if

ϕi (x
∗, y) ≤ 0 for every i ∈ I then it is obvious to see that ϕ (x∗, y) ≤ 0. Assume

ϕ (x∗, y) ≤ 0 and take y−i = x∗−i. Thus, ϕj (x
∗, y) = uj

(
yj, x

∗
−j

)
− uj (x

∗) = 0

for all j ̸= i and ϕi (x
∗, y) = ui

(
yi, x

∗
−i

)
− ui (x

∗) ≤ 0.
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Proof. (of Theorem 2.3.3.) By assumption 2, Fi has nonempty convex values for

each i ∈ I and F (x) =
∏

i∈I Fi(x). Thus, it is clear that F (x) has nonempty

convex values. By assumption 4, ui is bounded, say by Mi > 0 such that

|ui(x)| ≤ Mi for all x ∈ X. Define ϕi(x, y) as in (2.3) for each i ∈ I and

ϕ(x, y) as in (2.4). Then ϕ(x, y) =
∑

i∈I
1

2iMi
ϕi(x, y) is bounded and converges

uniformly and absolutely. Assumption 4 also gives us that ui is continuous for

each i ∈ I, and from Theorem 1.3.4 we conclude that ϕ(x, y) is continuous. By

Lemma 2.3.2, x∗ ∈ X is a Nash equilibrium of Γ if and only if x∗ ∈ F (x∗) and

ϕ (x∗, y) ≤ 0 for all y ∈ F (x∗).

Let P : X 7→ 2X be a correspondence such that P (x) = {y ∈ X : ϕ(x, y) >

0} for each x ∈ X. Clearly, x /∈ P (x) for all x ∈ X. Then P has open lower

sections, since P−1(y) is open for any y ∈ X as ϕ(x, y) is continuous. Since,

ui(x) is concave in xi for each i ≥ 1. Assumption 4 implies ϕi(x, y) is concave in

yi. To prove P (x) is convex for each x ∈ X, let a, b ∈ P (x). Thus, ϕ (x, a) > 0

and ϕ (x, b) > 0. For each i ∈ I, ϕi(x, y) = ui (yi, x−i)−ui(x) = ϕi (x, (yi, x−i)) .
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For some t such that 0 ≤ t ≤ 1, using Theorem 1.3.5 and (2.4), we have:

ϕ (x, ta+ (1− t)b)

=
∑
i∈I

1

2iMi

ϕi (x, ta+ (1− t)b)

=
∑
i∈I

1

2iMi

ϕi (x, (tai + (1− t)bi, x−i))

≥
∑
i∈I

1

2iMi

[tϕi (x, (ai, x−i)) + (1− t)ϕi (x, (bi, x−i))]

= t
∑
i∈I

1

2iMi

ϕi (x, (ai, x−i)) + (1− t)
∑
i∈I

1

2iMi

ϕi (x, (bi, x−i))

= tϕ (x, a) + (1− t)ϕ (x, b) > 0.

Thus, ta+(1− t)b ∈ P (x) and so P (x) is convex. x∗ ∈ X is a Nash equilibrium

of Γ if and only if x∗ ∈ F (x∗) and ϕ (x∗, y) ≤ 0 for all y ∈ F (x∗) by Lemma

2.3.2.

Define φ : X 7→ 2X by

φ(x) = F (x) ∩ P (x) for all x ∈ X.

Since F (x) and P (x) are convex for each x ∈ X, φ has convex values. F and P

has open lower sections. Implies for every x ∈ X, F−1(x) and P−1(x) is open

in X and F−1(x) ∩ P−1(x) is open in X and φ−1(x) is open in X. Hence, φ

has open lower sections.
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Let G : X 7→ 2X be a correspondence such that

G(x) =


F (x), if x ∈ X\∆ and

φ(x), if x ∈ ∆.

Then, G is convex valued. Since φ(x) ⊆ F (x) for each x ∈ X, we have

φ−1(y) ⊆ F−1(y) for each y ∈ X. For any y ∈ X, if y ∈ φ(x) ⊆ F (x),

then G−1(y) = φ−1(y)∪ (F−1(y) ∩ (X\∆)); if y ∈ F (x)\φ(x), then G−1(y) =

F−1(y) ∩ (X\∆). By our hypothesis, ∆ is closed and compact, implying

that X\∆ is open in X. Since F and φ have open lower sections, G has

open lower sections. For each y ∈ X, (G−1(y))
c
= (φ−1(y))

c ∩ (F−1(y))
c ∪∆

)
or (F−1(y))

c ∪∆, which implies that (G−1(y))
c ⊆ (F−1(y))

c ∪∆. By assump-

tions our hypothesis, ∩x∈X0 (F
−1(x))

c and ∆ is compact.

∩x∈X0cl
((
G−1(x)

)c) ⊆ ∩x∈X0cl
((
F−1(x)

)c ∪∆
)
=

(
∩x∈X0cl

((
F−1(x)

)c))∪∆.

Thus, ∩x∈X0cl
(
(G−1(x))

c) is compact by Theorem 1.3.3. Let G(x) ̸= ∅ for each

x ∈ X. Then by Corollary 2.1.2 there exists x∗ ∈ X such that x∗ ∈ G (x∗).

Since G (x∗) ⊆ F (x∗), we have x∗ ∈ ∆ ∩ φ (x∗), which contradicts the fact

x /∈ P (x) for all x ∈ X. Thus, G (x′) = ∅ for some x′ ∈ X. Since F (x) is

nonempty for every x ∈ X, we have x′ ∈ ∆ and φ (x′) = ∅. Thus, x′ ∈ F (x′)

and F (x′) ∩ P (x′) = ∅.

Remark 2.3.2. For each y ∈ X , F =
∏

i∈I Fi, F
−1(y) = ∩i∈IF

−1
i (yi). If Fi

has open lower sections for each i ∈ I = {1, 2, . . . , n}, then F has open lower

sections.
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Finally, as a consequence Theorem 2.3.3 we obtain the following generalization

of the Nash equilibrium as desired.

Corollary 2.3.1. Let Γ = (Xi, Fi, ui)i∈I be a generalized game such that for

each i ∈ I = {1, 2, . . . , n},

1. Xi is nonempty, convex subset of a Hausdorff topological vector space,

2. Fi is nonempty convex valued and has open lower sections,

3. the fixed point set ∆ = {x ∈ X | x ∈ F (x)} is closed and compact,

4. ui is continuous in x and concave in xi, and

5. there exists a nonempty X0 ⊆ X such that X0 is contained in a compact

convex subset X ′ of X and the set D = ∩x∈X0 (F
−1(x))

c is compact.

Then Γ has a Nash equilibrium.

We conclude the thesis with an example that motivates the need for Theorem

2.3.3.

Example 2.3.2. Let I = N = {1, 2, . . .} be the set of natural numbers and

Xi = [0, 1] for each i ∈ I. Then X =
∏

i∈I Xi is a compact subset of R∞ by

Theorem 1.3.2. For each i ∈ I, define Fi as follows:)

Fi (xi, x−i) =


[
1
3
, 1
]

if x−i ∈
∏

j ̸=iXj and x−i ̸= 0(
1
2
, 1
]

if x−i = 0
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Then each Fi has open lower sections since for any y ∈ Xi = [0, 1],

F−1
i (y) =


∅ if y ∈

[
0, 1

3

)
(∏

j∈I Xj

)
\{0} if y ∈

[
1
3
, 1
2

]
∏

j∈I Xj if y ∈
(
1
2
, 1
]

which is open in X =
∏

j∈I Xj. It follows that for F =
∏

i∈I Fi, F
−1(y) =

∩i∈IF
−1
i (yi) = ∅ or

(∏
j∈I Xj

)
\{0} or

∏
j∈I Xj which is open in X =

∏
j∈I Xj

for each y ∈ X. However, it is easy to see that Fi is not upper hemicontinuous

at 0 . For each i ∈ I, take

ui(x) =
∞∑
j=1

1

2j
xj.

Then it follows from Theorem 1.3.4 that each ui(x) is continuous in x ∈ X.

Moreover, it is clear that each ui is bounded and concave in xi. Note that

∆ =
∞∏
j=1

[
1

3
, 1

]
,

which is closed and compact. Thus, this game satisfies the hypothesis of Theo-

rem 2.3.3, and so the game has an equilibrium. However, Theorem 2.3.1 cannot

be applied here as Fi is not upper hemicontinuous, and the theorem given by

Cubiotti [3] cannot work either since we have infinitely many players.
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