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ABSTRACT

Let Mod(Sg) be the mapping class group of the closed orientable surface Sg of genus

g ≥ 2. In the first part of the thesis, we develop the theory leading to necessary and

sufficient conditions under which two finite-order mapping classes have representatives in

their respective conjugacy classes that commute in Mod(Sg). As an application, we show

that any finite-order mapping class, whose corresponding orbifold is not a sphere, has

a conjugate that is liftable under a finite cyclic cover. Furthermore, we show that any

torsion element in the centralizer of an irreducible finite order mapping class is of order

at most 2. We also state equivalent conditions for the primitivity of a torsion element of

Mod(Sg).

In the second part, we develop various methods (i.e. algorithms) for expressing a

periodic mapping class in Mod(Sg) as a product of Dehn twists, up to conjugacy. To

begin with, we derive a generalization of the star relation in Mod(S3
g ), for g ≥ 2. The

methods we derive are based the geometric realizations of torsion elements in Mod(Sg),

the generalized star relation, and the symplectic representations of periodic mapping

classes. By applying our methods, we provide an algorithm to write certain roots of Dehn

twists in Mod(Sg) as words in Dehn twists. As the another application, we show that the

irreducible periodic mapping classes of orders 4g and 4g + 2 in Mod(Sg), for g ≥ 2, have

representatives in their respective conjugacy classes whose product is pseudo-Anosov.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Let S = Sbg,p be the orientable surface of genus g with b boundary components and p

punctures (or marked points). Let Homeo+(S) be the group of orientation-preserving

homeomorphisms on S that restrict to identity on ∂S and preserve the set of punctures

in S. Then the mapping class group Mod(S) of S is defined to be group π0(Homeo+(S)).

The Nielsen-Thurston classification [39] of surface diffeomorphisms states that:

Theorem 1.1.1 (Nielsen-Thurston classification). Any F ∈ Mod(S) is represented by

an F ∈ Homeo+(S) such that at least one of the following holds.

(a) F is periodic (i.e. F is of finite order).

(b) F is reducible (i.e F preserves a multicurve in S).

(c) F is pseudo-Anosov (i.e F preserves a transverse pair of foliations in S).

In this thesis, we will mostly be concerned with the closed orientable surface Sg (i.e.

b = p = 0) and its mapping class group Mod(Sg). In particular, we address the following

questions pertaining to periodic mapping classes in Mod(Sg), for g ≥ 2.

Question 1. When do two periodic elements in Mod(Sg) have conjugates that commute

in Mod(Sg)?

Question 2. Can one develop methods for representing an arbitrary periodic element

F ∈ Mod(Sg) as a word W(F ) in the standard generators of Mod(Sg) (i.e.

Dehn twists), up to conjugacy?

Before motivating our first question, we will provide a brief historical overview of

the theory of group actions on surfaces that is relevant to our context. Viewing Sg as

a Riemann surface, let Aut(Sg) denote the group of automorphisms of Sg. In 1893,
1



Chapter 1. Introduction

Hurwitz [15] showed that if a finite group G imbeds into Aut(Sg), then |G| ≤ 84(g − 1).

Around the same time, Wiman [41] proved that when G is cyclic, |G| ≤ 4g + 2 and that

the bound is attainable for g ≥ 2. In 1965, Harvey [12] applied the theory of Fuchsian

groups [17] to classify cyclic actions on hyperbolic surfaces, and as a consequence, reproved

the result of Wiman. In the following year, Maclachlan [22] showed that 4g + 4 is a

realizable bound for |G| when G is abelian. Recently, in 2007, Broughton-Wootton [4]

derived a method for enumerating the conjugacy classes of abelian subgroups of Mod(Sg).

For g ≥ 2, the Nielsen realization theorem [17, 29] says that given a finite subgroup

H < Mod(Sg), there exists a hyperbolic structure on Sg that realizes H as a group of

isometries. When H is cyclic, more recently, Parsad-Rajeevsarathy-Sanki [30] described

an inductive way to construct hyperbolic structures on Sg that realize H as group of

isometries, thereby providing explicit solutions to the Nielsen realization problem. Our

first problem is primarily motivated by the extension of this work to the case when H is a

two-generator finite abelian subgroup of Mod(Sg). In order to achieve this, we must first

attain a better geometric understanding of two-generator abelian actions on Sg. In this

connection, it is important to note that the (finite) groups generated by different (pairs

of) conjugates of the same pair of finite-order mapping classes in Mod(Sg) may represent

inequivalent actions on Sg. For example, consider the six involutions in Mod(S8) shown in

Figure 1.1 below, where each involution is realized as a π-rotation about an axis (passing

through the origin) under a suitable embedding S8 ↪→ R3. Though all of these involutions

π π π

π

x y x

z

x y = x

Figure 1.1: Six conjugate involutions in Mod(S8)
.

are conjugate in Mod(Sg), note that each of the two pairs of involutions indicated in the

first two subfigures clearly generate distinct subgroups of Mod(S8) isomorphic to Z2⊕Z2,
2



1.1. Motivation

while the pair of involutions appearing in the third subfigure can be shown to generate a

subgroup isomorphic to D8. Thus, even though finite abelian groups and their conjugacy

classes in Mod(Sg) have been widely studied [4, 12, 22], the solution to our problem yields

two benefits.

(a) Provides a geometric understanding of two-generator finite abelian actions on Sg.

(b) Provides explicit solutions to the Nielsen realization problem for two-generator finite

abelian subgroups of Mod(Sg).

In order to motivate our second question, we first define a Dehn twist in Mod(Sg),

and briefly discuss its importance in the evolution of the theory of mapping class groups.

A Dehn twist on an annulus A ∼= S1 × [0, 1] is defined by the map

φ : A→ A : (θ, t) φ7−→ (2πt+ θ, t).

Using this definition, we can define a Dehn twist Tα about a simple closed curve α in

Sg. Consider a closed (regular) annular neighborhood N of α, and a homeomorphism

η : N → A. Then a Dehn twist Tα along the curve α is defined by

Tα(x) :=


η−1 ◦ φ ◦ η(x), if x ∈ N, and

x, if x /∈ N.

Dehn twists are named after the German mathematician Max Dehn, who proved [7] that

a finite set of Dehn twists in Sg generates Mod(Sg). Subsequently, in 1964, Lickorish [20]

proved that Mod(Sg) is generated by 3g−1 Dehn twists about nonseperating curves. This

result was further improved by Humphries [14] in 1978, who also showed that Mod(Sg)

is generated by a minimal generating set comprising 2g + 1 Dehn twists about non-

separating curves. Thus, it is a natural question to ask whether we can derive methods

for representing an arbitrary periodic F ∈ Mod(Sg) as a word W(F ) in Dehn twists,

up to conjugacy. In their seminal paper [3], Birman-Hilden derived an expression for

W(F ) when is of (largest possible) order 4g+ 2 in Mod(Sg), and consequently for F 2g+1,

the hyperelliptic involution. This problem was solved for involutions in Mod(S2) by

Matsumoto [26], which was later generalized to g > 2 by Korkmaz [18]. Using techniques

in algebraic geometry, Hirose [13] derived expressions for W(F ) for every periodic F ∈
3



Chapter 1. Introduction

Mod(Sg), for 2 ≤ g ≤ 4. However, the specialized techniques of Hirose do not easily

generalize for g ≥ 5. In [30], a method was described to decompose an arbitrary periodic

mapping class F ∈ Mod(Sg) into irreducible components. We use this decomposition

to develop various methods in this thesis for deriving W(F ), for an arbitrary periodic

mapping class F ∈ Mod(Sg). The Dehn twists appearing in W(F ) will depend on the

nature of the periodic element F .

1.2 Layout of thesis

This thesis is divided into four chapters. In this first chapter, we have motivated the two

problems that have been pursued from a conceptual and historical perspective. In Chap-

ter 2, we provide several results about periodic mapping classes that are relevant to the

theory that we will develop in Chapters 3 - 4. In Section 2.1, we introduce some essential

notions from the theory of group actions of surfaces [16, 21]. In Section 2.2, we define a

tuple of integers called a data set that encodes the conjugacy class of a periodic mapping

class in Mod(Sg). This language of data sets will be extensively in subsequent sections.

In Section 2.2.1, we describe the method developed in [30] to decompose an arbitrary

periodic mapping class into irreducible components. As an application of this decom-

position, in Section 2.2.2, we give a procedure (from [30]) for obtaining the symplectic

representation of a periodic mapping class up to conjugacy.

In Chapter 3, we provide a complete solution to the Question 1 (from Section 1.1).

The research work detailed in this chapter is now part of a published manuscript [8].

In Section 3.1, we derive several properties of the automorphisms induced by periodic

maps on quotient orbifolds. These properties together with theory of group actions on

surfaces [12, 16, 21] and Thurston’s orbifold theory [38] will provide the key ingredients

for the proof of the main theorem in Section 3.2.10 that gives equivalent conditions under

which two periodic mapping classes weakly commute (i.e have commuting conjugates) in

Mod(Sg). We provide several applications of the main result in Section 3.3. In Subsec-

tion 3.3.1, we give necessary and sufficient conditions for two involutions in Mod(Sg) to

weakly commute. In Subsection 3.3.2 , we derive conditions for the weak commutativity

of irreducible periodics with other periodic mapping classes, and in Subsection 3.3.3, we

derive similar conditions for periodic maps that generate free actions on Sg. In Sub-

section 3.3.4 we give a complete characterization of primitive periodic mapping classes,
4



1.2. Layout of thesis

and in Subsection 3.3.5, we determine conditions under which a finite order mapping

class can weakly commute with root of a Dehn twist [27, 32]. Finally, for a given weak

conjugacy class of a two-generator finite abelian group, in Subsection 3.3.6, we provide

an algorithm for determining the conjugacy classes of its generators. We indicate how

this algorithm, along with theory developed in [30], leads to a procedure for determin-

ing the explicit hyperbolic structures that realize a two-generator abelian subgroup as a

group of isometries. We conclude this chapter by providing some non-trivial geometric

realizations of some of these subgroups. It is worth mentioning here that for g = 3, 4,

Kuribayashi-Kuribayashi [19] have given a complete classification of the conjugacy classes

of finite subgroups in GL(g,C) that arise as images under faithful representations of finite

subgroups of Mod(Sg).

In Chapter 4, we answer Question 2 (from Section 1.1) in the affirmative by providing

several methods to represent an arbitrary periodic mapping class F ∈ Mod(Sg) as a

word W(F ) in Dehn twists (up to conjugacy), based on the nature of F . In Section 4.1,

we recall some known relations involving Dehn twists in Mod(S) that we will use to

develop some of our methods in subsequent sections. Using these results, in Section 4.2,

we represent the periodic elements in Mod(S1) (up to conjugacy) as words in Dehn

twists. In Section 4.3, we provide a method for deriving W(F ) when F is rotational

(i.e realizable a rotation of Sg). In Section 4.4, we use the well known chain relation in

Mod(S) to develop a method (that we call the chain method) for representing a large

family of periodic mapping classes (that we will call chain-realizable periodics) as words

in Dehn twists. As an immediate application of the chain method, we represent the

torison elements in Mod(S2) (up to conjugacy) as words in Dehn twists. In Section 4.5,

we generalize the star relation in Mod(S3
1) to Mod(S3

g ), for g ≥ 2, and then use this to

describe a method (that we call the star method) for representing a even larger family

of periodic mapping classes (that encompasses chain-realizable periodics) that we call

star-realizable periodics, as words in Dehn twists. For an F ∈ Mod(Sg) that is neither

rotational nor star-realizable, in Section 4.6, we apply results stated in Section 2.2.2, to

formulate a method for derivingW(F ). In Section 4.7, we provide two more applications

of our methods. In Subsection 4.7.2, we give an algorithm to write certain roots of

Dehn twists as words in Dehn twists. By applying the star and symplectic methods, in

Subsection 4.7.1, we obtain representations for the torison elements in Mod(S3) (up to
5



Chapter 1. Introduction

conjugacy) as words in Dehn twists. Finally in Subsection 4.7.3, we show that the periodic

mapping classes of order 4g and 4g + 2 in Mod(Sg), for g ≥ 2, have representatives in

their respective conjugacy classes whose product (in Mod(Sg)) is pseudo-Anosov.

6



CHAPTER 2

PERIODIC MAPPING CLASSES

2.1 Group actions on surfaces

A Fuchsian group [16, 21] Γ is a discrete subgroup of Isom+(H) = PSL2(R). If H/Γ is a

compact orbifold, then Γ has a presentation of the form

〈
α1, β1, . . . , αg0 , βg0 , ξ1, . . . , ξ` | ξn1

1 , . . . , ξn`` ,
∏̀
i=1

ξi

g0∏
i=1

[αi, βi]
〉
.

We represent Γ by a tuple (g0;n1, n2, . . . , n`) which is called its signature, and we write

Γ(g0;n1, n2, . . . , n`) := Γ.

Let Homeo+(Sg) denote the group of orientation-preserving homeomorphisms on Sg.

Given a finite group H < Homeo+(Sg), a faithful properly discontinuous H-action on

Sg induces a branched covering

Sg → OH := Sg/H,

which has ` branched points (or cone points) x1, . . . , x` on the quotient orbifold OH ≈

Sg0 (≈ denotes “homeomorphic to”) of orders n1, . . . , n`, respectively. Thus, OH has a

signature given by

Γ(OH) := (g0;n1, n2, . . . , n`),

and its orbifold fundamental group is given by

πorb
1 (OH) := Γ(g0;n1, n2, . . . , n`).

7



Chapter 2. Periodic mapping classes

From orbifold covering space theory, the orbifold covering map Sg → OH corresponds to

an exact sequence

1→ π1(Sg)→ πorb
1 (OH) φH−→ H → 1. (2.1)

The epimorphism φH is classically known as the surface kernel. This leads us to the

following result due to Harvey [12].

Lemma 2.1.1. A finite group H acts faithfully on Sg with Γ(OH) = (g0;n1, . . . , n`) if

and only if it satisfies the following two conditions:

(i) 2g − 2
|H|

= 2g0 − 2 +
∑̀
i=1

(
1− 1

ni

)
, and

(ii) there exists a surjective homomorphism φH : πorb
1 (OH) → H that preserves the

orders of all torsion elements of πorb
1 (OH).

2.2 Cyclic actions on surfaces

For g ≥ 1, let H = 〈F 〉 be a finite cyclic subgroup of Mod(Sg) of order n. By the Nielsen

realization theorem [29], we may also regard H as a finite cyclic subgroup of Homeo+(Sg)

generated by an F of order n. We call F a standard representative of the mapping class

F . We refer to both F and the group it generates, interchangeably, as a Zn-action on

Sg. Moreover, F corresponds to an orbifold OH ≈ Sg/H ≈ Sg0 called the corresponding

orbifold, where for each i, the cone point xi lifts to an orbit of size n/ni on Sg. The

local rotation induced by F around the points in the orbit is given by 2πc−1
i /ni, where

cic
−1
i ≡ 1 (mod ni). We denote a typical point in OH by [x], where x is a lift of [x] under

the branched cover Sg → OH . We see that each cone point [x] ∈ OH corresponds to a

unique pair in the multiset {(c1, n1), . . . , (c`, n`)}, we denote by (cx, nx). So, we define

P[x] :=


(cx, nx), if [x] is a cone point of OH , and

(0, 1), otherwise.

We will now define a tuple of non-negative integers that will combinatorially encode

the conjugacy class of a Zn-action on Sg. We will also associate an additional quantity

(denoted by r) with the data set in order to encode free Zn-actions, which are generated

by rotations of Sg by 2πr/n, where gcd(r, n) = 1, see figure below,

8



2.2. Cyclic actions on surfaces

Figure 2.1: Free rotation of surface Sg by 2π/(g − 1)

Definition 2.2.1. A data set of degree n is a tuple

D = (n, g0, r; (c1, n1), . . . , (c`, n`)),

where n ≥ 2, g0 ≥ 0, and 0 ≤ r ≤ n− 1 are integers, and each ci ∈ Z∗ni such that:

(i) (a) r > 0 if and only if ` = 0, and

(b) gcd(r, n) = 1, whenever r > 0,

(ii) each ni | n,

(iii) (a) lcm(n1, . . . n̂i, . . . , n`) = lcm(n1, . . . n̂j, . . . , n`), for 1 ≤ i 6= j ≤ `, and

(b) when g0 = 0, lcm(n1, . . . n̂i, . . . , n`) = n, for all 1 ≤ i ≤ `,

(iv)
∑̀
j=1

n

nj
cj ≡ 0 (mod n).

The number g determined by the Riemann-Hurwitz equation

2− 2g
n

= 2− 2g0 +
∑̀
j=1

(
1
nj
− 1

)

is called the genus of the data set, denoted by g(D).

Thus, the Nielsen-Kerckhoff theorem also implies that the canonical projection

Homeo+(Sg) → Mod(Sg) induces a bijective correspondence between the conjugacy
9



Chapter 2. Periodic mapping classes

classes of finite-order maps in Homeo+(Sg) and the conjugacy classes of finite-order map-

ping classes in Mod(Sg). So, we have the following lemma, which is a consequence of [34,

Theorem 3.8] and the results in [12].

Lemma 2.2.2. For g ≥ 1 and n ≥ 2, data sets of degree n and genus g correspond to

conjugacy classes of Zn-actions on Sg.

Note that r will be non-zero if and only if D represents a free rotation of Sg by 2πr/n (i.e.

a rotation of Sg through an axis by 2πr/n that does not have any fixed points). We will

avoid writing r in the notation of a data set, whenever r = 0. Throughout this thesis,

we will use data sets to denote the conjugacy classes of cyclic actions on Sg. Given a

finite-order mapping class F , we denote the data set associated with its conjugacy class

by DF . Further, for convenience of notation, we also write the data set D as

D = (n, g0, r; ((d1,m1), α1), . . . , ((dk,mk), αk)),

where (di,mi) are the distinct pairs in the multiset S = {(c1, n1), . . . , (c`, n`)}, and the αi
denote the multiplicity of the pair (di,mi) in S, again for simplicity of notation we don’t

write αi whenever it’s equal to 1.

Let F ∈ Mod(Sg) be of order n. Then F is said to be rotational if F is a rotation of

the Sg through an axis by 2πr/n, where gcd(r, n) = 1. It is apparent that F is either has

no fixed points, or 2k fixed points which are induced at the points of intersection of the

axis of rotation with Sg. Moreover, these fixed points will form k pairs of points (xi, x′i),

for 1 ≤ i ≤ k, such that the sum of the angles of rotation induced by F around xi and

x′i add up to 0 modulo 2π. Consequently, we have the following:

Proposition 2.2.3. Let F ∈ Mod(Sg) be a rotational mapping class of order n.

(i) When F is a non-free rotation, then DF has the form

(n, g0; (s, n), (n− s, n), . . . , (s, n), (n− s, n)︸ ︷︷ ︸
k pairs

),

for integers k ≥ 1 and 0 < s ≤ n− 1 with gcd(s, n) = 1, and k = 1, if n > 2.
10



2.2. Cyclic actions on surfaces

(ii) When F is a free rotation, then DF has the form

(n, g − 1
n

+ 1, r; ).

We say F is of Type 1 if Γ(OF ) has the form (g0;n1, n2, n), and F is said to be of Type 2 if

F is neither rotational nor of Type 1. Gilman [11] showed that a periodic mapping class

F ∈ Mod(Sg) is irreducible if and only if OF is a sphere with three cone points. Thus, F

is an irreducible Type 1 mapping class if and only if Γ(OF ) has the form (0;n1, n2, n).

2.2.1 Decomposing periodic maps into irreducibles

In [2, 30], a method was described to decompose an arbitrary non-rotational periodic

element F ∈ Mod(Sg), for g ≥ 2, into irreducible Type 1 components, which are realized

as rotations of certain unique hyperbolic polygons with side-pairings.

Theorem 2.2.4. For g ≥ 2, consider an irreducible Type 1 action F ∈ Mod(Sg) with

DF = (n, 0; (c1, n1), (c2, n2), (c3, n)).

Then F can be realized explicitly as the rotation by θF = 2πc−1
3 /n of a hyperbolic polygon

PF with a suitable side-pairing W (PF ), where PF is a hyperbolic k(F )-gon with

k(F ) :=


2n, if n1, n2 6= 2, and

n, otherwise,

and for 0 ≤ m ≤ n− 1,

W (PF ) =



n∏
i=1

a2i−1a2i with a−1
2m+1 ∼ a2z, if k(F ) = 2n, and

n∏
i=1

ai with a−1
m+1 ∼ az, otherwise,

where z ≡ m+ qj (mod n) with q = (n/n2)c−1
3 and j = n2 − c2.

Example 2.2.5. Consider the order 8 mapping class F ∈ Mod(S2) with

DF = (8, 0; (1, 2), (3, 8), (1, 8)),
11
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which is realized as a θ = 2π/8 rotation of a hyperbolic 8-gon PF with side-pairing

W (PF ) = a1a2a3a4a
−1
1 a−1

2 a−1
3 a−1

4 .

a1

a2

a3

a4

a1

a4

a3

a2

2π
8

Figure 2.2: A realization of a Z8-action on S2

Consequently, the process yielded explicit solutions to the Nielsen realization problem [17,

29] for the cyclic case. Further, it was shown that the process of decomposition can be

reversed by piecing together the irreducible Type 1 components (described in Theo-

rem 2.2.4) using the methods that we will now describe in Constructions 2.2.6 and 2.2.8.

Construction 2.2.6 (k-compatibility). For i = 1, 2, let Fi ∈ Mod(Sgi) be of order n.

Suppose that the actions of 〈Fi〉 on the Sgi induces a pair of orbits Oi such that |O1| = |O2|

and the rotation angles induced by the 〈Fi〉-action around points in the Oi add up to 0

(mod 2π). Then we remove (cyclically permuted) 〈Fi〉-invariant disks around points in

the Oi and then attach k-annuli Ai connecting the resulting boundary components, to

obtain an F ∈ Mod(Sg) of order n, where g(F ) := g = g1 + g2 + k − 1. This method

of constructing F is called a k-compatibility, and we say that F is realizable as a k-

compatible pair (F1, F2) of genus g(F ). Further, we denote A(F ) := tki=1Ai. A typical

1-compatibility between irreducible Type 1 maps is illustrated in Figure 2.3 below. (For

a visualization of a k-compatibility for k ≥ 2, see Figure 2.5).

Figure 2.3: A 1-compatibility of a pair of irreducible Type 1 maps.

12



2.2. Cyclic actions on surfaces

Let Σi(F ) := Sgi \ A(F ). Then by construction, the maps F|Σi(F ) and F|A(F ) commute

with each other.

If in the construction above, the orbits Oi are induced by a single action on a surface

Sg, then the method is called a self k-compatibility, wherein the resultant action is on

Sg+k.

Generalizing the ideas in Construction 2.2.6, we have the following.

Definition 2.2.7. Let F ∈ Mod(Sg) be of order n. We say F is a linear s-tuple

(F1, F2, . . . Fs) of degree n and genus g if for 1 ≤ i ≤ s, there exists Fi ∈ Mod(Sgi)

of order n satisfying the following conditions.

(i) Fi,i+1 := (Fi, Fi+1) is realizable as a ki-compatible pair of genus g(Fi,i+1), for 1 ≤

i ≤ s− 1.

(ii) Let

Σi(F ) :=



Sgi \ A(Fi,i+1), if i = 1,

Sgi \ A(Fi−1,i), if i = s, and

Sgi \ (A(Fi−1,i) t A(Fi,i+1)), for 2 ≤ i ≤ s− 1.

Then F|Σi(F ) = Fi|Σi(F ), for 1 ≤ i ≤ s.

(iii) Sg = tsi=1Σi(F ) ts−1
i=1 A(Fi,i+1), where

g =
s∑
i=1

gi +
s−1∑
i=1

(ki − 1).

Given a linear s-tuple F = (F1, F2, . . . , Fs) as in Definition 2.2.7, we denote g(F ) := g,

and further, we fix the following notation that for 1 ≤ i < j − 1 < s, we denote

Fi,j := (Fi, Fi+1, . . . , Fj) and Σi,j(F ) := ∪jk=iΣk(F ).

Construction 2.2.8 (Permutation additions and deletions). The addition of a g′-permutation

component to a periodic map F is a process that involves the removal of (cyclically per-

muted) invariant disks around points in an orbit of size n and then pasting n copies of

S1
g′ (i.e. Sg′ with one boundary component) to the resultant boundary components. This

13
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realizes an action on Sg+ng′ with the same fixed point and orbit data as F . A visualization

of a permutation addition to an irreducible Type 1 map is shown in Figure 2.4 below.

Figure 2.4: Addition of a g′-permutation component to an irreducible Type 1 map.

The reversal of this process, wherein a g′-permutation is removed from F (when possible),

is called the deletion of g′-permutation component.

The upshot of the discussion above is the following:

Theorem 2.2.9. For g ≥ 2, an arbitrary non-rotational periodic mapping class in

Mod(Sg) can be constructed through finitely many k-compatibilities, permutation addi-

tions, and permutation deletions on irreducible Type 1 mapping classes.

Definition 2.2.10. Given integers s > 0, u, v, w ≥ 0, an admissible (s, u, v, w)-tuple T

is a tuple of integers of the form

T = [((i1, j1), k1), . . . , ((iu, ju), ku); (i′1, g′1), . . . , (i′v, g′v);

((i′′1, j′′1 ), g′′1), . . . , ((i′′w, j′′w), g′′w)],

where for each q, 1 ≤ iq < jq ≤ s, kq ≥ 1, 1 ≤ i′q ≤ s, 1 ≤ i′′q < j′′q ≤ s, and g′q, g′′q > 0.

Definition 2.2.11. Given a linear s-tuple (F1, . . . , Fs) of degree n and genus g as in

Definition 2.2.7 and an admissible (s, u, v, w)-tuple T as in Definition 2.2.10, we construct

a compatible (F, T )-tuple FT of degree n and genus g(FT ) through the constructions in

the following sequence of steps.

Step 1. If u = 0, then we skip this step. Otherwise, for 1 ≤ q ≤ u, we perform a self

kq-compatibility in Fiq ,jq , if Fiq ,jq admits such a compatibility.
14
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Step 2. If v = 0, then we skip this step. Otherwise, for 1 ≤ q ≤ v, we perform a

g′q-permutation addition on the Fi′q .

Step 3. If w = 0, then we skip this step. Otherwise, for 1 ≤ q ≤ w, we perform a

g′′q -permutation deletion on the Fi′′q ,j′′q , if Fi′′q ,j′′q admits such a deletion.

Note that a compatible (F, T )-tuple, where T is an admissible (s, 0, 0, 0)-tuple simply

refers to the linear s-tuple F . With this notation in place, Theorem 2.2.9 can be now

restated as follows.

Theorem 2.2.12. Given an arbitrary non-rotational periodic mapping class G ∈ Mod(Sg),

for g ≥ 2, there exists a linear s-tuple F ∈ Mod(Sg) of irreducible Type 1 actions, and

an admissible (s, u, v, w)-tuple T of integers such that G = FT .

2.2.2 Symplectic representations of periodic mapping classes

For g ≥ 1, let Ψ : Mod(Sg)→ Sp(2g;Z) be the surjective representation afforded by the

action of Mod(Sg) on H1(Sg,Z). In this subsection, we will state some results from [30,

Section 4] that are relevant to this thesis.

Let F ∈ Mod(Sg) be an irreducible Type 1 action that is realized by the rotation of

a hyperbolic polygon PF with a boundary word W (PF ) (when read counterclockwise)

as in Theorem 2.2.4. An application of the handle normalization algorithm detailed

in [35, Section 3.4] shows that W (PF ) is of the form QaRbSa−1Tb−1U, for some words

Q,R, S, T, U (possibly empty), and letters a, b, and we have the following.

Proposition 2.2.13. Let W (PF ) = QaRbSa−1Tb−1U . Suppose that P ′ is the polygon

with boundary word W (P ′) = QTSRUxyx−1y−1 obtained by applying the handle normal-

ization algorithm once to PF . Then x and y are homotopically equivalent to QTb−1U and

U−1R−1a−1Tb−1U , respectively.

We fix the following notation.

(a) We denote by N i(PF ), the polygon obtained from PF after i successive applications

of the normalization procedure described in Proposition 2.2.13.

(b) We denote by L(PF ), the set of distinct letters in W (PF ).

(c) We denote by B(PF ), the set of standard generators of H1(Sg;Z) expressed in terms

of elements in L(PF ).
15
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Let W = W (PF ) and W ′ = W (P ′) be as in Proposition 2.2.13. Then the map

B(P ′)→ B(PF ) : x 7→ QTb−1U, y 7→ U−1R−1a−1Tb−1U, z 7→ z,

for all z ∈ B(P ′) \ {x, y}, uniquely determines an isomorphism on H1(Sg;Z), which we

denote by fP ′,PF , which leads us to the following lemma.

Lemma 2.2.14. Let F ∈ Mod(Sg) be an irreducible Type 1 action that is realized by the

rotation of a hyperbolic polygon PF as in Theorem 2.2.4. Then

W (N g(PF )) =
g∏
i=1

[xi, yi],

and the mapping

fPF =
g−1∏
i=1

fN i(PF ),N i−1(PF )

defines an isomorphism of the homology group H1(Sg;Z) such that

B(PF )
fPF7−−→ B(PF ).

For an isomorphism ϕ : H1(Sg;Z) → H1(Sg;Z), let Mϕ denote the matrix of ϕ with re-

spect to the standard homology generators. The following theorem describes the structure

of Ψ(F ), up to conjugacy.

Theorem 2.2.15. Let F ∈ Mod(Sg) be an irreducible Type 1 with DF = ((n, 0; (c1, n1),

(c2, n2), (c3, n)). Then up to conjugacy, Ψ(F ) = Mϕ, where ϕ = f−1
PFφPF fPF , with fPF as

in Lemma 2.2.14, and B(PF )
φPF7−−→ B(PF ) is induced by ai 7→ aj, where

j ≡


i+ 2c−1

3 (mod 2n), if n1, n2 6= 2, and

i+ c−1
3 (mod n), otherwise.

We conclude this subsection with the following remark.

Remark 2.2.16. By Theorem 2.2.9, an arbitrary non-rotational periodic mapping class

F ∈ Mod(Sg) can be decomposed into irreducible Type 1 mapping classes. This decom-

position induces a decomposition of Ψ(F ) (up to conjugacy) into a block-diagonal matrix,

where each diagonal block is of one of the following types.
16
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(i) The image under Ψ of an irreducible Type 1 component (of F ) as described in

Theorem 2.2.15.

(ii) Let F ′ be a component of F resulting from a k-compatibility (or a self k-compatibility),

and let Sbg denote the surface of genus g with b boundary components. Then there

exists a subsurface S (of Sg) homeomorphic to S2
k−1 (shown in Figure 2.5 below) in

which F ′ cyclically permutes the disjoint union of the k annuli AF ⊂ S involved in

the construction.

S2
k−1

Figure 2.5: The subsurface S ≈ S2
k−1.

The diagonal block is obtained from the well-defined action of such an F ′ on

H1(S,Z).

(iii) The image under Ψ under a permutation component of F , which permutes n sub-

surfaces of Sg homeomorphic to some S1
g′ as in Construction 2.2.8.

Note that as the blocks of type (ii) and (iii) are simple permutation blocks, one can obtain

a complete description of Ψ(F ) (up to conjugacy).

17



CHAPTER 3

COMMUTING CONJUGATES OF PERIODIC

MAPPING CLASSES

In this chapter, we will apply the concepts introduced in Chapter 2 to provide a complete

answer to Question 1 posed in Section 1.1.

3.1 Induced automorphisms on quotient orbifolds

Consider a finite group H < Homeo+(Sg), and a subgroup H ′ C H. Then it is known [40]

that the actions of H and H ′ on Sg together induce an action of H/H ′ on OH′(= Sg/H
′).

In this section, we analyze this induced action for the case when H is a two-generator

finite abelian group, and H ′ is one of its cyclic factor subgroups. We will derive several

properties of these induced actions, which will form the core of the theory developed in

this thesis.

Definition 3.1.1. Let H < Homeo+(Sg) be a finite cyclic group. We say a F̄ ∈

Homeo+(OH) is an automorphism of OH if for [x], [y] ∈ OH , we have P[x] = P[y], whenever

F̄([x]) = [y].

We denote the group of automorphisms of OH by Aut(OH). We derive three technical

lemmas, which give necessary conditions under which a given orbifold automorphism is

induced by a finite-order map. These lemmas will be used extensively in subsequent

sections.

Lemma 3.1.2. Let G,F ∈ Homeo+(Sg) be commuting maps of order m,n, respectively,

and let H = 〈F〉. Then:

(i) G induces a Ḡ ∈ Homeo+(OH) such that

OH/〈Ḡ〉 = Sg/〈F ,G〉,

(ii) |Ḡ| divides |G|, and
18



3.1. Induced automorphisms on quotient orbifolds

(iii) |Ḡ| < m if and only if F l = Gk, for some 0 < l < n and 0 < k < m.

Proof. Given [x] ∈ Sg/〈F〉, we define Ḡ([x]) := [G(x)]. The assertion in (i) now follows

immediately from this definition. Moreover, (ii) follows from the fact that

Ḡm([x]) = [Gm(x)] = [x], for [x] ∈ Sg/〈F〉.

To prove (iii), we first assume that t := |Ḡ| < m. Then

Ḡt([x]) = [x]⇔ [Gt(x)] = [x],

for all [x] ∈ OH . Thus, for each [x] ∈ OH , there exists 1 ≤ lx ≤ n such that GtF lx(y) = y,

for all y ∈ Sg in the preimage of [x] under the branched cover Sg → OH . Suppose we

assume on the contrary that F l 6= Gk, for 1 ≤ l < n and 1 ≤ k < m. Then, since t < m,

for each lx, GtF lx is a non-trivial homeomorphism. This would imply that every point of

Sg is fixed by some element of the abelian group 〈F ,G〉 of order mn, which is impossible

(as the action of 〈F ,G〉 on Sg is properly discontinuous). The converse follows directly

from the definition of Ḡ.

We call the map Ḡ in Lemma 3.1.2 the induced map on O〈F〉 by G. For an action of a

group H on a set X, we denote the stabilizer of a point x ∈ X by StabH(x). We will also

need the following well-known result [28, Proposition 3.1] from the theory of finite group

actions on surfaces.

Lemma 3.1.3. Let H < Homeo+(Sg) be finite. Then StabH(x) is a cyclic group, for

every x ∈ Sg.

Lemma 3.1.4. Let F ,G ∈ Homeo+(Sg) be of orders n,m, respectively, and let F̄ ∈

Homeo+(O〈G〉) be induced by F as in Lemma 3.1.2. Suppose that FG = GF , and Fp 6= Gq,

for any 1 ≤ p < n and 1 ≤ q < m. If for some x ∈ Sg, Gk(x) = x and F̄ l([x]) = [x], for

some 1 ≤ k < m and 1 ≤ l < n, then

|F̄ l| = ba,

where gcd(b, |Gk|) = 1 and a | m
|Gk| .
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Proof. Let |F̄ l| = t, gcd(t, m
|Gk|) = a, and b = t/a. Since F̄ l([x]) = [x], there exists

G ′ ∈ 〈G〉 such that G ′F l(x) = x and |G ′F l| = t′. Moreover, Stab〈F ,G〉(x) contains G ′F l

and Gk. Suppose we assume on the contrary that gcd(b, |Gk|) = α 6= 1. Then |(Gk)
|Gk|
α | =

|(G ′F l) t
′
α | = α, which is impossible, as a finite cyclic group has a unique subgroup of a

given order dividing its order.

Lemma 3.1.5. Let G,F ∈ Homeo+(Sg) be commuting homeomorphisms of orders m,n,

respectively. Let F̄ be the induced map on Sg/〈G〉 as in Lemma 3.1.2. Then:

(i) For [x], [y] ∈ O〈G〉, if F̄([x]) = ([y]), then Px = Py.

(ii) Consider the action of 〈F̄〉 on O〈G〉 and the action of Ḡ on O〈F〉 ≈ Sg1. For each

orbit O of size |F̄ |, there exists a point [x(O)] ∈ OḠ and a [y] ∈ O such that

P[x(O)] = P[y].

(iii) Let F have β fixed points in Sg. If β̄ denotes the number of fixed points of F̄ , then

⌈
β

m

⌉
≤ β̄ ≤

⌊
(m− 1)(2g − 2 + 2n)

m(n− 1)

⌋
+
⌈
β

m

⌉
.

Proof. (i) Suppose that F̄([x]) = [y]. Then there exists x′, y′ ∈ Sg in the pre-images of

[x], [y] (under the branched cover) such that F(x′) = y′. Then

Gm/nx(y′) = Gm/nx(F(x′)) = F(Gm/nx(x′)) = F(x′) = y′,

where P[x] = (cx, nx) (We had fixed this notation in the discussion preceding Def-

inition 2.2.1). By a similar argument, we can show that Gm/ny(x′) = x′, and so it

follows that nx = ny.

To show that cx = cy, we first consider the case when nx = ny = m, then cx = cy.

Without loss of generality, we assume that cy = 1. Now, there exists an G-invariant

disk D2 around y that G rotates by 2π/m, and there exists a G-invariant disk D1

around x that G rotates by 2πc−1
x /m. So, we must have FGF−1 = Gc−1

x , which is

only possible when cx = 1, as F and G commute. For the case when nx = ny < m,

we may apply the same arguments as above to the subgroup 〈F ,Gn/nx〉 (of 〈F ,G〉)

to prove the required assertion.
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(ii) Suppose that G has n fixed points {x1, . . . , xn} in Sg that form an orbit under the

action of F on Sg. Then clearly {[x1], . . . , [xn]} forms an orbit of size |F̄ | under the

action of 〈F̄〉 on O〈G〉. Moreover, [x] = {x1, . . . , xn} is a point in O〈F〉 ≈ Sg1 , which

is fixed under the action of Ḡ. Thus, the assertion follows.

(iii) If F(x) = x, then by definition, F̄([x]) = [x], and so we have F(Gi(x)) = Gi(x),

for each i. If F has β fixed points, then there exist at least β
m

distinct orbits which

contain points fixed by F . Hence, the lower bound follows.

To show the upper bound, we observe that if F̄([x]) = [x], then by definition, there

exists 0 ≤ i ≤ m− 1 such that GiF(x) = x. When i 6= 0, by a direct application of

the Riemann-Hurwitz equation, it follows that
⌊

(2g−2+2n)
(n−1)

⌋
is the maximum number

cone points of order n in O〈GiF〉, which completes the argument.

The necessary conditions that appear in lemmas above, under which a given orbifold

automorphism is induced, are summarized in the following two definitions.

Definition 3.1.6. Let F ,G ∈ Homeo+(Sg) be of orders n and m respectively, and let

H = 〈G〉. We say a map F̄ ∈ Aut(OH) satisfies the induced map property (IMP) with

respect to (F ,G), if the following conditions hold.

(i) For [x], [y] ∈ OH , if F̄([x]) = ([y]), we have Px = Py.

(ii) Consider the action of 〈F̄〉 on O〈G〉 and the action of Ḡ on O〈F〉 ≈ Sg1 . For each orbit

O of size |F̄ |, there exists a point [x(O)] ∈ OḠ and a [y] ∈ O such that P[x(O)] = P[y].

(iii) Let F have β fixed points in Sg. If β̄ denotes the number of fixed points of F̄ , then

⌈
β

m

⌉
≤ β̄ ≤

⌊
(m− 1)(2g − 2 + 2n)

m(n− 1)

⌋
+
⌈
β

m

⌉
.

(iv) If [x] is a cone point of order n′ in OH , then F̄ l([x]) = [x], only if | F̄ l |= ba, where

gcd(b, n′) = 1 and a | m
n′
.

Definition 3.1.7. Let F ,G ∈ Homeo+(Sg) be finite-order maps with DF = (n, g1, r1;

((c1, n1), α1), . . . , ((cr, nr), αr)) andDG = (m, g2, r2; ((d1,m1), β1), . . . , ((dk,mk), βk)), where

m | n. Then (G,F) are said to form an essential pair if the following three conditions

hold.
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(i) There exists an F ′ ∈ Homeo+(Sg2) with DF ′ = (n, g0, r
o
1; (co1, no1), . . . , (cos, nos)) on

Sg2 which induces an F̄ ∈ Aut(O〈G〉) that satisfies the IMP with respect to (F ,G).

(ii) There exists a G ′ ∈ Homeo+(Sg1) with DG′ = (m, g0, r
o
2; (do1,mo

1), . . . , (dot ,mo
t )),

which induces a Ḡ ∈ Aut(O〈F〉) that satisfies the IMP with respect to (G,F).

(iii) Γ(O〈G〉/〈F̄〉) = Γ(O〈F〉/〈Ḡ〉).

The number mn (written as m · n) is called the order of the essential pair (G,F).

Example 3.1.8. Let F ,G ∈ Homeo+(S7) with DF = DG = (6, 2, 1; ). Then (G,F) is an

essential pair of order 6 · 6, as F ,G induce F̄ , Ḡ ∈ Homeo+(S2) (resp.) with DF̄ = DḠ =

(6, 0; ((1, 2), 2), (1, 3), (2, 3)), and Γ(O〈G〉/〈F̄〉) = Γ(O〈F〉/〈Ḡ〉) = (0; 2, 2, 3, 3).

Given a quotient orbifold OH , where H = 〈F〉, we now state a set of necessary

conditions (as we will show later in Theorem 3.2.10) for a given Ḡ ∈ Aut(OH) to be

induced by a finite-order map G such that 〈G,F〉 forms a two-generator abelian group.

Definition 3.1.9. For finite-order maps F ,G ∈ Homeo+(Sg), let (G,F) form an essential

pair of order m · n as in Definition 3.1.7. Then (G,F) is said to be a weakly abelian pair

of order m · n if the following conditions hold.

(i) If Γ(O〈G〉/〈F̄〉) = Γ(O〈F〉/〈Ḡ〉) = (g0;m′1n′1, . . . ,m′ln′l) such that for each i, m′in′i 6= 1

and m′in′i | n.

(ii) If g0 = 0 in condition (i), then there exists a sub-multiset A = {n11, . . . , nl1} of the

multiset B = {m′1n′1, . . . ,m′ln′l} such that lcm(Â) = lcm({n11, . . . , n̂i1,

. . . , nl1}) = n and m | lcm(B \ A).

(iii) (a) Denoting lcm({m′kn′k : m′k 6= 1}) = B1, if
∑
n′i 6=1

n

gcd(n, n′im′i)
ci ≡ −δ2 (mod n),

where m′i ∈ {1,mo
1, . . . ,m

o
t} and n′i ∈ {1, n1, . . . , nr}, then n

B1
|δ2.

(b) Denoting lcm({m′ln′l : n′l 6= 1}) = B̄2, and gcd(B̄2,m) = B2, if∑
m′i 6=1

m

gcd(m,m′in′i)
di ≡ −δ1 (mod m), where m′i ∈ {1,m1, . . . ,mk} and n′i ∈

{1, no1, . . . , nos}, then m
B2
|δ1.

Example 3.1.10. Let F ,G ∈ Homeo+(S2) with DF = (6, 0; ((1, 6), 2), (2, 3)), DG =

(2, 0; ((1, 2), 6)), respectively. Then (G,F) is an essential pair of order 2 · 6, with DF̄ =
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(6, 0; (1, 6), (5, 6)) and DḠ = (2, 0; ((1, 2), 2)), where

Γ(O〈G〉/〈F̄〉) = Γ(O〈F〉/〈Ḡ〉) = (0; 2, 6, 6).

It is easy to check that (G,F) is also a weak abelian pair of order 2 · 6.

Note that the F and G in Example 3.1.8 do not form a weakly abelian pair (G,F), as

they do not satisfy condition (ii) of Definition 3.1.9.

In order to improve the clarity of exposition, we will divide the proof of our main

result into four subcases, of which the first two cases (that will form bulk of our proof)

assume the following condition on the quotient orbifolds (of the cyclic factor subgroups).

Definition 3.1.11. Let H < Homeo+(Sg) be a finite cyclic group, and let Γ(OH) =

(g0;n1, . . . , n`). We say the action of H on Sg satisfies the lcm condition if

lcm({n1, . . . , n`}) = |H|.

We conclude this section with another lemma that will be used in one of the subcases of

our main result.

Lemma 3.1.12. Let F ,G ∈ Homeo+(Sg) be of orders n and m, respectively. If FG = GF

and Sg/〈F ,G〉 ≈ S0, then there exists an F ′ ∈ 〈F ,G〉 of order n such that the action of

〈F ′〉 on Sg satisfies the lcm condition.

Proof. Consider the map F̄ ∈ Aut(O〈G〉) induced by F . Since O〈G〉/〈F̄〉 = Sg/〈F ,G〉

(in view of Lemma 3.1.2 (i)) the action of F̄ on O〈G〉 satisfies the lcm condition. Let

DF̄ = (n, 0; (c′1, n′1), . . . , (c′s, n′s)). Consider a minimal subset {n11, . . . , n1l} of the multiset

{n′1, n′2, . . . , n′s} with the property lcm({n11, . . . , n1l}) = n. Now, for each n1i, there exists

li such that GliF
nc1i
n1i (xi) = xi, for some xi ∈ Sg. It is apparent that |GliF

nc1i
n1i | ≥ n1i. For

each 1 ≤ i ≤ l, we choose an appropriate power of GliF
nc1i
n1i that we denote by F ′i , so that

gcd(|F ′i |, |F ′j|) = 1, when i 6= j, and lcm({|F ′1|, . . . , |F ′l |} = n. Thus, the assertion follows

by choosing F ′ = F ′1F ′2 . . .F ′l .
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3.2 Main theorem

By a two-generator finite abelian action of order mn (written as m · n), we mean a tuple

(H, (G,F)), where m | n, H < Homeo+(Sg), and

H = 〈G,F | Gm = Fn = 1, [F ,G] = 1〉.

Definition 3.2.1. Two finite abelian actions (H1, (G1,F1)) and (H2, (G2,F2)) of order

m · n are said to be weakly conjugate if there exists an isomorphism, ψ : πorb
1 (OH1) →

πorb
1 (OH2) and an isomorphism χ : H1 → H2 such that the following conditions hold.

(i) χ((G1,F1)) = (G2,F2).

(ii) For i = 1, 2, let φHi : πorb
1 (OHi)→ Hi be the surface kernel (appearing in the exact

sequence (2.1) in Section 2.1). Then (χ ◦ φH1)(g) = (φH2 ◦ ψ)(g), whenever g ∈

πorb
1 (OH1) is of finite order.

(iii) The pair (G1,F1) is conjugate (component-wise) to the pair (G2,F2) in Homeo+(Sg).

The notion of weak conjugacy induces an equivalence relation on the two-generator fi-

nite abelian subgroups of Homeo+(Sg), and we will call the equivalence classes as weak

conjugacy classes.

Remark 3.2.2. It is important to note that while the notion of weak conjugacy induces

an equivalence relation on the set of all triples of the form (H, (G,F)), (unlike conju-

gacy,) it does not define an equivalence relation on the set of finite abelian subgroups of

Homeo+(Sg) in the traditional sense.

From Remark 3.2.2, it is apparent that weak-conjugacy and conjugacy are fundamentally

different notions. In fact, it is possible for two finite non-conjugate abelian subgroups of

Mod(Sg) to be weakly conjugate.

Example 3.2.3. In [4, Example 5.1], Broughton-Wootton have shown that there exists 2

conjugacy classes of a free Z5⊕Z5-action on S26. But from Definition 3.2.1, it is apparent

that there exists only one weakly conjugacy class of this action.

We will now define an abstract tuple of integers that encode, as we will see shortly in

Proposition 3.2.5, the weak conjugacy class of a two-generator finite abelian action.
24



3.2. Main theorem

Definition 3.2.4. An abelian data set of degree m · n and genus g is a tuple

(m · n, g0; [(c11, n11), (c12, n12), n1], . . . , [(cr1, nr1), (cr2, nr2), nr]),

where m,n ≥ 2, g0 ≥ 0, and g ≥ 2 are integers satisfying the following conditions:

(a) m | n,

(b) 2g − 2
mn

= 2g0 − 2 +
r∑
i=1

(
1− 1

ni

)
,

(c) lcm(n1, . . . , nr) = lcm(n1, . . . , n̂k, . . . , nr) = N, and if g0 = 0, then N = n,

(d) for each i, ni1|m, ni2|n, and lcm(ni1, ni2) = ni,

(e) for each i, j, either gcd(cij, nij) = 1, or cij = 0, and cij = 0, if and only if nij = 1,

(f)
r∑
i=1

m

ni1
ci1 ≡ 0 (mod m) and

r∑
i=1

n

ni2
ci2 ≡ 0 (mod n), and

(g) when g0 = 0, there exists (`1, . . . , `r), (k1, . . . , kr) ∈ Zr such that

(i)
r∑
i=1

m

ni1
ci1`i ≡ 0 (mod m) and

r∑
i=1

n

ni2
ci2`i ≡ 1 (mod n), and

(ii)
r∑
i=1

m

ni1
ci1ki ≡ 1 (mod m) and

r∑
i=1

n

ni2
ci2ki ≡ 0 (mod n).

Proposition 3.2.5. For m,n, g ≥ 2 and m | n, abelian data sets of degree m · n and

genus g correspond to the weak conjugacy classes of Zm ⊕ Zn-actions on Sg.

Proof. Let H = Zm ⊕ Zn, Γ(OH) = (g0;n1, . . . , nr), and Γ(g0;n1, . . . , nr) = Γ. Let D be

an abelian data set of degree m ·n and genus g as in Definition 3.2.4. By Lemma 2.1.1, it

suffices to show there exists a surjective map φ : πorb
1 (OH)→ H that preserves the order

of torsion elements. Let the presentations of Γ and Zm ⊕ Zn be given by

〈α1, β1, . . . , αg0 , βg0 , ξ1, . . . , ξr | ξn1
1 = · · · = ξnrr =

r∏
i=1

ξi

g0∏
i=1

[αi, βi] = 1〉 and

Zm ⊕ Zn = 〈x, y |xm = yn = [x, y] = 1〉, respectively.

First, we show the result for the case when g0 = 0. We consider the map

ξi → x
m
ni1

ci1y
n
ni2

ci2 , for 1 ≤ i ≤ r.
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Chapter 3. Commuting conjugates of periodic mapping classes

Since |x
m
ni1

ci1 | = ni1 and |y
n
ni2

ci2| = ni2, condition (d) implies that φ is an order-preserving

map. Moreover, condition (f) implies that φ satisfies the long relation ∏r
i=1 ξi = 1. In

order to show that φ is surjective, we establish that φ(Γ) generates the group Zm ⊕ Zn.

But condition (g) ensures that {φ(ξi) : 1 ≤ i ≤ r} generates Zm⊕Zn, and hence it follows

that D determines a Zm ⊕ Zn-action on Sg. When g0 > 0, πorb
1 (OH) also has hyperbolic

generators (i.e. the αi and the βi), which can be mapped surjectively to the generators

of Zm ⊕ Zn.

Conversely, suppose that there is a Zm ⊕Zn-action H on Sg such that OH had genus

g0. Then by Theorem 2.1.1, there exists a surjective homomorphism

φ : Γ→ Zm ⊕ Zn : ξi 7→ x
m
ni1

ci1y
n
ni2

ci2 , for 1 ≤ i ≤ r,

that is order-preserving on the torsion elements. This yields an abelian data set of degree

m · n and genus g as in Definition 3.2.4, and the result follows.

Example 3.2.6. The weak conjugacy classes of the abelian actions illustrated in the first

two subfigures of Figure 1.1 (in Section 1.2) are represented by the abelian data sets

(2 · 2, 2; [(0, 1), (1, 2), 2], [(1, 2), (0, 1), 2], [(1, 2), (1, 2), 2]) and

(2 · 2, 1; [(0, 1), (1, 2), 2], [(1, 2), (0, 1), 2], [(1, 2), (1, 2), 2]5),

where the suffix 5 in the second data set denotes the multiplicity of the subtuple [(1, 2), (1, 2), 2].

We will discuss such actions in more detail in Section 3.3.

Definition 3.2.7. Two elements of a group H are said to weakly commute if there exists

representatives in their respective conjugacy classes (in H) that commute.

For a group H, if g, h ∈ H weakly commute, then we denote it by Jg, hK = 1. It is clear

from Definition 3.2.7 that if Jg, hK 6= 1, then g and h cannot commute in H.

Remark 3.2.8. It follows immediately from Definition 3.2.7 and the Nielsen-Kerckhoff

theorem that given F ,G ∈ Homeo+(Sg) of finite-order, JF ,GK = 1 if and only if the

mapping classes F,G ∈ Mod(Sg) they represent satisfy JF,GK = 1.

The proof of the main theorem we will also require the following elementary number-

theoretic lemma.
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Lemma 3.2.9. Let δ ∈ Zn, and k1, . . . , kr are positive integers such that

lcm({k1, . . . , kr}) = β and β | n. If n
β
|δ, then there exists δ1, . . . , δr ∈ Zn such that

n
ki
|δi and

∑r
i=1 δi ≡ δ (mod n).

Proof. Since lcm({k1, . . . , kr}) = β, we have gcd({ n
k1
, . . . , n

kr
})|n

β
. Denoting

gcd({ n
k1
, . . . , n

kr
}) = c, we see that there exists integers ci such that c = ∑r

i=1 ci
n
ki
. For

some integer t, if δ = ct, where c = gcd({ n
k1
, . . . , n

kr
}), then δ = ∑r

i=1 tci
n
ki
. Taking

δi = tci
n
ki
, the assertion follows.

We are now in a position of prove the main result of this chapter, which essentially asserts

that a pair of finite-order homeomorphisms commute if and only if they have conjugates

that form a weakly abelian pair. In view of Proposition 3.2.5, the notion of abelian data

set will be used extensively in our proof.

Theorem 3.2.10 (Main Theorem). Let F,G ∈ Mod(Sg) be of finite order. Then

JF,GK = 1 and their commuting conjugates form a two-generator abelian group, if and

only if (G,F) is a weakly abelian pair of order |G| · |F |.

Proof. Let |F | = n and |G| = m, where m | n, and let H = 〈F〉. Let DF =

(n, g1, r1; ((c1, n1), α1), . . . , ((cr, nr), αr)) and DG = (m, g2, r2; ((d1,m1), β1),

. . . , ((dk,mk), βk)), respectively. First, we assume that JF,GK = 1, and show that (G,F)

form a weakly abelian pair of order m · n. Without loss of generality, we may assume

that F and G commute in Mod(Sg). Further, by the Nielsen-Kerckhoff theorem, we may

assume that F and G commute in Homeo+(Sg). Then by Lemmas 3.1.2 and 3.1.5, it

follows that (G,F) forms an essential pair of order m · n. It remains to show that (G,F)

is a weakly abelian pair as in Definition 3.1.9. Condition (i) in this definition is a con-

sequence of Lemma 3.1.5, while condition (ii) is a direct consequence of condition (g) of

Definition 3.2.4. To show condition (iii), it suffices to consider the case when

DF = (n, g1; ((c1, n1),m), . . . , ((cr, nr),m)),

as all other cases follow from similar arguments. First, we assume that G induces a Ḡ ∈

Aut(OH) which does not fix any cone point of OH . Let Γ(OH/〈Ḡ〉) = (g0;n1, . . . , nr, nr+1,

. . . , nr+l), and let φ : Γ(OH/〈Ḡ〉)→ 〈F ,G〉 be the surface kernel. Following the notation

in the proof of Proposition 3.2.5, we map ξi
φ7−→ F

n
ni
ci , for 1 ≤ i ≤ r. The relation
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∏r+l
i=1 ξi = (∏g0

j=1[αj, βj])−1 in the presentation of πorb
1 (OH/〈Ḡ〉) would now imply that∏r+l

i=1 φ(ξi) = 1. If ∑r
i=1

n
ni
ci ≡ 0 (mod n), then condition (iii) holds trivially. On the

other hand, if ∑r
i=1

n
ni
ci 6≡ 0 (mod n), since ∏r+l

i=1 φ(ξi) = 1, we have that ∏r
i=1 φ(ξi) =

(∏r+l
i=r+1 φ(ξi))−1. Consequently, n/B divides ∑r

i=1
n
ni
ci, where B = lcm(nr+1, · · · , nr+l).

Thus, it follows that condition (iii) is necessary.

Conversely, suppose that (G,F) forms a weakly abelian pair of degree m · n as in

Definition 3.1.9. By Remark 3.2.8, it suffices to show that our assumption yields an

abelian data set as desired. We now break our argument into four cases.

Case 1: Let lcm({n1, . . . , nr}) = n. We further assume that m′in′i = B1, where m′i 6= 1,

for some i. We may assume, without loss of generality, that i = 1. Then we show that

the tuple

(m ∗ n, g0;
[
(d′1,m′1) ,

(
αc′1 + δ

ακ
,
m′1n

′
1

κ

)
,m′1n

′
1

]
,[

(d′2,m′2) ,
(
c′2
κ2
,
m′2n

′
2

κ2

)
,m′2n

′
2

]
, . . . ,

[
(d′l,m′l) ,

(
c′l
κl
,
m′ln

′
l

κl

)
,m′ln

′
l

]
),

where gcd(c′j,m′j) = κj, κ = gcd(c1 + δ
α
,m′1n

′
1), α = n

m′t1
n′t1

, d′ti = 0, if

m′i /∈ {mo
1,m

2
o, . . . ,m

o
t}, and c′i = 0, if n′i /∈ {n1, n2, . . . , nr}, forms an abelian data set.

Since JF,GK = 1, (G,F) forms an essential pair, from which conditions (a) - (c) of Defi-

nition 3.2.4 follow. Moreover, for each i, we have gcd(d′i,m′i) = 1 and gcd
(
c′i
κi
,
m′in

′
i

κi

)
= 1,

and by our choice of κi, we have lcm(m′i,
m′in

′
i

κi
) = m′in

′
i, from which conditions (d) - (e) of

Definition 3.2.4 follow. Furthermore, our choice of c′i and δ2 ensures that

l∑
i=1

n

m′in
′
i

c′i + δ2 ≡ 0 (mod n) and
l∑

i=1

m

m′i
d′i ≡ 0 (mod m),

which yields condition (f) of Definition 3.2.4. It now remains to show condition (g), for

the case when g0 = 0. Following the notation used in the proof of Theorem 3.2.5, we

show that the generators y, x (of Zm ⊕ Zn) can be expressed as products of elements in

the set {φ(ξi) : 1 ≤ i ≤ l}. Consider the set S = {φ(ξi)mi : 1 ≤ i ≤ l}. Then by our

choice of the map φ, each element of S equals some power of x, and |φ(ξi)mi | = ni. Since

lcm(n1, . . . , nl) = n, we have 〈S〉 = 〈x〉. Now consider the set T = {φ(ξr) : φ(ξr) =

yaxb, a 6= 0}. Since (G,F) is an essential pair, yxt is a product of elements in T , and the
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assertion follows.

Now suppose that lcm({m′kn′k : m′k 6= 1}) = B1, where no m′kn′k equals B1. Without
loss of generality, we may assume that lcm({m′kn′k : m′k 6= 1 and 1 ≤ k ≤ p}) = B1. Then
by Lemma 3.2.9, there exists δ′i, for 1 ≤ i ≤ p, such that ∑p

i=1 δ
′
i ≡ δ2 (mod n). For each

δ′i, we choose αi = n
m′in

′
i
and consider the tuple

(m ∗ n, g0;
[(
d′1,m

′
1
)
,

(
α1c
′
1 + δ′1
α1ξ′1

,
m′1n

′
1

ξ′1

)
,m′1n

′
1

]
, . . . ,

[(
d′p,m

′
p

)
,

(
αpc
′
p + δ′p
αpξ′p

,
m′pn

′
p

ξ′p

)
,m′pn

′
p

]
,[(

d′p+1,m
′
p+1

)
,

(
c′p+1
ξp+1

,
m′p+1n

′
p+1

ξp+1

)
,m′p+1n

′
p+1

]
, . . . ,

[(
d′l,m

′
l

)
,

(
c′l
ξl
,
m′ln

′
l

ξl

)
,m′ln

′
l

]
),

where ξ′j = gcd({cj + δ′j
αj
,m′jn

′
j : 1 ≤ j ≤ p}) and gcd(c′i,m′i) = ξi, for p + 1 ≤ i ≤ l. As

before, this tuple will satisfy all the conditions of an abelian data set.

Case 2: Let lcm({m1, . . . ,mk}) = m and lcm({n1, . . . , nr}) < n. By an argument

analogous to Case 1, we obtain a representation φ : Γ→ Zm⊕Zn such that the generators

y, x (of Zm ⊕Zn) can be expressed as products of elements in the set {φ(ξi) : 1 ≤ i ≤ l}.

Consider the set S = {φ(ξi)ni : 1 ≤ i ≤ l}. Then by our choice of φ and Proposition 3.1.4,

it follows that each element of S equals some power of y and |φ(ξi)ni | = mi. Since

lcm(m1, . . . ,ml) = m, we have 〈S〉 = 〈y〉. Now consider the set T = {φ(ξr) : φ(ξr) =

yaxb, b 6= 0}. As (G,F ) forms an essential pair, xyt is a product of elements in T , and

the assertion follows.

Case 3: Let lcm({m1, . . . ,mk}) < m, lcm({n1, . . . , nr}) < n, and g0 > 1. Then the

abelian data set and the representation φ from Case 1 also works for this case.

Case 4: Let lcm({m1, . . . ,mk}) < m, lcm({n1, . . . , nr}) < n, and g0 = 0. Then

by Lemma 3.1.12, it follows that there exists an F ′ ∈ 〈F ,G〉 such that |F ′| = n and

DF ′ = (g′0; (c1, n1), . . . , (cr, nr)) satisfies lcm({n1, . . . , nr}) = n. Since (G,F ) is a weakly

abelian pair, so is (G,F ′), and hence this case reduces to Case 1.

3.3 Applications

In this section, we derive several applications of the theory developed earlier in the chap-

ter.
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3.3.1 Weak commutativity of involutions

It is well known that the conjugacy class of an involution F ∈ Mod(Sg) is represented by

DF = (2, g0; ((1, 2), k)), where k = 2(g − 2g0 + 1), if F is a non-free action on Sg, and

DF = (2, (g + 1)/2, 1; ), otherwise. In this section, we will derive conditions under which

two involutions in Mod(Sg) will weakly commute.

Corollary 3.3.1. Let F,G ∈ Mod(Sg) be involutions such that

DF = (2, g′0, r′; ((1, 2), 2k′)) and DG = (2, g′′0 , r′′; ((1, 2), 2k′′)),

respectively. Then JF,GK = 1 if and only if, the following conditions hold.

(a) There exists Ḡ ∈ Homeo+(Sg′0) with DḠ = (2, g0, r1; ((1, 2), 2s′′)) such that g+k′′+1 ≥

2s′′ ≥ k′′.

(b) There exists F̄ ∈ Homeo+(Sg′′0 ) with DF̄ = (2, g0, r2; ((1, 2), 2s′)) such that g+k′+1 ≥

2s′ ≥ k′.

Proof. It suffices to show that conditions (a) - (b) mentioned above hold true if and only

if (G,F) is a weakly abelian pair. If (G,F) is a weakly abelian pair, then it is also an

essential pair, and so a direct computation shows that shows that conditions (i) and (ii)

in the definition of an essential pair are equivalent to the conditions (a) and (b) above,

respectively. Conversely, it is easy to see that conditions (a) - (b) imply that (G,F) is

an essential pair. It remains to show that conditions (i) - (iii) of Definition 3.1.9 hold

true. A simple application of the Riemann-Hurwitz equation to the four data sets that

appear in the statement above leads to a system of (four) linear equations, which can be

simplified to yield the condition:

2s′ − k′ = 2s′′ − k′′,

from which (i)-(ii) follow. When g is odd, 4 | ∑r
i=1 αi

n
ni
ci, and so each δi appearing in (iii)

is 0. If g is even, then as no involution generates a free action, we have Bi = 2. Thus,

condition (iii) is satisfied, and the assertion follows.

Let the conjugacy classes DF = (2, g′0, r′; ((1, 2), 2k′)) and DG = (2, g′′0 , r′′;

((1, 2), 2k′′)), be represented by involutions F and G, which commute. Then, by Corol-
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lary 3.3.1, we have DFG = (2, g0, r
′′′; ((1, 2), 2k)), where k = 2s′ − k′ = 2s′′ − k′′. Using

this idea, one can obtain a geometric realization of a Klein 4-subgroup K4 of Mod(Sg)

by obtaining an embedding of ι : Sg ↪→ R3 that is symmetric about origin such that

ι(Sg) intersects, the x-axis at 2k′ points, the y-axis at 2k′′ points, and the z-axis at 2k

points. It is now apparent that under this embedding the non-trivial elements of K4 are

realized as π-rotations about the three coordinates axes. This property is illustrated in

the following example.

Example 3.3.2. Consider F,G ∈ Mod(S7) whose conjugacy classes are given by DF =

(2, 4, 1; ), DG = (2, 3; ((1, 2), 4)), respectively. By the preceding discussion, there exist

three possible choices for the conjugacy class of FG, namely:

(a) DFG = (2, 4, 1; )

(b) DFG = (2, 2; ((1, 2), 8))

(c) DFG = (2, 0; ((1, 2), 16))

The realization of the group {1, F,G, FG} in each case is given in Figures 3.1-3.3 below.

π π

π

G F

FG

Figure 3.1: Case (a)

In fact, all Klein 4-subgroups of Mod(Sg) can be realized in an analogous manner.

3.3.2 Finite abelian groups with irreducible finite-order map-

ping classes

We say a Zn-action is irreducible if it is irreducible as a mapping class. By a result of

Gilman [11], this is equivalent to requiring that the corresponding orbifold of the action
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π π

π

F

G

FG

Figure 3.2: Case (b)

π

π

π

G

FG

F

Figure 3.3: Case (c)

is a sphere with 3 cone points. Following the nomenclature in [2] and [30], a Zn-action on

Sg is said to be rotational if it can be realized as a rotation about an axis under a suitable

embedding of Sg ↪→ R3. A non-rotational action is said of be of Type 1 if its quotient

orbifold has signature (g0;n1, n2, n), otherwise, it is called a Type 2 action. The following

corollary characterizes the weak commutativity of Type 2 actions with finite-order maps.

Corollary 3.3.3. There exists no finite non-cyclic abelian subgroup of Mod(Sg) that

contains an irreducible Type 2 action.

Proof. By Remark 3.2.8, it suffices to show that an irreducible Type 2 Zn-action F does

not commute with any other Zm-action. Since F is a Type 2 action, we have Γ(O〈F 〉) =

(0;n1, n2, n3), where ni 6= nj and ni < n, for 1 ≤ i 6= j ≤ 3. In view of Theorem 3.2.10,

if some G ∈ Mod(Sg) such that JF,GK = 1, then there exists Ḡ : O〈F〉 → O〈F〉 which
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satisfies the IMP with respect to (G,F). This would imply that Ḡ fixes all three cone

points of O〈F〉. This is impossible, as any non-trivial automorphism on a sphere can fix

at most two points, and the assertion follows.

We now give a similar characterization for the weak commutativity of Type 1 actions .

Corollary 3.3.4. Suppose that there exists a finite non-cyclic abelian subgroup H of

Mod(Sg) that contains an irreducible Type 1 action. Then H ∼= Z2 ⊕ Z2g+2.

Proof. Let F be an irreducible Type 1 action with Γ(O〈F〉) = (0;n1, n2, n3). Since F is

of Type 1, there exists at least one ni (say n1) such that n1 = n, and the following cases

arise.

Case 1: n2 6= n3 and n2, n3 < n. By an argument analogous to the one used in the

proof of Corollary 3.3.3, it follows that F does not commute with any other finite-order

element of Mod(Sg).

Case 2 : ni = n, for 1 ≤ i ≤ 3. Then by the Riemann-Hurwitz equation, we have

that n = 2g+ 1. By applying a result of Maclachlan [22] that bounds the order of a finite

abelian subgroup of Mod(Sg) by 4g + 4, it follows that only an involution can commute

with F . When such an involution G does commute with F , it follows immediately that

〈F ,G〉 ∼= Z4g+2.

Case 3: n1 = n2 = n 6= n3. Once again, by similar arguments as above, we can

conclude that F cannot commute with any other finite-order G ∈ Mod(Sg) with |G| ≥ 3.

When F commutes with an involution G, the induced map Ḡ ∈ Aut(O〈F〉) fixes the cone

point of order n3 in O〈F〉 and permutes the remaining 2 cone points. Consequently, we

have 〈F ,G〉 ∼= Z2 ⊕ Zn. By the Riemann-Hurwitz equation, it follows that n ≥ 2g + 1,

and hence n = 2g + 2, as 2n ≤ 4g + 4.

3.3.3 Weak commutativity with free cyclic actions

Any non-trivial finite m-sheeted cover of Sg, for g ≥ 2 with cyclic group of deck trans-

formation, has the form p : Sm(g−1)+1 → Sg, where p is a covering map. Let LModp(Sg)

be the subgroup of Mod(Sg) of all mapping classes that have representatives that lift

to homeomorphisms of Sm(g−1)+1 under p. It is natural question to ask whether a given

F ∈ Mod(Sg) of finite-order will have a conjugate F ′ such that F ′ ∈ LModp(Sg). In this

subsection, we answer this question for certain types of finite-order maps. We begin by
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determining when certain types of free cyclic actions weakly commute with other cyclic

actions.

Corollary 3.3.5. Let F,G ∈ Mod(Sg) with DF = (n, g1, r; ) and DG = (m, g0, r
′;

((d1,m1), β1), . . . , ((dk,mk), βk)), respectively. Suppose that F induces a free action on

O〈G〉. Then JF,GK = 1 if and only if:

(a) βj = 0 (mod n), for 1 ≤ j ≤ k,

(b) n|(g0 − 1), and

(c) ∑k
i=1

βi
n
m
mi
di ≡ 0 (mod m).

Proof. We show that conditions (a) - (c) are sufficient, as it follows directly from Theo-

rem 3.2.10 that they are necessary. By conditions (a) - (b) of our hypothesis, it follows

that there exists a free action on Sg0 , which induces an F̄ ∈ Aut(O〈G〉). The Riemann-

Hurwitz equation and Lemma 2.1.1 imply that there exists a Ḡ ∈ Aut(O〈F〉) with

DḠ = (m, (g0 − 1)
n

+ 1, r′′; ((d1,m1), β1

n
), . . . , ((dk,mk),

βk
n

)).

Hence, it follows that (G,F) forms an essential pair, and the fact that they form an weakly

abelian pair follows directly from condition (c) of our hypothesis and by the hypothesis

that F is a free action.

In the following result, we show that a finite-order mapping class whose corresponding

orbifold has positive genus has a conjugate that is liftable under a finite-sheeted cover of

Sg.

Corollary 3.3.6. Consider an F ∈ Mod(Sg) of finite-order such that O〈F 〉 has positive

genus. Let p : Sm(g−1)+1 → Sg be an m-sheeted cover whose deck transformation group is

given by 〈G〉 ∼= Zm. Then there exists a conjugate F ′ of F such that F ′ ∈ LModp(Sg).

Proof. Let DF = (n, g0, r1; (c1, n1), . . . , (cr, nr)), and consider F̃ ∈ Mod(Sm(g−1)+1) with

D
F̃

= (n,m(g0 − 1) + 1, r̄; ((c1, n1),m), . . . , ((cr, nr),m)). Then by Corollary 3.3.5, we

have that JG, F̃ K = 1. Without loss of generality, we may assume that G and F̃ commute

in Homeo+(Sg). By the IMP, it now follows that F̃ induces F ′ ∈ Homeo+(Sg), whose

mapping class F ′ is conjugate to F in Mod(Sg).
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In the following corollary, we provide conditions under which certain finite-order mapping

classes whose corresponding orbifolds are spheres have conjugates that lift under a finite

cover of Sg.

Corollary 3.3.7. Let F ∈ Mod(Sg) with DF = (n, 0; (c1, n1), . . . , (cr, nr)). Let p :

Sm(g−1)+1 → Sg be an m-sheeted cover whose deck transformation group is given by

〈G〉 ∼= Zm. Then there exists a conjugate F ′′ of F such that F ′′ ∈ LModp(Sg), if the

following conditions hold.

(i) m | n1 and m | n2.

(ii) For k = 1, 2, there exists residue classes c′k modulo (nk/m) such that

gcd(c′k, nk/m) = 1 and the tuple

D = (n, 0; (c′1, n1/m), (c′2, n2/m), ((c3, n3),m), . . . , ((cr, nr),m))

forms a data set.

Proof. Consider an F ′ ∈ Mod(Sm(g−1)+1) with DF ′ = D. It is straightforward to check

that (G,F ′) forms a weakly abelian pair. Thus, by Theorem 3.2.10, we have that JF ′, GK =

1. So, F ′ induces F ′′ ∈ Homeo+(Sg) whose mapping class is conjugate to F .

3.3.4 Primitivity of finite-order mapping classes

Let H be group. We say an x ∈ H has a root of degree n if there exists y ∈ H such that

yn = x and |y| = n|x|. If g ∈ H has no root of any degree greater than one, then g is

said to be primitive in H. It is known [41] that the order of a finite cyclic subgroup of

Mod(Sg) is bounded above by 4g + 2. This would imply that no finite-order mapping

class with order > 2g + 1 can have a nontrivial root. The following proposition gives

conditions under which an arbitrary finite-order mapping class can have a root.

Proposition 3.3.8. Let F ∈ Mod(Sg) with DF = (n, g0, r1; (c1, n1), . . . , (cr, nr)), and let

H = 〈F 〉. Then F has a root of degree m if and only if there exists a G ∈ Homeo+(Sg0)

with DG = (m, g′, r′; (d1,m1), . . . , (dk,mk)), which induces a Ḡ ∈ Aut(OH) that satisfies

the following conditions.
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(i) Γ(OH/〈Ḡ〉) = (g′;n′1, . . . , n′l), where for each i, n′i belongs to the following union of

multisets

{n1, . . . , nr} ∪ {mi| gcd(mi, n) = 1} ∪ {njmi| gcd(mi, n) = 1} ∪ {nmj}.

(ii) There exists an F ′ ∈ Mod(Sg) with DF ′ = (mn, g′, r′′; (c′1, n′1), . . . , (c′l, n′l)) such that

for each i,

c′i ≡


cj, if n′i = nj, and

cj (mod nj), if n′i = njmi.

Proof. First, we note that the conjugacy of (F ′)m is represented by DF . Thus, we have

that (F ′)m and F are conjugate. So, we can find a conjugate of F ′, say F ′′, such that

(F ′′)m = F. Hence, F ′′ is a root of F of order m.

Conversely, suppose that F has a root F ′ of order m. Since F ′ commutes with

(F ′)m, the map Ḡ([x]) := [F ′(x)] defines an automorphism of OH , where H = 〈(F ′)m〉.

Furthermore, we have that

Γ(OH/〈Ḡ〉) = Γ(Sg/〈F ′〉) = (g′; t1, t2, . . . , tl).

Note that,

ti ∈ {n1, . . . , nr} ∪ {m1, . . . ,mk} ∪ {nimj|1 ≤ i ≤ r, 1 ≤ j ≤ k}.

So, it remains to prove if ti = mj, then gcd(mj, n) = 1, and if ti = mjnk then either

nk = n or gcd(mj, n) = 1. However, this follows directly from the structures of DF ′ and

DF .

A consequence of this proposition is the following corollary, which pertains to the roots

of a mapping class of order g − 1.

Corollary 3.3.9. Let F ∈ Mod(Sg) be represented by the generator of a free cyclic action

on Sg.

(i) If F has a nontrivial root F ′, then O〈F ′〉 6≈ S0, and
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π

Figure 3.4: Realization of free involution in S3

(ii) If |F | = g − 1, then F has a root F ′ if and only if g is even. In this case, F ′ is a

root of degree 2.

Proof. (i) Suppose that O〈F ′〉 ≈ S0. Then, as discussed in the proof of Proposi-

tion 3.3.8, all its powers of prime order have a fixed point.

(ii) Let H = 〈F〉. Since |F | = g − 1, the Riemann-Hurwitz equation would imply that

OH ≈ S2. Moreover, by Proposition 3.3.8, F ′ induces an F̄ ∈ Aut(OH) of order n.

In view of (i), it is clear that n ≤ 2, and further, by condition (i) of Proposition 3.3.8,

this is only possible when 2 - (g−1), that is, g is even. Conversely, if g is even, then

it can be easily verified that F ′ ∈ Mod(Sg) with DF ′ = (2g − 2, 1; (1, 2), (1, 2)) is a

root of F of degree 2.

Another consequence concerns the primitivity of a rotation of Sg of order g.

Corollary 3.3.10. If 6 | g, then an F ∈ Mod(Sg) with DF = (g, 1; (c, g), (g − c, g)) is

primitive.

Proof. Since order of any action on S1 is not coprime with 6 and every action on S1 has at

least three cone points, Condition (i) of Proposition 3.3.8 would be violated, from which

our assertion follows.

The following corollary characterizes the primitivity of involutions.

Corollary 3.3.11. An involution F ∈ Mod(Sg) is primitive if and only if DF = (2, 2, 1; ).

Proof. By Proposition 3.3.8, it follows that an F with DF = (2, 2, 1; ) is primitive, whose

realization is given in Figure 3.4. It remains to show that no other involution can be
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primitive. Let F ∈ Mod(Sg) be an arbitrary involution with DF = (2, g0, r; ((1, 2), n)).

We divide our argument into the following cases.

Case 1: n = 0 and g0 ≥ 3. Then there exists a G ∈ Homeo+(Sg0) with DG =

(g0 − 1, 2, 1; ) that satisfies condition (i) of Proposition 3.3.8. Further, the mapping class

F ′ ∈ Mod(Sg) with DF ′ = (2(g0 − 1), 2, 1; ) satisfies condition (ii). Thus, F ′ has a

conjugate F ′′ such that (F ′′)g0−1 = F .

Case 2: n 6= 0 and g0 is even. Then there exists a G ∈ Homeo+(Sg0) with , DG =

(2, g0
2 ; ((1, 2), 2)) inducing Ḡ ∈ Aut(O〈F〉) such that

Γ(O〈F〉/〈Ḡ〉) = (g0

2 ; 4, 4, 2, . . . , 2︸ ︷︷ ︸
n−2

2 times

).

Moreover, the F ′ ∈ Mod(Sg) with

DF ′ = (4, g0

2 ; (1, 4), (c, 4), ((1, 2), n− 2
2 )), where c =


1, if n−2

2 is odd, and

3, if n−2
2 is even.

Thus, by Proposition 3.3.8, F ′ has a conjugate F ′′ such that (F ′′)2 = F .

Case 3: n > 2 and g0 is odd. Then consider G ∈ Homeo+(Sg0) with data set DG =

(2, g0−1
2 ; ((1, 2), 4)) such that Γ(O〈F〉/〈Ḡ〉) = (g0−1

2 ; 4, 4, 4, 4, 2, . . . , 2︸ ︷︷ ︸
n−4

2 times

). Furthermore, there

exists F ′ ∈ Mod(Sg) with

DF ′ = (4, g0 − 1
2 ; ((1, 4), 3), (c, 4), ((1, 2), n− 4

2 )), where c =


3, if n−4

2 is odd, and

1, if n−4
2 is even.

Thus, as in the previous case, F = (F ′′)2.

Case 4: n = 2 and g0 is odd. Suppose that g0 ≥ 2. Then we take G ∈ Homeo+(Sg0)

with DG = (g0, 1; (1, g0), (g0 − 1, g0)) so that Γ(O〈F〉/〈Ḡ〉) = (1; 2g0, 2g0). Further, by

taking F ′ ∈ Mod(Sg) with DF ′ = (2g0, 1; (1, 2g0), (2g0− 1, 2g0)), by Proposition 3.3.8, we

obtain a conjugate F ′′ (of F ′) such that (F ′′)(g0) = F. When g0 = 1, the mapping class

F ′ ∈ Mod(Sg) with data set DF ′ = (6, 0; (1, 3), (5, 6), (5, 6)) has a conjugate F ′′ such that

(F ′′)3 = F .
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3.3.5 Weak commutativity of finite-order maps with roots of

Dehn twists

Let c be a simple closed curve in Sg, for g ≥ 2, and let Tc ∈ Mod(Sg) denote the left-

handed Dehn twist about c. A root of Tc of degree n is an F ∈ Mod(Sg) such that F n = Tc.

Consider an F ∈ Mod(Sg) that is either an order-n mapping class that preserves c, or a

root of Tc of degree n. Then up to isotopy, we can assume that F has a representative F

such that F(c) = c, and that F preserves a closed annular neighborhood N of c. Let Ŝg(c)

denote the surface obtained by capping off the components of Sg \N . Then by the theory

developed in [27, 30, 32], it follows that F induces an order-n map F̂c ∈ Homeo+(Ŝg(c))

by coning. Throughout this subsection, we will denote the representative of an arbitrary

mapping class F ∈ Mod(Sg) by F . The following remark describes the construction of a

root of a Tc, when c is nonseparating.

Remark 3.3.12. When c is nonseparating, it is well known [23, 27] that (up to conjugacy)

a root F of Tc of degree n in Mod(Sg) determines a Zn-action F̂c on Sg−1, which has

two (distinguished) fixed points on Ŝg(c), where it induces rotation angles add up to

2π/n (mod 2π). (We will call such an action a nonseparating root-realizing Zn-action.)

Conversely, consider a Zn-action on Sg−1, which has two (distinguished) fixed points,

where it induces rotation angles that add up to 2π/n (mod 2π). Then we can remove

invariant disks around the fixed points and attach a 1-handle N with an 1/nth twist

connecting the resulting boundary components to obtain a root of Dehn twist about the

non-separating curve in N .

Moreover, it was shown in [27, 32] that no root of Tc can switch the two sides of c.

Remark 3.3.13. Suppose that a Zm-action G ∈ Mod(Sg) preserves a curve c. Then G

induces an order-m map Ĝc on Ŝg(c). When c is non-separating, Ŝg(c) ≈ Sg−1, and when

c is separating, Ŝg(c) ≈ Sg1 t Sg2 (in symbols Sg = Sg1#cSg2), where g1 + g2 = g. Let N

be a closed annular neighborhood of c such that G(N) = N . Then the two distinguished

points P,Q that lie at the center of the capping disks (of the two boundary components

of the surface Sg \N) are either fixed under the action of Ĝc, or form an orbit of size 2.

Conversely, given a Zm-action Ĝc on a surface (≈ Ŝg(c)) with two distinguished points

P,Q, which are either fixed with locally induced rotation angles (around P and Q) adding
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up to 0 (mod 2π), or form a orbit of size 2, we may reverse the above process to obtain

Zm-action on Sg. Note that by [30] P,Q is an orbit of size 2, only when |Ĝc| = 2.

This leads us to the following characterization of weak commutativity of finite-order maps

with roots of Dehn twists about nonseparating curves.

Corollary 3.3.14. Let F ∈ Mod(Sg) be a root of Tc, where c is nonseparating, and

G ∈ Mod(Sg) be of finite order. Then JF,GK = 1 if and only if G(c) = c and JF̂c, ĜcK = 1.

In particular, if F̂c is primitive, then F and G cannot commute in Mod(Sg).

Proof. Suppose that JF,GK = 1. Then up to conjugacy, we assume that F commutes

with G, and so we have Tc = GTcG
−1 = TG(c). Hence, we may assume up to isotopy that

G(c) = c, and both G and F preserve the same annular neighborhood N of c. Thus, F̂c
and Ĝc, which are induced by F and G, respectively, must commute as maps on Sg−1,

and so it follows that JF̂c, ĜcK = 1.

Conversely, let us assume hypothesis of statement hold true. Then F̂c and Ĝc share the

same set of two distinguished points P and Q (as in Remark 3.3.12) that are either fixed

or form an orbit of size 2, under their actions. By Remarks 3.3.12-3.3.13, we construct

maps F and G, which commute in Homeo+(Sg). Therefore, as mapping classes they

satisfy JF,GK = 1.

Let H = 〈F̂c, Ĝc〉. To show the final part of the assertion, we first observe that

StabH(P ) = H, when |G| > 2. Since H is cyclic (by Lemma 3.1.3), it follows that F̂c has

a root of degree |G|. Further, it was shown in [27] that any nontrivial root of Tc is of odd

degree. So, when |G| = 2, it is apparent that H is cyclic. Therefore, if F̂c is primitive,

then F and G cannot commute in Mod(Sg).

Note that the conditions gcd(|F̂c|, |Ĝc|) = 1 and |F̂c||Ĝc| ≤ (4(g − 1) + 2) determine an

upper bound for |G|.

Remark 3.3.15. Let c is a separating curve in Sg so that Sg = Sg1#cSg2 . It is known [33]

that (up to conjugacy) a root F of Tc of degree n corresponds to a pair F̂c = (F̂1,c, F̂2,c)

of finite order maps, where F̂i,c ∈ Homeo+(Sgi) with |F̂i,c| = ni, for i = 1, 2, with

distinguished fixed points Pi ∈ Sgi around which the locally induced rotational angles θi,

which satisfy

θ1 + θ2 ≡ 2π/n (mod 2π), where n = lcm(n1, n2).
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Further, if G is a finite-order map with G(c) = c and |G| > 2, then there is a decomposition

of Ĝc into a pair of actions (Ĝ1,c, Ĝ2,c), where Ĝi,c is a Zm-action on Sgi , for i = 1, 2.

However, when |G| = 2, Ĝc is either a single action on Sg(c) that permutes the components

Sgi (in which case g1 = g2), or it decomposes into a pair of actions (Ĝ1,c, Ĝ2,c) as before.

The ideas in Remarks 3.3.13 and 3.3.15 lead to the following analog of Corollary 3.3.14

for the roots of Dehn twists about separating curves.

Corollary 3.3.16. Let c is a separating curve in Sg so that Sg = Sg1#cSg2. Let F ∈

Mod(Sg) be a root of Tc so that F̂c = (F̂1,c, F̂2,c). Then a G ∈ Mod(Sg) of finite order

satisfies JF,GK = 1 if and only if:

(i) G(c) = c, and

(ii) either Ĝc = (Ĝ1,c, Ĝ2,c) and JF̂i,c, Ĝi,cK = 1, for i = 1, 2, or F̂1,c is conjugate with

F̂2,c.

3.3.6 Hyperbolic structures realizing abelian actions

In [2] and [30], a procedure to obtain the hyperbolic structures that realize cyclic sub-

groups of Mod(Sg) as isometries was described. In this section, we use this procedure,

and theory developed in Sections 3.1-3.2 to give an algorithm for obtaining the hyperbolic

structures that realize a given two-generator finite abelian subgroup of Mod(Sg) as an

isometry group. Given a finite subgroup H < Mod(Sg), let Fix(H) denote the subspace

of fixed points in the Teichm̈uller space Teich(Sg) under the action of H. With this

notation in place, we have the following elementary lemma.

Lemma 3.3.17. Let F,G ∈ Mod(Sg) be commuting finite-order mapping classes. Then

Fix(〈F,G〉) = Fix(〈F 〉) ∩ Fix(〈G〉).

Proof. Suppose that x ∈ Fix(〈F,G〉). Then x ∈ Fix(〈F 〉) and x ∈ Fix(〈G〉), and so

x ∈ Fix(〈F 〉) ∩ Fix(〈G〉)

Conversely, given x ∈ Fix(〈F 〉) ∩ Fix(〈G〉), thus F (x) = G(x) = x so F lGk(x) = x,

for all l, k, which implies that x ∈ Fix(〈F,G〉).

Given a weak conjugacy class of an abelian action (H, (G,F)) represented by

(m · n, g0; [(c11, n11), (c12, n12), n1], . . . , [(cr1, nr1), (cr2, nr2), nr]),
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we will now describe an algorithmic procedure for obtaining the conjugacy classes of its

generators.

Step 1. It follows directly from our theory that the data sets

DḠ = (m, g0; (c11, n11), . . . , (cr1, nr1)) and

DF̄ = (n, g0; (c12, n12), . . . , (cr2, nr2))

represent the conjugacy classes of the actions Ḡ and F̄ induced on the orbifolds

OH1 and OH2 by the actions of H1 and H2 on Sg, respectively.

Step 2. We now note that the orbifold signatures Γ(OHi) have the form

Γ(OH1) = (g(DḠ); ( n1
n11

, . . .
n1
n11︸ ︷︷ ︸

m
n11

times

, . . . ,
nr
nr1

, . . .
nr
nr1︸ ︷︷ ︸

m
nr1

times

)) and

Γ(OH2) = (g(DF̄ ); ( n1
n12

, . . .
n1
n12︸ ︷︷ ︸

n
n12

times

, . . . ,
nr
nr2

, . . .
nr
nr2︸ ︷︷ ︸

n
nr2

times

)),

with the understanding that if ni/nij = 1, for some 1 ≤ i ≤ r and j = 1, 2, then

we exclude it from the signatures.

Step 3. We choose conjugacy classes

DF = (n, g1; ((c1,
n1

n11
), m
n11

), . . . , ((cr,
nr
nr1

), m
nr1

)) and

DG = (m, g2; ((d1,
n1

n12
), n
n12

), . . . , ((dr,
nr
nr2

), n
nr2

)),

where ci ≡ ci2
ni1

gcd(ni1,ni2) (mod ni/ni1), di ≡ ci1
ni2

gcd(ni1,ni2) (mod ni/ni2), and the

gi are determined by Equation 2.2.1 in Definition 2.2.1.

Step 4. Finally, using Lemma 3.3.17, Theorem 2.2.4, and the subsequent discussion on

the theory developed in [2, 30], we can obtain the hyperbolic structures that

realize 〈F ,G〉 as group of isometries.

In Table 3.1 at the end of this section, we give a complete classification of weak conju-

gacy classes of two-generator finite abelian subgroups of Mod(S3). Using the algorithm

described above, in Figures 3.5-3.7 below, we provide geometric realizations of the weak
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conjugacy classes of Z2 ⊕ Z4-actions in S.Nos 7, 9 and 17 (of Table 3.1). The pairs of

integers labeled in each figure are the pairs P[x], which correspond to cone points [x] in

the quotient orbifold O〈F〉.

(3, 4)

(3, 4)

(1, 4)

(1, 4)

(1, 2) (1, 2)

(1, 2) (1, 2)

π G

Figure 3.5: A realization of the action in S.No.7 of Table 3.1, with
DG = (2, 0; ((1, 2), 8)) and DF = (4, 0; ((1, 4), 2), ((3, 4), 2)). DF can be re-
alized as a 2-compatibility between two actions F ′ and F ′′, where DF ′ =
(4, 0; (1, 2), ((3, 4), 2)) and DF ′′ = (4, 0; (1, 2), ((1, 4), 2)). Note that F ′ and F ′′ are re-
alized rotations of the polygons PF ′ and PF ′′ described in Theorem 2.2.4.

π G

(3, 4) (3, 4)

(1, 4)

(1, 4)

(1, 2) (1, 2)

(1, 2)(1, 2)

Figure 3.6: A realization of the action in S.No.17 of Table 3.1, with DG =
(2, 2, 1; ) and DF = (4, 0; ((1, 4), 2), ((3, 4), 2)). Here, DF can be realized as a 2-
compatibility between two actions F ′ and F ′′ (realized as before), where DF ′ =
(4, 0; (1, 2), ((3, 4), 2)) and DF ′′ = (4, 0; (1, 2), ((1, 4), 2)).
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Chapter 3. Commuting conjugates of periodic mapping classes

π G

(1, 4) (1, 4)

(1, 2)

(1, 2) (1, 2) (1, 2)

(1, 2)

(1, 2)

(3, 4) (3, 4)(1, 4) (1, 4)

Figure 3.7: A realization of action in S.No.9 of Table 3.1, with DG = (2, 1; ((1, 2), 4))
and DF = (4, 0; ((1, 2), 3), ((1, 4), 2)). Here, DF can be realized by 1-compatibilities
of the two actions F ′ and F ′′ with F ′′′, where DF ′ = (4, 0; (1, 2), ((1, 4), 2)), DF ′′ =
(4, 0; (1, 2), ((1, 4), 2)), and DF ′′′ = (4, 0; (1, 2), ((3, 4), 2). Again F ′, F ′′ and F ′′′ are irre-
ducible Type 1 actions realized as rotations of polygons described in Theorem 2.2.4.

Note that the actions in S.Nos 19-26 in Table 3.1 have irreducible Type 1 cyclic actions

as one of their generators. As the structures realizing such cyclic actions are unique, by

Lemma 3.3.17, the abelian groups representing these weak conjugacy classes are realized

as isometry groups by a unique structure.
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S.No. Abelian Data Set Cyclic factors [DG;DF ]

1 (2 · 2, 1; [(1, 2), (0, 1), 2]2)∗ [(2, 1; ((1, 2), 4)); (2, 2, 1; )]

2 (2 · 2, 1; [(1, 2), (1, 2), 2]2) [(2, 2, 1; ); (2, 2, 1; )]

3 (2 · 2, 0; [(1, 2), (0, 1), 2]2, [(0, 1), (1, 2), 2]2, [(1, 2), (1, 2), 2]2) [(2, 1; ((1, 2), 4)); (2, 1; ((1, 2), 4))]

4 (2 · 2, 0; [(1, 2), (0, 1), 2]4, [(0, 1), (1, 2), 2]2) [(2, 0; ((1, 2), 8)); (2, 1; ((1, 2), 4))]

5 (2 · 2, 0; [(1, 2), (0, 1), 2]4, [(1, 2), (1, 2), 2]2) [(2, 0; ((1, 2), 8)); (2, 2, 1; )]

6 (2 · 2, 0; [(1, 2), (0, 1), 2]2, [(1, 2), (1, 2), 2]4) [(2, 1; ((1, 2), 4)); (2, 2, 1; )]

7 (2 · 4, 0; [(1, 2), (0, 1), 2]2, [(0, 1), (1, 4), 4], [(0, 1), (3, 4), 4]) [(2, 0; ((1, 2), 8)); (4, 0; ((1, 4), 2), ((3, 4), 2))]

8 (2 · 4, 0; [(1, 2), (0, 1), 2]2, [(1, 2), (1, 4), 4], [(1, 2), (3, 4), 4]) [(2, 0; ((1, 2), 8)); (4, 1; ((1, 2), 2))]

9 (2 · 4, 0; [(1, 2), (0, 1), 2], [(0, 1), (1, 2), 2], [(1, 2), (1, 4), 4], [(0, 1), (1, 4), 4]) [(2, 1; ((1, 2), 4)); (4, 0; ((1, 2), 3), ((1, 4), 2))]

10 (2 · 4, 0; [(1, 2), (0, 1), 2], [(0, 1), (1, 2), 2], [(1, 2), (3, 4), 4], [(0, 1), (3, 4), 4]) [(2, 1; ((1, 2), 4)); (4, 0; ((1, 2), 3), ((3, 4), 2))]

11 (2 · 4, 0; [(1, 2), (0, 1), 2], [(1, 2), (1, 2), 2], [(0, 1), (1, 4), 4]2) [(2, 1; ((1, 2), 4)); (4, 0; ((1, 4), 4))]

12 (2 · 4, 0; [(1, 2), (0, 1), 2], [(1, 2), (1, 2), 2], [(0, 1), (3, 4), 4]2) [(2, 1; ((1, 2), 4)); (4, 0; ((3, 4), 4))]

13 (2 · 4, 0; [(1, 2), (0, 1), 2], [(1, 2), (1, 2), 2], [(1, 2), (1, 4), 4]2) [(2, 1; ((1, 2), 4)); (4, 1; ((1, 2), 2))]

14 (2 · 4, 0; [(1, 2), (0, 1), 2], [(1, 2), (1, 2), 2], [(1, 2), (3, 4), 4]2) [(2, 1; ((1, 2), 4)); (4, 1; ((1, 2), 2))]

15 (2 · 4, 0; [(0, 1), (1, 2), 2], [(1, 2), (1, 2), 2], [(0, 1), (1, 4), 4], [(1, 2), (3, 4), 4]) [(2, 2, 1; ); (4, 0; ((1, 2), 3), ((1, 4), 2))]

16 (2 · 4, 0; [(0, 1), (1, 2), 2], [(1, 2), (1, 2), 2], [(0, 1), (3, 4), 4], [(1, 2), (1, 4), 4]) [(2, 2, 1; ); (4, 0; ((1, 2), 3), ((3, 4), 2))]

17 (2 · 4, 0; [(1, 2), (1, 2), 2]2, [(0, 1), (1, 4), 4], [(0, 1), (3, 4), 4]) [(2, 2, 1; ); (4, 0; ((1, 4), 2), ((3, 4), 2))]

18 (2 · 4, 0; [(1, 2), (1, 2), 2]2, [(1, 2), (3, 4), 4], [(1, 2), (1, 4), 4]) [(2, 2, 1; ); (4, 1; ((1, 2), 2))]

19 (2 · 8, 0; [(1, 2), (0, 1), 2], [(0, 1), (1, 8), 8], [(1, 2), (7, 8), 8]) [(2, 0; ((1, 2), 8)); (8, 0; (3, 4), ((1, 8), 2))]

20 (2 · 8, 0; [(1, 2), (0, 1), 2], [(0, 1), (3, 8), 8], [(1, 2), (5, 8), 8]) [(2, 0; ((1, 2), 8)); (8, 0; (1, 4), ((3, 8), 2))]

21 (2 · 8, 0; [(1, 2), (0, 1), 2], [(0, 1), (5, 8), 8], [(1, 2), (3, 8), 8]) [(2, 0; ((1, 2), 8)); (8, 0; (3, 4), ((5, 8), 2))]

22 (2 · 8, 0; [(1, 2), (0, 1), 2], [(0, 1), (7, 8), 8], [(1, 2), (1, 8), 8]) [(2, 0; ((1, 2), 8)); (8, 0; (1, 4), ((7, 8), 2))]

23 (2 · 8, 0; [(1, 2), (1, 2), 2], [(0, 1), (1, 8), 8], [(1, 2), (3, 8), 8]) [(2, 2, 1; ); (8, 0; (3, 4), ((1, 8), 2))]

24 (2 · 8, 0; [(1, 2), (1, 2), 2], [(0, 1), (3, 8), 8], [(1, 2), (1, 8), 8]) [(2, 2, 1; ); (8, 0; (1, 4), ((3, 8), 2))]

25 (2 · 8, 0; [(1, 2), (1, 2), 2], [(0, 1), (5, 8), 8], [(1, 2), (7, 8), 8]) [(2, 2, 1; ); (8, 0; (3, 4), ((5, 8), 2))]

26 (2 · 8, 0; [(1, 2), (1, 2), 2], [(0, 1), (7, 8), 8], [(1, 2), (5, 8), 8]) [(2, 2, 1; ); (8, 0; (1, 4), ((7, 8), 2))]

27 (4 · 4, 0; [(1, 4), (0, 1), 4], [(3, 4), (3, 4), 4], [(0, 1), (1, 4), 4]) [(4, 0; ((1, 4), 4)); (4, 0; ((1, 4), 4))]

28 (4 · 4, 0; [(1, 4), (0, 1), 4], [(3, 4), (1, 4), 4], [(0, 1), (3, 4), 4]) [(4, 0; ((1, 4), 4)); (4, 0; ((3, 4), 4))]

29 (4 · 4, 0; [(1, 4), (0, 1), 4], [(1, 4), (1, 4), 4], [(1, 2), (3, 4), 4]) [(4, 0; ((1, 4), 4)); (4, 1; ((1, 2), 2))]

30 (4 · 4, 0; [(1, 4), (0, 1), 4], [(1, 4), (3, 4), 4], [(1, 2), (1, 4), 4]) [(4, 0; ((1, 4), 4)); (4, 1; ((1, 2), 2))]

31 (4 · 4, 0; [(3, 4), (0, 1), 4], [(0, 1), (3, 4), 4], [(1, 4), (1, 4), 4]) [(4, 0; ((3, 4), 4)); (4, 0; ((3, 4), 4))]

32 (4 · 4, 0; [(3, 4), (0, 1), 4], [(1, 2), (1, 4), 4], [(3, 4), (3, 4), 4]) [(4, 0; ((3, 4), 4)); (4, 1; ((1, 2), 2))]

33 (4 · 4, 0; [(3, 4), (0, 1), 4], [(3, 4), (1, 4), 4], [(1, 2), (3, 4), 4]) [(4, 0; ((3, 4), 4)); (4, 1; ((1, 2), 2))]

34 (4 · 4, 0; [(1, 2), (1, 4), 4], [(3, 4), (1, 4), 4], [(3, 4), (1, 2), 4]) [(4, 1; ((1, 2), 2)); (4, 1; ((1, 2), 2))]

35 (4 · 4, 0; [(1, 2), (3, 4), 4], [(3, 4), (1, 2), 4], [(3, 4), (3, 4), 4]) [(4, 1; ((1, 2), 2)); (4, 1; ((1, 2), 2))]

36 (4 · 4, 0; [(1, 4), (1, 4), 4], [(1, 4), (1, 2), 4], [(1, 2), (1, 4), 4]) [(4, 1; ((1, 2), 2)); (4, 1; ((1, 2), 2))]

Table 3.1: The weak conjugacy classes of two-generator finite abelian subgroups of
Mod(S3). (*The suffix refers to the multiplicity of the tuple in the abelian data set.)
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CHAPTER 4

REPRESENTING PERIODIC MAPPING

CLASSES AS WORDS IN DEHN TWISTS

In this chapter, depending on the nature of periodic mapping class F ∈ Mod(Sg), we will

use the concepts introduced in Chapter 2 and Section 4.1 to develop various methods for

writing F as a word W(F ) in Dehn twists (up to conjugacy), Consequently, we answer

Question 2 (from Section 1.1) in the affirmative.

4.1 Relations involving Dehn twists

Let i(c, d) denote the geometric intersection number of simple closed curves c and d in

Sg. A collection C = {c1, . . . , ck} of simple closed curves in Sg is said to form a chain if

i(ci, ci+1) = 1, for 1 ≤ i ≤ k − 1, and i(ci, cj) = 0, if |i − j| > 1. We state the following

basic fact [9, Section 1.2] about chains.

Lemma 4.1.1. For g ≥ 1, there is a unique chain in Sg of size 2g, up to homeomorphism.

Moreover, when g > 1, there is a unique chain in Sg of size 2g+1, up to homeomorphism.

A closed regular neighborhood of the union of curves in C is a subsurface S of Sg that

has one or two boundary components, depending on whether k is even or odd. Let the

isotopy classes of ∂S be represented by the curves d (resp. d1, d2) when k is even (resp.

odd). Let Tc denote the left-handed Dehn twist about a simple closed curve c in Sg. We

will make extensive use of the well known chain relation involving Dehn twists.

Proposition 4.1.2 (Chain relation). Let C = {c1, . . . , ck} be a chain in Sg. Then:

(Tc1Tc2 . . . Tck)2k+2 = Td, when k is even, and

(Tc1Tc2 . . . Tck)k+1 = Td1Td2 , when k is odd.
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Equivalently, we have

(T 2
c1Tc2 . . . Tck)2k = Td, when k is even, and

(T 2
c1Tc2 . . . Tck)k = Td1Td2 , when k is odd.

In each case of Proposition 4.1.2, we will denote the word enclosed within the parenthesis

on the left hand side by WC. Note that for all 1 < i < k, WC(ci) = ci+1. We will also

use the following relations also known as the hyperelliptic relations (see [9, Chapter 5])

in Mod(Sg), for g ≥ 2.

Proposition 4.1.3. For g ≥ 2, let {c1, . . . , c2g+1} be a chain in Sg. Then:

(Tc2g+1 . . . Tc1Tc1 . . . Tc2g+1)2 = 1, and

[
Tc2g+1 . . . Tc1Tc1 . . . Tc2g+1 , Tc2g+1

]
= 1,

where Tc2g+1 . . . Tc1Tc1 . . . Tc2g+1 represents the conjugacy class of the standard hyperelliptic

involution in Mod(Sg) encoded by (2, 0; ((1, 2), 2g + 2)).

Let c1, c2, c3, d1, d2, d3, and b be the curves in S3
1 , as indicated in Figure 4.1 below. We

b

c1

c2

c3

d1

d2

d3

Figure 4.1: The curves involved in the star relation in Mod(S3
1).

will use the following relation in Mod(S3
1) due to Gervais [10], also known as the star

relation, to develop a method for writing periodic mapping classes of order 3 as words in

Dehn twists.
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Proposition 4.1.4 (Star relation). Let c1, c2, c3, d1, d2, d3, and b be the curves in S3
1 , as

indicated in Figure 4.1. Then:

(Tc1Tc2Tc3Tb)3 = Td1Td2Td3 .

In Section 4.5, we will derive a generalization of this relation, which we will apply to

develop a method for obtaining the word representations for a larger family of periodic

maps. The final result we state in this subsection pertains to the Burkhardt handle swap

map [5, 24], which swaps the "ith handle" in Sg (for g ≥ 2) with the "(i+ 1)st handle".

Proposition 4.1.5. For g ≥ 2, let a1, b1, . . . , ag, bg be the curves that represent the stan-

dard generators of H1(Sg,Z). Then for 1 ≤ i ≤ g − 1, the ith handle swap map is given

by

Hi+1,i := (Tai+1Tbi+1TxiTaiTbi)3,

where xi is a carefully chosen simple closed curve that represents the homology class

ai+1 + bi.

4.2 Periodic maps on the torus as words in Dehn twists

Since Mod(S1) ∼= SL(2,Z) = Z4 ∗Z2 Z6, any nontrivial periodic element in Mod(S1) is of

order 2, 3, 4, or 6. Moreover, since {a, b} (as indicated in Figure 4.2 below) is a chain

in S1, it follows by Proposition 4.1.2 that TaTb is of order 6, and T 2
aTb is of order 4 in

Mod(S1). Note that TaTb (resp. T 2
aTb) is represented by a rotation of a regular hexagon

(resp. square) with opposite sides identified, by 2π/6 (resp. π/2).

Figure 4.2: A chain in the torus.

Taking the powers of these maps, we obtain a word W(F ) (in Dehn twists) representing

the conjugacy class of each periodic element F ∈ Mod(S1).
48



4.3. Rotational mapping classes as words in Dehn twists

|F | DF W(F )

6 (6, 0; (1, 2), (1, 3), (1, 6)) TaTb

6 (6, 0; (1, 2), (2, 3), (5, 6)) (TaTb)5

4 (4, 0; (1, 2), (1, 4), (1, 4)) T 2
aTb

4 (4, 0; (1, 2), (3, 4), (3, 4)) (T 2
aTb)3

3 (3, 0; (1, 3), (1, 3), (1, 3)) (TaTb)2

3 (3, 0; (2, 3), (2, 3), (2, 3)) (TaTb)4

2 (2, 0; ((1, 2), 4)) (TaTb)3

Table 4.1: Words (in Dehn twists) representing the conjugacy classes of periodic ele-
ments in Mod(S1).

4.3 Rotational mapping classes as words in Dehn twists

In this section, we will provide a method for writing rotational mapping classes as prod-

ucts of Dehn twists. The key idea is to write given rotational mapping class as a product

of two involutions, whose representations (as words) will be discussed in the following

subsection.

4.3.1 Non-free involutions as words in Dehn twists

By Proposition 2.2.3, given an arbitrary involution F ∈ Mod(Sg), DF has one of the

following forms:

(2, g0; ((1, 2), 2k)) or (2, (g + 1)/2, 1; ),

depending on whether F is non-free or free. First, we consider the cases g = 1, 2, where

there are three possible conjugacy classes of involutions.

(a) The hyperelliptic involution in Mod(S1): (2, 0; ((1, 2), 4)).

(b) The hyperelliptic involution in Mod(S2): (2, 0; ((1, 2), 6)).

(c) The rotation of S2 with two fixed points: (2, 1; ((1, 2), 2)).

The word representation for the involution in (a) was featured in Table 4.1, while the word
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Chapter 4. Representing periodic mapping classes as words in Dehn twists

for (b), the hyperelliptic involution, is known from Proposition 4.1.3. Since (c) swaps the

two genera of S2, it is the map H2,1 from Propostion 4.1.5. We will collectively call these

involutions the fundamental involutions. We will show that an arbitrary involution can

be obtained by piecing together the fundamental involutions via 1-compatibilities. We

will require the following lemmas, which are simple consequences of Proposition 4.1.2.

Lemma 4.3.1. Let H2,1 be the restriction of H2,1 on S2
2 . Then,

H2,1
2 = Td1Td2 ,

where d1, d2 are the boundary curves of S2
2 as shown in Figure 4.3 below.

d1

d2 b2a2a1b1

x1

c1

Figure 4.3: The boundary curves d1, d2 in S2
2 .

Lemma 4.3.2. Let a, b, a′, d1, d2 be the curves in S2
1 as indicated in the Figure 4.4 below.

Then

a′

a b

d2d1

Figure 4.4: The curves a, b, a′, d1, d2 in S2
1 .

(TaTbTa′)4 = Td1Td2 .

We will now provide an algorithm for writing involutions as words in the Dehn twists.

Algorithm 4.3.3. Let F ∈ Mod(Sg) be a non-free involution with DF = ((2, g0; ((1, 2), 2k))

(by virtue of Lemma 2.2.3).

Step 1. If k = 1, then:
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4.3. Rotational mapping classes as words in Dehn twists

Figure 4.5: Decomposition of F for k = 1 into fundamental involutions.

Step 1a. We decompose F into fundamental involutions as shown in the Figure 4.5.

Step 1b. We set

W(F ) =
g0∏
i=1

(H2i,2i−1)(−1)i−1
.

Step 2. If k > 1, then:

Step 2a. We decompose F into fundamental involutions as shown in the Fig-

ure 4.6.

Figure 4.6: Decomposition of F for k > 1 into fundamental involutions.

Step 2b. We set

W(F ) =
g0∏
i=1

(H2i,2i−1)(−1)i−1
g∏

j=2g0+1
(TajTbjTa′j)

2(−1)j+g0−1
,

Step 3. By Proposition 4.1.5 and Lemmas 4.3.1-4.3.2,W(F ) is the desired representation

of F as a word in Dehn twists, up to conjugacy.

We apply above algorithm to get the word (upto conjugacy) of involutions in Mod(S4).

Example 4.3.4. Up to conjugacy there are three distinct involutions Fi, 1 ≤ i ≤ 3, in

Mod(S4) with
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Chapter 4. Representing periodic mapping classes as words in Dehn twists

F1

F2

F3

Figure 4.7: Realization of involutions in Mod(S4)

(i) DF1 = (2, 2; ((1, 2), 2))

(ii) DF2 = (2, 1; ((1, 2), 6))

(iii) DF3 = (2, 0; ((1, 2), 10))

The realizations of these involutions are given in Figure 4.7. By applying Algorithm 4.3.3,

we can compute W(Fi).

(i) W(F1) = (Ta2Tb2Tx1Ta1Tb1)3(Ta4Tb4Tx3Ta3Tb3)−3

(ii) W(F2) = (Ta2Tb2Tx1Ta1Tb1)3(Ta3Tb3Ta′3)−2(Ta4Tb4Ta′4)2

(iii) W(F3) = (Ta1Tb1Ta′1)2(Ta2Tb2Ta′2)−2(Ta3Tb3Ta′3)2(Ta4Tb4Ta′4)−2

It may be noted that in W(F2), a4 and a′4 are the isotopic curves. Similarly, in W(F3),

a1 is isotopic to a′1 and a4 is isotopic to a′4.

A simple computation reveals that in general, Algorithm 4.3.3 will express an arbitrary

non-free involution (up to conjugacy) as a word in 3g−2 + bg/2c Dehn twists about non-

separating curves. However, it is important to note each application of Algorithm 4.3.5

may involve up to 3g − 2 +
(
g
2

)
(distinct) Dehn twists about nonseparating curves.

4.3.2 Surface rotations as words in Dehn twists

For g ≥ 2, any rotation of Sg (that is free or non-free) of order n ≥ 2 can be written as a

product of two involutions, as illustrated in Figure 4.8 below. This leads to the following

method for writing surface rotations as words in Dehn twists.
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Figure 4.8: A surface rotation as a product of two involutions.

Algorithm 4.3.5. Let F ∈ Mod(Sg) be realized either as a rotation F of order n > 2 or

as a free involution. Then by Proposition 2.2.3, DF has the form

(n, g0; (s, n), (n− s, n), . . . , (s, n), (n− s, n)︸ ︷︷ ︸
k pairs

) or (n, g − 1
n

+ 1, r; ),

depending on whether F is free rotation or not.

Step 1. Consider an embedding of Sg in R3, as indicated in Figure 4.8, with the under-

standing that there is a "genus in the middle", only when F is free.

Step 2. For i = 1, 2, let the reflection along the axis Xi (as shown in the figure) be

Θi, where Θi is a non-free involution determined by Algorithm 4.3.3. We set

Rg = Θ1 ·Θ2.

Step 3. If F is free, then we set W(F ) = R(g−1)r/n
g , else we set W(F ) = R

gs−1
n

g .

Step 4. W(F ) is the desired representation of F as a word in Dehn twists, up to conju-

gacy.

4.4 Chain method

In this section, we provide a method by which one can write certain periodic mapping

classes as words in Dehn twists by repeated application of the chain relation. The key

idea is to decompose certain periodic mapping classes into components that are realized

as powers of irreducible Type 1 actions that are representable (as words) using the chain

relation. Let F ∈ Mod(Sg) be an irreducible Type 1 mapping class. Let F ∈ Mod(Sg) be
53



Chapter 4. Representing periodic mapping classes as words in Dehn twists

of order n, and let (1, n) be a pair inDF representing a fixed point of the 〈F〉-action on Sg.

Now consider the mapping class Fm, for some integer 1 ≤ m ≤ |F |. Then in DFm , there

exists a pair (c′, n′) (representing a fixed point of the 〈Fm〉-action on Sg) that originated

from the pair (1, n) such that n′ = |Fm| = n/ gcd(m,n) and (c′)−1 ≡ m/ gcd(m,n)

(mod n′). We will denote this pair (c′, n′) in DFm by (1, n)m,F .

Definition 4.4.1. Let F ∈ Mod(Sg) be realizable as a linear s-tuple (F1, . . . , Fs) of

degree n and genus g as in Definition 2.2.7. Then F is said to be chain-realizable if F

admits a realization as a linear s-tuple (F1, . . . , Fs) of genus g such that the following

conditions hold.

(i) For 1 ≤ i ≤ s, there exists an irreducible Type 1 mapping class F̃i ∈ Mod(Sgi), a

filling chain C(F̃i) in Sgi , and an mi ≥ 1 such that Fi is conjugate to (WC(F̃i))
mi .

Then:

(a) For each i, DF̃i
has one of the following forms on Sgi

1. (2gi + 1, 0; (2gi − 1, 2gi + 1), (1, 2gi + 1), (1, 2gi + 1))

2. (2gi + 2, 0; (gi, gi + 1), (1, 2gi + 2), (1, 2gi + 2)),

3. (4gi, 0; (1, 2), (1, 4gi), (2gi − 1, 4gi)),

4. (4gi + 2, 0; (1, 2), (gi, 2gi + 1), (1, 4gi + 2))

(b) For 1 ≤ i ≤ s − 1, ki = 1, and for each pair (Fi, Fi+1), the 1-compatibility

is across a pair of fixed points represented by pairs of the form (ci, n) (in

DFi) and (n − ci, n) (in DFi+1), where (ci, n) = (1, |F̃i|)mi,F̃i and (n − ci, n) =

(1, |F̃i+1|)mi+1,F̃i+1
.

Definition 4.4.2. A periodic mapping class G ∈ Mod(Sg) is said to be chain-realizable

if there exists a chain-realizable linear s-tuple F ∈ Mod(Sg) and a nonzero integer q such

that G = F q.

Given c ∈ Z×n , we will fix the following notation.

(a) c+ = c(+1) := {d ∈ Z : cd ≡ 1 (mod n)} ∩ [0, n].

(b) c− = c(−1) := {d ∈ Z : cd ≡ 1 (mod n)} ∩ [−n, 0].
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Lemma 4.4.3. Let F ∈ Mod(Sg) be realizable as a chain-realizable s-tuple of degree n and

genus g as in Definition 4.4.1. For all i, let W(Fi) = (WC(F̃i))
βic̄i, where c̄i = ci((−1)i+1)

and βi = |F̃i|
|Fi| . Then:

W(F ) =
s∏
i=1
W(Fi)

is conjugate to F .

Proof. By Proposition 4.1.2, for each i, ((WC(F̃i))
βic̄i)|Fi| equals either (Td1Td2)c̄i or (Td1)c̄i ,

depending upon whether |C(F̃i)| is odd or even. Thus, c̄i measures the amount of twisting

along the boundary of a closed neighborhood of the chain C(F̃i). Thus, by Construc-

tion 2.2.6 and Definition 4.4.1, we have that W(F ) is conjugate of F . Finally, since

W(Fi) commutes with W(Fj) for all 1 ≤ i, j ≤ s, we have

(W(F ))n = (
s∏
i=1
W(Fi))n =

s∏
i=1
W(Fi)n =

s∏
i=1

(Tdi1Tdi2)c̄i = 1,

where di2 is taken to be the trivial curve when i = 1, s.

We will now provide an algorithm for representing a chain-realizable periodic mapping

classes as words in Dehn twists.

Algorithm 4.4.4 (Chain method). Let G ∈ Mod(Sg) be a chain-realizable periodic map-

ping class.

Step 1. Write G = F q, where F is a compatible chain-realizable s-tuple (F1, . . . , Fs) of

degree n and genus g as in Definition 4.4.1.

Step 2. Set W(Fi) = (WC(F̃i))
βic̄i, where c̄i = ci((−1)i+1), and set

W(F ) =
s∏
i=1
W(Fi).

Step 3. By Lemma 4.4.3, W(G) = W(F )q is the desired representation of G as a word

in Dehn twists, up to conjugacy.

Example 4.4.5. For i = 1, 2, consider the order 6 mapping classes Fi ∈ Mod(S1) with

DF1 = (6, 0; (1, 2), (1, 3), (1, 6)) and DF2 = (6, 0; (1, 2), (2, 3), (5, 6)). The Fi admit a 1-

compatibility along a pair of compatible fixed points that correspond to the pairs (1, 6)

and (5, 6) in the DFi where the induced rotation angles are 2π/6 and 10π/6, respectively.
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This 1-compatibility yields an F = (F1, F2) ∈ Mod(S2) withDF = (6, 0; (1, 2), (1, 2), (1, 3),

(2, 3)). If C(F1) = {a1, b1} and C(F2) = {a2, b2}, then by Table 4.1 and Algorithm 4.4.4,

F is represented up to conjugacy by the word

W(F ) = (Ta1Tb1)(Ta2Tb2)−1.

4.4.1 Periodic maps on S2 as words in Dehn twists

Let a1, b1, c1, a2, b2, and x1 be curves in S2, as indicated in Figure 4.9 below.

c1

x1a1 a2b1 b2

Figure 4.9: Curves a1, b1, c1, a2, b2, and x1 in S2.

Using Algorithms 4.3.3 and 4.4.4, in Table 4.2 below, we provide a word W(F ) (in Dehn

twists) representing the conjugacy class of each periodic element F ∈ Mod(S2).

4.5 Generalized star method

In this section, we first derive a generalization of Proposition 4.1.4 for g ≥ 2. Using this

result, we will develop a method to represent a much larger family of periodic mapping

classes as words in Dehn twists, as compared with the chain method. As we will see, this

family will also encompass the family of periodics described in Definition 4.4.1. Let

a′1, a1, . . . ag, b1, . . . , bg, c1, . . . , cg−1, d1, d2, and d3

be the isotopy classes of the simple closed curves in S3
g , as shown in Figure 4.10 below.

Note that the curves a1 and a′1 are isotopic in the surface (≈ S2
g ) obtained by capping off

the boundary curve d2. Further, we consider the surface S2
g obtained by capping off the

boundary curve d3. We have the following generalization of the star relation, which is due

to Salter [37] (for three boundary components) and Matsumoto [25] (for two boundary

components). However, we provide an alternative proof of this result using the Alexander
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|F | DF W(F ) Algorithm

10 (10, 0; (1, 2), (2, 5), (1, 10)) (Ta1Tb1Tc1Tb2) 4.4.4

10 (10, 0; (1, 2), (1, 5), (3, 10)) (Ta1Tb1Tc1Tb2)7 4.4.4

10 (10, 0; (1, 2), (4, 5), (7, 10)) (Ta1Tb1Tc1Tb2)3 4.4.4

10 (10, 0; (1, 2), (3, 5), (9, 10)) (Ta1Tb1Tc1Tb2)9 4.4.4

8 (8, 0; (1, 2), (1, 8), (3, 8)) T 2
a1Tb1Tc1Tb2 4.4.4

8 (8, 0; (1, 2), (5, 8), (7, 8)) (T 2
a1Tb1Tc1Tb2)5 4.4.4

6 (6, 0; ((1, 2), 2), (1, 3), (2, 3)) (Ta1Tb1)(Ta2Tb2)−1 4.4.4

6 (6, 0; (2, 3), (1, 6), (1, 6)) (Ta1Tb1Tc1Tb2Ta2) 4.4.4

6 (6, 0; (1, 3), (5, 6), (5, 6)) (Ta1Tb1Tc1Tb2Ta2)5 4.4.4

5 (5, 0; ((1, 5), 2), (3, 5)) (T 2
a1Tb1Tc1Tb2Ta2) 4.4.4

5 (5, 0; ((2, 5), 2), (1, 5)) (T 2
a1Tb1Tc1Tb2Ta2)3 4.4.4

5 (5, 0; ((3, 5), 2), (4, 5)) (T 2
a1Tb1Tc1Tb2Ta2)2 4.4.4

5 (5, 0; ((4, 5), 2), (2, 5)) (T 2
a1Tb1Tc1Tb2Ta2)4 4.4.4

4 (4, 0; ((1, 2), 2), (1, 4), (3, 4)) (Ta1Tb1Ta1)(Ta2Tb2Ta2)−1 4.4.4

3 (3, 0; ((1, 3), 2), ((2, 3), 2) (Ta1Tb1)2(Ta2Tb2)−2 4.4.4

2 (2, 0; ((1, 2), 6)) (Ta1Tb1Ta1)2(Ta2Tb2Ta2)−2 4.3.3

2 (2, 1; (1, 2), (1, 2)) (Ta2Tb2Tx1Ta1Tb1)3 4.3.3

Table 4.2: Words (in Dehn twists) representing the conjugacy classes of periodic ele-
ments in Mod(S2).
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a1

a′1

ag
b1

a2

b2

c1 c2
d2

d1

d3

Figure 4.10: The curves S3
g involved in the generalized star relation.

method.

Theorem 4.5.1 (Generalized star relation). For g ≥ 2 and k = 2, 3, the following

relations hold in Mod(Skg ).

(i) When k = 2, we have:

(Ta1Ta′1

g−1∏
i=1

(TbiTci)Tbg)4g = T
(2g−1)+

d2 Td1 ,

where 2g − 1 ∈ Z×4g.

(ii) When k = 3, we have:

(Ta1Ta′1

g−1∏
i=1

(TbiTci)TbgTag)2g+1 = T
(2g−1)+

d2 Td1Td3 ,

where 2g − 1 ∈ Z×2g+1.

Proof. To prove the result, we will use the well known Alexander method (see [9, Propo-

sition 2.8]). For simplicity, we will only consider the case when g = 2, as our arguments

easily generalize for g > 2. We provide our proofs for k = 2 and k = 3 through a series

of pictures shown in Figures 4.12-4.13 below. The filling we consider (for the application

of the Alexander method) is indicated in Figure 4.11.

Figure 4.11: Fillings of S2
2 , S

3
2 under consideration.

58



4.5. Generalized star method

Figure 4.12: Proof of the generalized star relation in Mod(S2
2).

Figure 4.13: Proof of the generalized star relation in Mod(S3
2).

Clearly, Theorem 4.5.1 is a generalization of Proposition 4.1.4. Moreover, by capping the

boundary curve d2, we can also recover Proposition 4.1.2. Following the notation from

Section 4.4, we will now introduce a family of periodic mapping classes for which we will

develop a method (of deriving W(F )) using Theorem 4.5.1.

Definition 4.5.2. Let F ∈ Mod(Sg) be realizable as a linear s-tuple (F1, . . . , Fs) of

degree n and genus g as in Definition 2.2.7. Then F is said to be star-realizable if F

admits a realization as a linear s-tuple (F1, . . . , Fs) of genus g such that the following

conditions hold.

(i) For 1 ≤ i ≤ s, there exists an irreducible Type 1 mapping class F̃i ∈ Mod(Sgi), a

filling chain C(F̃i) in Sgi , and an mi ≥ 1 such that Fi is conjugate to (WC(F̃i))
mi .

Then:

(a) For each i, DF̃i
has one of the following forms on Sgi

1. (2gi + 2, 0; (gi, gi + 1), (1, 2gi + 2), (1, 2gi + 2)),
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2. (4gi, 0; (1, 2), (1, 4gi), (2gi − 1, 4gi)),

3. (4gi + 2, 0; (1, 2), (gi, 2gi + 1), (1, 4gi + 2))

4. (2gi + 1, 0; (2gi − 1, 2gi + 1), (1, 2gi + 1), (1, 2gi + 1))

(b) For 1 ≤ i ≤ s − 1, ki = 1, and for each pair (Fi, Fi+1), the 1-compatibility is

across a pair of fixed points represented by pairs of the form (ci, n) (in DFi) and

(n− ci, n) (in DFi+1), where (ci, n) ∈ {(1, |F̃i|)mi,F̃i , (|F̃i|/2−1, |F̃i|)mi,F̃i , (|F̃i|−

2, |F̃i|)mi,F̃i} and (n− ci, n) ∈ {(1, |F̃i+1|)mi+1,F̃i+1
, (|F̃i+1|/2− 1, |F̃i+1|)mi+1,F̃i+1

,

(|F̃i+1| − 2, |F̃i+1|)mi+1,F̃i+1
}.

We will now fix the following notation:

Wj :=



Ta1

∏g−1
i=1 (TbiTci)Tbg , if j = 4g + 2,

Ta1Ta′1
∏g−1
i=1 (TbiTci)Tbg , if j = 4g,

Ta1

∏g−1
i=1 (TbiTci)TbgTag , if j = 2g + 2, and

Ta1Ta′1
∏g−1
i=1 (TbiTci)TbgTag , if j = 2g + 1,

where

DWj
=



(4g + 2, 0; (1, 2), (g, 2g + 1), (1, 4g + 2)), if j = 4g + 2,

(4g, 0; (1, 2), (1, 4g), (2g − 1, 4g)), if j = 4g,

(2g + 2, 0; (g, g + 1), (1, 2g + 2), (1, 2g + 2)), if j = 2g + 2, and

(2g + 1, 0; (1, 2g + 1), (1, 2g + 1), (2g − 1, 2g + 1)), if j = 2g + 1.

Let di denote the boundary curve of Σi involved in the 1-compatibility of Fi with Fi+1,

and let γi represent the isotopy class of di in Sg after the compatibility. Let c+ denote

the unique integer in [0, n] representing the multiplicative inverse of c ∈ Z×n . We further
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4.5. Generalized star method

fix the following notation.

µ1,i = mi

gcd(mi, |F̃i|)
, if (ci, n) = (1, |F̃i|)mi,F̃i ,

µ2,i = mi

gcd(mi, |F̃i|)
(|F̃i|/2− 1)+, if (ci, n) = (|F̃i|/2− 1, |F̃i|)mi,F̃i , and

µ3,i = mi

gcd(mi, |F̃i|)
(|F̃i| − 2)+, if (ci, n) = (|F̃i| − 2, |F̃i|)mi,F̃i .

By our notation, for each i, there exists a unique zi ∈ {1, 2, 3} such that we have ci = µ−1
zi,i

(mod n), and since ci + ci+1 ≡ 0 (mod n), we have µzi,i + µzi+1,i+1 ≡ 0 (mod n). With

this notation in place, we have the following lemma, which provides a word W(F ) in

Dehn twists that represents the conjugacy class of a star-realizable linear s-tuple F .

Lemma 4.5.3. Let F ∈ Mod(Sg) be a star-realizable linear s-tuple of degree n as in

Definition 4.5.2. For all i, let W(Fi) = (W|F̃i|)
mi. Then:

W(F ) =
(

s∏
i=1
W(Fi)

)
s−1∏
i=1

(Tγi)−ηi ,

where, ηi = µzi,i + µzi+1,i+1

n
, is conjugate to F .

Proof. Since W(Fi) commutes with W(Fj) for 1 ≤ i, j ≤ s, we have

(
s∏
i=1
W(Fi))n =

s∏
i=1

(W(Fi))n.

Since W(Fi) = (W|F̃i|)
mi , the fact that

(ci, n) ∈ {(1, |F̃i|)mi,F̃i , (|F̃i|/2− 1, |F̃i|)mi,F̃i , (|F̃i| − 2, |F̃i|)mi,F̃i}

implies that
s∏
i=1

(W(Fi))n =
s∏
i=1

((W|F̃i|)
|F̃i|)

mi
gcd(mi,|F̃i|) .

By Theorem 4.5.1, depending on |F̃i| and DF̃i
, (W|F̃i|)

|F̃i| one of:

Td1 , Td1T
(|F̃i|/2−1)+

d2 , or Td1T
(|F̃i|−2)+

d2 Td3 .
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By the definition of µzi,i, we have

(
s∏
i=1
W(Fi))n =

s∏
i=1

(W(Fi))n =
s−1∏
i=1

(
T
µzi,i+µzi+1,i+1
γi

)
(*)

As each Tγi commutes with every other Dehn twist appearing in (∗) and µzi,i+µzi+1,i+1 ≡ 0

(mod n), we get

W(F )n =
((

s∏
i=1
W(Fi)

)
s−1∏
i=1

(Tγi)−ηi
)n

=
(

s∏
i=1
W(Fi)

)n s−1∏
i=1

(Tγi)−ηin = 1,

from which the assertion follows.

We will describe an algorithm to write a star-realizable linear s-tuple F ∈ Mod(Sg) as a

word in Dehn twists (up to conjugacy).

Algorithm 4.5.4. Let F ∈ Mod(Sg) be a star-realizable linear s-tuple of degree n and

genus g.

Step 1. Write F = (F1, . . . , Fs) as in Definition 4.5.2.

Step 2. For each i, we set W(Fi) = Wmi
|F̃i|

, after appropriately relabeling the curves in Σi

in order to ensure consistency with the (assumed) labeling in Theorem 4.5.1.

Step 3. Set

W(F ) =
(

s∏
i=1
W(Fi)

)
s−1∏
i=1

(Tγi)−ηi .

Step 4. By Lemma 4.5.3, W(F ) is the desired representation of F as a word in Dehn

twists, up to conjugacy.

The method described in Algorithm 4.5.4 can be generalized to certain types of (F, T )-

tuples.

Definition 4.5.5. A compatible (F, T )-tuple as in Definition 2.2.11 is said to be star-

realizable if the following conditions hold.

(i) v = w = 0.

(ii) F is star-realizable.

(iii) For 1 ≤ q ≤ u, kq = 1
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(iv) For 1 ≤ q ≤ u, suppose the self 1-compatibility in Fiq ,jq is along fix points repre-

sented by (ciq , n) (in DFiq
) and (n− ciq , n) (in DFjq

), then

(ciq , n) ∈ {(1, |F̃iq |)miq ,F̃iq , (|F̃iq |/2− 1, |F̃iq |)miq ,F̃iq , (|F̃iq | − 2, |F̃iq |)miq ,F̃iq}

and

(n− ciq , n) ∈ {(1, |F̃jq |)mjq ,F̃jq , (|F̃jq |/2− 1, |F̃jq |)mjq ,F̃jq , (|F̃jq | − 2, |F̃jq |)mjq ,F̃jq}.

Definition 4.5.6. A periodic mapping class G ∈ Mod(Sg) is said to be star-realizable

if there exists a star-realizable compatible (F, T )-tuple FT ∈ Mod(Sg) and a nonzero

integer m such that G = Fm
T .

We will now extend Algorithm 4.5.4 to this broader class of periodic mapping classes.

While doing so, we will retain the notation for γi and ηi, for 1 ≤ i ≤ s (for F ) from Algo-

rithm 4.5.4. To further simplify notation, we will denote the additional curves involved

in the additional 1-self compatibilities (of FT ) by {γj}u+s−1
j=s and also extend the earlier

definition of ηj to s ≤ j ≤ u+ s− 1.

Algorithm 4.5.7. Let G ∈ Mod(Sg) be a star-realizable periodic mapping class.

Step 1. Write G = Fm
T , where FT is a compatible (F, T )-tuple as in Definition 2.2.11.

Step 2. By Algorithm 4.5.4, we obtain

W(F ) =
(

s∏
i=1
W(Fi)

)
s−1∏
i=1

(Tγi)−ηi .

Step 3. We set

W(FT ) =W(F )
u+s−1∏
i=s

(Tγi)−ηi .

Step 4. By the same arguments from Lemma 4.5.3, (W(FT ))m is the desired representa-

tion of G as a word in Dehn twists (after an appropriate relabeling of curves to

ensure consistency with Theorem 4.5.1).

We will now give three examples to demonstrate the application of Algorithms 4.5.4 and

4.5.7.
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Example 4.5.8. Consider an F ∈ Mod(S7) with

DF = (6, 0; ((1, 2), 2), (1, 3), (2, 3), (1, 6), (5, 6)).

Then F is a star-realizable linear 3-tuple (F1, F2, F3), where

DF1 = (6, 0; ((1, 2), 2), (1, 6), (5, 6)) with g1(DF1) = 3

DF2 = (6, 0; (1, 3), (5, 6), (5, 6)) with g2(DF2) = 2, and

DF3 = (6, 0; (2, 3), (1, 6), (1, 6)) with g3(DF3) = 2.

Note that the 1-compatibility of F1 with F2 is along fixed points represented by the pairs

(1, 6) (in DF1) and (5, 6) (in DF2), while the compatibility of F2 with F3 is along the pairs

(5, 6) (in DF2) and (1, 6) (in DF3). By Algorithm 4.5.4, we have W(F1) = W 2
4·3,W(F2) =

W 5
2·2+2,W(F3) = W2·2+2, and η1 = 1 = η2. Therefore, we have

W(F ) = (T 2
a1Tb1Tc1Tb2Tc2Tb3)2(Ta4Tb4Tc4Tb5Ta′5)5(Ta6Tb6Tc6Tb7Ta7)(Tγ1Tγ2)−1.

Example 4.5.9. Consider a periodic mapping class G ∈ Mod(Sg) with DG = (2g −

2, 1; (1, 2), (1, 2)). Then G is a star-realizable mapping class FT , where T = (1, 1, 0, 0)

and F = (F1) with DF1 = (2g − 2, 0; (1, 2), (1, 2), (1, 2g − 2), (2g − 3, 2g − 2)) and g1 =

g(DF1) = g − 1. Note that the self 1-compatibility of F is along a pair of fixed points

of the 〈F〉-action represented by the pairs (1, 2g − 2) and (2g − 3, 2g − 2) (in DF1). By

Algorithm 4.5.7, we have W(F1) = W 2
4g1 , and so

W(G) = (Ta2

g−1∏
i=1

(TciTbi+1))2T−1
a1 ,

where we have relabeled γ1 as a1, and a′1 as c1, so as to ensure consistency with Theo-

rem 4.5.1.

Example 4.5.10. Consider a periodic mapping class F ∈ Mod(S10) withDF = (7, 1; (1, 7),

(3, 7), (3, 7)). Then F is star-realizable linear 2-tuple (F1, F2), whereDF1 = (7, 1; (3, 7), (4, 7))

with g1 = g(DF1) = 7 and DF2 = (7, 0; (1, 7), (3, 7), (3, 7)) with g2 = g(DF2) = 3. Note
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that F1 is a rotational mapping class, and the 1-compatibility of F1 with F2 is along

fixed points represented by the pairs (4, 7) (in DF1) and (3, 7) (in DF2). Following Algo-

rithm 4.5.4, we have W(F1) = W 8
4·7, W(F2) = W 5

2·3+1, and η1 = 1. Consequently,

W(F ) = (T 2
a1

6∏
i=1

(TbiTci)Tb7)8(Ta8Tb8Tc8Tb9Tc9Tb10T
2
a10)5T−1

γ1 ,

where γ1 is the separating curve involved in the 1-compatibility F1 with F2.

In general, the addition of a g′-permutation component to a periodic mapping class F2 ∈

Mod(Sg) of order n (as in Construction 2.2.8) can also be viewed as 1-compatibility of F2

with the rotational mapping class F1 ∈ Mod(Sng′) with DF1 = (n, g′; (1, n), (n − 1, n)).

(Note that this compatibility is along fixed points represented by (n− 1, n) (in DF1) and

(1, n) (in DF2). Moreover, it is not hard to see thatW(F1) = W 4g′
4ng′ , when n is odd. Thus,

the ideas in Example 4.5.10 easily generalize to yield the following.

Proposition 4.5.11. Let F2 ∈ Mod(Sg) be a periodic star-realizable mapping class of

odd order with DF2 = (n, g0; (c1, n), (c2, n2), . . . , (cr, nr)). Let F be obtained through the

addition of a 1-permutation component to F2. Then viewing F as a 1-compatible pair

(F1, F2) along a separating curve γ, where DF1 = (n, 1; (c1, n), (n− c1, n)), we have

W(F ) =W(F2)W 4c+
1

4n T−ηγ ,

where η is defined along the same lines as in Lemma 4.5.3.

4.6 Symplectic method

Let F ∈ Mod(Sg) be of order n. In this section, we give a method by which one can

use Ψ(F ) for finding a representation of F as a word W(F ), up to conjugacy. (Here, we

compute Ψ(F ) using Theorem 2.2.15 and Remark 2.2.16.) In other words, we have to

find a suitable candidate for W(F ) in

MF := {G ∈ Mod(Sg) : Ψ(G) is conjugate to Ψ(F )}.

Let Ψm denote the composition of Ψ with the canonical projection Sp(2g,Z) →

Sp(2g,Zm). It is well known that ker Ψm (also known as the level-m subgroup Mod(Sg)[m])

is torsion-free for m ≥ 3 (see [9, Theorem 6.9]). Considering that the conjugacy class of
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Ψ(F ) can be infinite in Sp(2g,Z), for computational purposes, we consider the set

M̃F := {G ∈ Mod(Sg) : Ψ3(G) is conjugate to Ψ3(F )}

in place ofM(F ). The key idea behind our method is to provide a systematic procedure

for carefully and efficiently sifting through the elements in set M̃F to find a suitable

candidate for W(F ).

4.6.1 Structured searching for W(F )

To standardize our procedure, we consider the Lickorish [20] generating set Lg for Mod(Sg)

and assume that each element inMF is a word in Lg. To fix notation, let

Lg = {Ta1 , Tb1 , Tc1 , Tb2 , Ta2 , Tc2 , . . . , Tcg−1 , Tbg , Tag}

with the ai, the bi and the ci are indicated in Figure 4.14 below.

a1

b1

ag

bg

c1 cg−1

Figure 4.14: The curves in Sg involved in the Lickorish twists.

In order to make our search for W(F ) in M̃F more efficient, we first have to ensure

the implementation of a well-structured search process. For achieving this, we introduce

the notion of the depth of a word. Let W be a reduced word in Lg, and let ni be the

number of times the ith generator in Lg appears in W . Then the depth d(W) of the

word W is defined by d(W) = max{ni : 1 ≤ i ≤ 3g − 1}. For example, for the word

W = T 5
a1T

4
a2Tb2T

2
a2Tb1 , d(W) = 2. Further, we denote the largest power (in absolute

value) of a Dehn twist in Lg appearing in a word W by p(W), and fix the notation

M̃i,j
F := {W ∈ M̃F : d(W) = i and p(W) = j}. Thus, we will begin our search for W(F )

in M̃1,1
F , and then gradually broaden our search in an incremental manner to M̃i,j

F for

i, j > 1.
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4.6.2 Discarding redundant words

To begin with, we apply the basic property that Dehn twists about isotopically disjoint

curves in Sg commute, we would like to discard redundant variants of words that are

equivalent up to commutativity of the twists in Lg. For this reason, we assign numbers

1 through 3g − 1 for the Dehn twists appearing (in sequence) in Lg. A permutation σ

of {1, . . . 3g − 1} is said to be good if for 1 ≤ i ≤ 3g − 1, either σ(i + 1) − σ(i) ≤ 1 or

(σ(i), σ(i + 1)) = (3k − 2, 3k) for some k. Thus, in our process, we will filter out many

(redundant) words in M̃F by considering only words as arise as good permutations of

(powers of the) Dehn twists appearing in Lg. We will further discard several non-periodic

words in M̃F by applying Penner’s construction [31] of pseudo-Anosov mapping classes.

Theorem 4.6.1. Let C = {α1, . . . , αn} and D = {αn+1, . . . , αn+m} be multicurves in Sg
that together fill Sg. Then any product of positive powers of the Tαi, for i = 1, . . . , n and

negative powers of the Tαn+j , for j = 1, . . . ,m, where each αi and each αn+j appears at

least once, is pseudo-Anosov.

4.6.3 Searching for periodics

Let i(α, β) be the geometric intersection number of essential simple closed curves α, β in

Sg. In order to identify the periodics in M̃F , we will (in general ) use the well-known

Bestvina-Handel algorithm [1], which provides an effective way of identifying them. This

brings us to the following remark

Remark 4.6.2. When F is irreducible, the elements M̃F are either irreducible periodics

or pseudo-Anosovs. In this context, we have observed that it is easier to identify the

periodics by simply determining whether the orbits (under F ) of certain appropriately

chosen curves are finite. In this regard, a software named Teruaki for Mathematica 7 (or

TKM7) by Sakasai-Suzuki [36] designed for the visualization of actions of Dehn twists on

curves (in Sg) really comes in handy.

This finally brings us to our method.

Algorithm 4.6.3 (Symplectic method). Let F ∈ Mod(Sg) be of order n.

Step 1. Compute Ψ(F ) (up to conjugacy) using Theorem 2.2.15 and Remark 2.2.16.

Step 2. Set i = 1, j = 1, and flag = 0
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Step 3. Repeat Steps 4-5 until flag = 1.

Step 4. Repeat Steps 4a - 4f, while j ≤ n.

Step 4a. Compute the elements in M̃i,j
F up to good permutations.

Step 4b. Discard the words in M̃i,j
F that are pseudo-Anosovs using Theorem 4.6.1

(or Remark 4.6.2 when F is irreducible).

Step 4c. If |M̃i,j
F | > 0, repeat Steps 4d - 4e, for each W ∈ M̃i,j

F . Else, proceed to

Step 4f.

Step 4d. Apply the Bestvina-Handel algorithm to determine the mapping class

type of W .

Step 4e. If W is periodic, then set W(F ) = W , flag = 1, and then proceed to

Step 5. Else, set M̃i,j
F = M̃i,j

F \ {W} and proceed to Step 4c.

Step 4f. Set j = j + 1 and proceed to Step 4.

Step 5. If flag = 0, set i = i+ 1 and proceed to Step 3. Else, proceed to Step 6.

Step 6. W(F ) is the desired representation of F as a word in Dehn twists, up to conju-

gacy.

Example 4.6.4. Consider the irreducible Type 1 mapping class F ∈ Mod(S3) with

DF = (9, 0; (1, 3), (1, 9), (5, 9)). Clearly, F is neither rotational nor star realizable, so we

will use Algorithm 4.6.3 to findW(F ). We will follow the notation from Subsections 2.2.1-

2.2.2. By Theorem 2.2.4, F is realized as a rotation of the polygon PF , as shown in

Figure 4.15 below, with

L(PF ) = {a1, a2, a3, a4, a5, a6, a7, a8, a9} and

W (PF ) = a1a2a3a4a5a6a
−1
2 a7a

−1
4 a8a

−1
6 a9a

−1
7 a−1

1 a−1
8 a−1

3 a−1
9 a−1

5 .

Let P ′ = P3 be the standard 12-gon (realizing the surface S3) with

L(P3) = {x1, y1, x2, y2, x3, y3} and W (P3) = [x1, y1][x2, y2][x3, y3].

Denoting φ = φPF and f = fPF , we obtain ϕ = f−1φf (as in Theorem 2.2.15) in the
following manner.
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4.6. Symplectic method

(a) PF (b) P3

Figure 4.15: The polygons PF and P3.

[x1] f−→ [b1] + [b2] φ−→ − [b1]− [b3]− [b6] f−1
−−→ − [y1] + [x2]− [y2]

[y1] f−→ [b1] + [b3] φ−→ [b2]− [b3] + [b4] f−1
−−→ [x1]− [y1] + [x3]− [y3]

[x2] f−→ [b2] + [b4] + [b5] φ−→ − [b4]− [b6] f−1
−−→ [x2]− [y2]− [x3] + [y3]

[y2] f−→ [b4] + [b5] + [b6] + [b2] φ−→ [b3]− [b4] + [b5]− [b6] f−1
−−→ − [x1] + [y1] + 2 [x2]

− [y2]− 2 [x3] + 2 [y3]

[x3] f−→ − [b5] φ−→ [b4] f−1
−−→ [x3]− [y3]

[y3] f−→ − [b4]− [b5] φ−→ [b4]− [b1] f−1
−−→ − [x1] + [x2] + [x3]

Here, [b1] = [a−1
8 a−1

3 ], [b2] = [a−1
9 a−1

5 ], [b3] = [a−1
2 a−1

1 ], [b4] = [a−1
6 a9], [b5] = [a−1

7 a2], [b1] =
[a−1

4 a8]. Thus, the matrix Mϕ representing the conjugacy class of Ψ(F ) in Sp(2g,Z) is
given by

Mϕ =



0 1 0 −1 0 −1

−1 −1 0 1 0 0

1 0 1 2 0 1

−1 0 −1 −1 0 0

0 1 −1 −2 1 1

0 −1 1 2 −1 0



,
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Chapter 4. Representing periodic mapping classes as words in Dehn twists

and so we have

Ψ3(F ) =



0 1 0 2 0 2

2 2 0 1 0 0

1 0 1 2 0 1

2 0 2 2 0 0

0 1 2 1 1 1

0 2 1 2 2 0


Following Algorithm 4.6.3, we begin our search for W(F ) in M̃1,1

F . As it turns out, even

after considering only the words among the good permutations that not Penner-type

pseudo-Anosovs, we were still left with numerous (at least 150) possible candidates for

W(F ) in M̃1,1
F . For brevity, we will demonstrate the algorithm on a small subcollection

of words

M̃1,1
F (σ) = {T−1

a1 T
−1
c1 T

−1
a2 T

−1
b3 T

−1
c2 T

−1
b2 T

−1
b1 , Ta1Tc1Ta2Tb3Tc2Tb2Tb1 ,

Tc1Ta2Tb3Ta3Tc2Tb2Tb1 , T
−1
c1 T

−1
a2 T

−1
b3 T

−1
a3 T

−1
c2 T

−1
b2 T

−1
b1 }

corresponding to the permutation of σ = (2 3 5 8)(4 7) on L3. Using Remark 4.6.2 (and

the Teruaki software [36]), we can easily deduce that all words in M̃1,1
F (σ) are finite order.

Thus, we may choose W(F ) = Ta1Tc1Ta2Tb3Tc2Tb2Tb1 .

Note that the symplectic method can be applied to any periodic mapping class. How-

ever, as the method is computationally intense, we recommend its application only for

non-rotational periodics that are neither star-realizable nor chain-realizable. It is appar-

ent that while the earlier methods were more restrictive in terms of their applicability,

they work quite efficiently for the specific families of periodic mapping classes they were

designed for.
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4.7 Applications

4.7.1 Periodic mapping classes in Mod(S3) as words in Dehn

twists

Using Algorithms 4.3.3, 4.4.4, 4.5.7, and 4.6.3, in Table 4.3 below, we provide a word

W(F ) (in Dehn twists) representing the conjugacy class of each periodic mapping class

F ∈ Mod(S3).

4.7.2 Roots of Dehn twists

For g ≥ 2, let c be a nonseparating curve in Sg. A root of Tc of degree n is an F ∈ Mod(Sg)

such that F n = Tc. Margalit-Schleimer [23] gave the first example of such a root of degree

2g − 1 in Mod(Sg). A complete classification of such roots was obtained [27], where it

was also shown that the Margalit-Scleimer root (of degree 2g−1) had the largest possible

degree in Mod(Sg). A periodic mapping class F̄ ∈ Mod(Sg−1) is said to be root-realizing if

the 〈F̄〉-action on Sg−1 has two distinguished fixed points where the induced local rotation

angles add up to 2π/n (mod 2π). Given a root-realizing F̄ ∈ Mod(Sg−1) of order n with

distinguished fixed points P1 and P2, one can remove 〈F̄〉-invariant neighborhoods around

the Pi and then attach an annulus A with an (1/n)th-twist connecting the resulting

boundary components to realize a root F ∈ Mod(Sg) of a Dehn twist Tc about the

nonseparating curve c in A. Conversely, for g ≥ 2, given a root F ∈ Mod(Sg) of Tc of

degree n, one can reverse this process to recover a root-realizing periodic mapping class

F̄ ∈ Mod(Sg−1). Thus, the conjugacy class of a typical root realizing F̄ ∈ Mod(Sg−1)

that corresponds to the conjugacy class of a root F ∈ Mod(Sg) of degree n has the form

DF̄ = (n, g0; (a, n), (b, n), (c1, n1), . . . , (c`, n`)),

where a+ b ≡ ab (mod n). Here the pairs (a, n) and (b, n) represent the fixed points (of

the 〈F̄〉-action) involved in the construction of the root F . We will now describe a family

of roots that can be represented as words in Dehn twists by using a minor modification

of the method described in Algorithm 4.5.7.

Definition 4.7.1. A root F ∈ Mod(Sg) of Tc of degree n is said to be star-realizable if

the following conditions hold.
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|F | DF W(F ) Algorithm

14 (14, 0; (1, 2), (3, 7), (1, 14)) (Ta1Tb1Tc1Tb2Tc2Tb3) 4.4.4

14 (14, 0; (1, 2), (2, 7), (3, 14)) (Ta1Tb1Tc1Tb2Tc2Tb3)5 4.4.4

14 (14, 0; (1, 2), (1, 7), (5, 14)) (Ta1Tb1Tc1Tb2Tc2Tb3)3 4.4.4

14 (14, 0; (1, 2), (6, 7), (9, 14)) (Ta1Tb1Tc1Tb2Tc2Tb3)11 4.4.4

14 (14, 0; (1, 2), (5, 7), (11, 14)) (Ta1Tb1Tc1Tb2Tc2Tb3)9 4.4.4

14 (14, 0; (1, 2), (4, 7), (13, 14)) (Ta1Tb1Tc1Tb2Tc2Tb3)13 4.4.4

12 (12, 0; (1, 2), (5, 12), (1, 12)) (T 2
a1Tb1Tc1Tb2Tc2Tb3) 4.4.4

12 (12, 0; (1, 2), (7, 12), (11, 12)) (T 2
a1Tb1Tc1Tb2Tc2Tb3)7 4.4.4

12 (12, 0; (2, 3), (1, 4), (1, 12)) (Tc1Ta2Tb3Tc2Tb2Tb1) 4.6.3

12 (12, 0; (1, 3), (1, 4), (5, 12)) (Tc1Ta2Tb3Tc2Tb2Tb1)5 4.6.3

12 (12, 0; (2, 3), (3, 4), (7, 12)) (Tc1Ta2Tb3Tc2Tb2Tb1)7 4.6.3

12 (12, 0; (1, 3), (3, 4), (11, 12)) (Tc1Ta2Tb3Tc2Tb2Tb1)11 4.6.3

9 (9, 0; (1, 3), (5, 9), (1, 9)) (Ta1Tc1Ta2Tb3Tc2Tb2Tb1) 4.6.3

9 (9, 0; (2, 3), (1, 9), (2, 9)) (Ta1Tc1Ta2Tb3Tc2Tb2Tb1)5 4.6.3

9 (9, 0; (1, 3), (2, 9), (4, 9)) (Ta1Tc1Ta2Tb3Tc2Tb2Tb1)7 4.6.3

9 (9, 0; (2, 3), (7, 9), (5, 9)) (Ta1Tc1Ta2Tb3Tc2Tb2Tb1)2 4.6.3

9 (9, 0; (1, 3), (8, 9), (7, 9)) (Ta1Tc1Ta2Tb3Tc2Tb2Tb1)4 4.6.3

9 (9, 0; (2, 3), (4, 9), (8, 9)) (Ta1Tc1Ta2Tb3Tc2Tb2Tb1)8 4.6.3

8 (8, 0; (3, 4), (1, 8), (1, 8)) (Ta1Tb1Tc1Tb2Tc2Tb3Ta3) 4.4.4

8 (8, 0; (1, 4), (3, 8), (3, 8)) (Ta1Tb1Tc1Tb2Tc2Tb3Ta3)3 4.4.4

8 (8, 0; (3, 4), (5, 8), (5, 8)) (Ta1Tb1Tc1Tb2Tc2Tb3Ta3)5 4.4.4

8 (8, 0; (1, 4), (7, 8), (7, 8)) (Ta1Tb1Tc1Tb2Tc2Tb3Ta3)7 4.4.4

8 (8, 0; (1, 4), (5, 8), (1, 8)) (Ta1Tc1Tb3Ta3Tc2Tb2Tb1) 4.6.3

8 (8, 0; (3, 4), (7, 8), (3, 8)) (Ta1Tc1Tb3Ta3Tc2Tb2Tb1)3 4.6.3

7 (7, 0; (5, 7), (1, 7), (1, 7)) (T 2
a1Tb1Tc1Tb2Tc2Tb3Ta3) 4.4.4

7 (7, 0; (3, 7), (2, 7), (2, 7)) (T 2
a1Tb1Tc1Tb2Tc2Tb3Ta3)4 4.4.4

7 (7, 0; (1, 7), (3, 7), (3, 7)) (T 2
a1Tb1Tc1Tb2Tc2Tb3Ta3)5 4.4.4

7 (7, 0; (6, 7), (4, 7), (4, 7)) (T 2
a1Tb1Tc1Tb2Tc2Tb3Ta3)2 4.4.4

7 (7, 0; (4, 7), (5, 7), (5, 7)) (T 2
a1Tb1Tc1Tb2Tc2Tb3Ta3)3 4.4.4

7 (7, 0; (2, 7), (6, 7), (6, 7)) (T 2
a1Tb1Tc1Tb2Tc2Tb3Ta3)6 4.4.4

7 (7, 0; (4, 7), (2, 7), (1, 7)) (Tb1Tb2Tc2Ta3Tb3Tc1T
2
a1)−1 4.6.3

7 (7, 0; (3, 7), (5, 7), (6, 7)) (Tb1Tb2Tc2Ta3Tb3Tc1T
2
a1)−6 4.6.3

6 (6, 0; (1, 2), (1, 2), (1, 6), (5, 6)) (T 2
a1Tb1Tc1Tb2Tc2Tb3)2 4.4.4

6 (6, 0; (1, 2), (2, 3), (2, 3), (1, 6)) (Ta1Tb1)−1(Ta2Tb2Tc2Tb3Ta3) 4.4.4

6 (6, 0; (1, 2), (1, 3), (1, 3), (5, 6)) (Ta1Tb1)(Ta2Tb2Tc2Tb3Ta3)−1 4.4.4

4 (4, 1; (1, 2), (1, 2)) (Ta2Tc1Tb2Tc2Tb3)2T−1
a1 4.5.7

4 (4, 0; (1, 2), (1, 2), (1, 2), (1, 4), (1, 4)) (T 2
a1Tb1)(Ta2Ta′2Tb2)3(T 2

a3Tb3)(Ts1Ts2)−1 4.5.4

4 (4, 0; (1, 2), (1, 2), (1, 2), (3, 4), (3, 4)) (T 2
a1Tb1)3(Ta2Ta′2Tb2)(T 2

a3Tb3)3(Ts1Ts2)−1 4.5.4

4 (4, 0; (1, 4), (1, 4), (3, 4), (3, 4)) (Ta1Tb1Tc1Tb2Tc2Tb3Ta3)2 4.4.4

4 (4, 0; (1, 4), (1, 4), (1, 4), (1, 4)) (Ta1Tc1Tb3Ta3Tc2Tb2Tb1)2 4.6.3

4 (4, 0; (3, 4), (3, 4), (3, 4), (3, 4)) (Ta1Tc1Tb3Ta3Tc2Tb2Tb1)6 4.6.3

3 (3, 0; (1, 3), (1, 3), (1, 3), (1, 3), (2, 3)) (T 3
a1Tb1)(T 2

a2Ta′2Tb2)2(T 3
a3Tb3)(Ts1Ts2)−1 4.5.4

3 (3, 0; (2, 3), (2, 3), (2, 3), (2, 3), (1, 3)) (T 3
a1Tb1)2(T 2

a2Ta′2Tb2)(T 3
a3Tb3)2(Ts1Ts2)−1 4.5.4

3 (3, 1; (1, 3), (2, 3)) (T 2
a1Tc1Tb1)(T 2

a3Tc2Tb3)2(Ta2Ta′2)−1 4.5.7

2 (2, 2, 1; ) (Ta1Tb1Tc1Tb2Tc2)3T−1
a3 4.5.7

2 (2, 1; ((1, 2), 4)) (Ta2Tb2Tx1Ta1Tb1)3(Ta3Tb3Ta3)−2 4.3.3

2 (2, 0; ((1, 2), 8)) (Ta1Tb1Ta1)2(Ta2Tb2Ta′2)−2(Ta3Tb3Ta3)2 4.3.3

Table 4.3: Words (in Dehn twists) representing the conjugacy classes of periodic ele-
ments in Mod(S3).
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(i) The root-realizing periodic mapping class F̄ ∈ Mod(Sg−1) with

DF̄ = (n, g0; (a, n), (b, n), (c1, n1), . . . , (c`, n`)),

a+ b ≡ ab (mod n), is star-realizable.

(ii) Suppose that F̄ = Fm
T , for some star-realizable FT as in Definition 4.5.5 so that the

pairs (a, n) (resp. (b, n)) belong to DFi (resp. DFj). Then

(a, n) ∈ {(1, |F̃i|)mi,F̃i , (|F̃i|/2− 1, |F̃i|)mi,F̃i , (|F̃i| − 2, |F̃i|)mi,F̃i}

and

(b, n) ∈ {(1, |F̃j|)mj ,F̃j , (|F̃j|/2− 1, |F̃j|)mj ,F̃j , (|F̃j| − 2, |F̃j|)mj ,F̃j}

Denoting η = µzii+µzjj−1
n

, we will now we give an algorithm to represent a star-realizable

root as a word in Dehn twists.

Algorithm 4.7.2. Consider a star-realizable root F ∈ Mod(Sg) of Tc as in Defini-

tion 4.7.1.

Step 1. Apply Algorithm 4.5.7 to obtain W(F̄ ).

Step 2. Set

W(F ) =W(F̄ )(Tc)−η.

Step 3. By Lemma 4.5.3, W(F ) is the desired representation of F as a word in Dehn

twists, up to conjugacy.

Let G ∈ Mod(Sg) be the Margalit-Schleimer root (of Tc) of degree 2g − 1. In [23] an

expression for W(G) was derived using the chain relation, and in [27] it was shown that

DḠ = (2g − 1, 0; (2, 2g − 1), (2, 2g − 1), (−4, 2g − 1)). In the following example, we will

apply Algorithm 4.7.2 to derive the W(F ) for a root F ∈ Mod(Sg) of degree 2g − 1 for

which DF̄ is different from DḠ.

Example 4.7.3. Consider a root F ∈ Mod(Sg) of degree 2g − 1, where DF̄ = (2g −

1, 0; (g, 2g − 1), (g, 2g − 1), (2g − 2, 2g − 1)). Since W(F̄ ) = W 2
2g−1, by applying Algo-

rithm 4.7.2, we get

W(F ) = T−1
a1 (Tc1Ta2

g−1∏
i=2

(TbiTci)TbgTag)2.
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Chapter 4. Representing periodic mapping classes as words in Dehn twists

For g ≥ 2, a fractional root of Tc of degree (m,n) is an F ∈ Mod(Sg) such that

F n = Tmc . It is known [33] that such a root of Tc may either preserve or reverse the

two sides of c, and for a side-preserving root of degree (m,n), n ≤ 4g − 4. Further, a

side-preserving fractional root of degree (2g − 2, 4g − 4) always exists in Mod(Sg). As in

the case of roots of Dehn twists, a side-preserving fractional root F ∈ Mod(Sg) of degree

(m,n) corresponds to an F̄ ∈ Mod(Sg−1) of order n such that the 〈F̄〉-action has two

distinguished fixed points where the induced rotation angles add up to 2πm/n (mod 2π).

This brings us to the final result in this subsection, in which we assume the notation of

Theorem 4.5.1.

Proposition 4.7.4. Let F ∈ Mod(Sg) be a side-preserving fractional root of Ta1 of degree

(2g − 2, 4g − 4). Then

F = Ta2

g−1∏
i=1

(TciTbi+1).

Proof. Assume that F is realized from F̄ ∈ Mod(Sg−1) by attaching an annulus (with

a 2πm/n-twist) connecting the two boundary components (d2 and d1) of the subsurface

S2
g−1. By Theorem 4.5.1 (for k = 2), we have

(Ta2

g−1∏
i=1

(TciTbi+1))4g−4 = Ta1T
(2g−3)+

a1 .

But, as (2g − 3)+ ≡ 2g − 3 (mod 4g − 4), this further simplifies to

(Ta2

g−1∏
i=1

(TciTbi+1))4g−4 = T 2g−2
a1

4.7.3 Construction of pseudo-Anosov mapping classes

In this subsection, we show that for g ≥ 2, there exists conjugates of the periodic mapping

classes W4g and W4g+2 (from Subsection 4.4.1) whose product is pseudo-Anosov. In this

connection, we will use the following symplectic (sufficient) criterion [24, Proposition 2]

for a given mapping class to be pseudo-Anosov (originally due to Casson-Bleiler [6]).

Theorem 4.7.5. Let F ∈ Mod(Sg) and let PF (x) be the characteristic polynomial of

Ψ(F ). Suppose that each of the following conditions hold.
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(i) PF (x) is symplectically irreducible over Z.

(ii) PF (x) is not a cyclotomic polynomial.

(iii) PF (x) is not a polynomial in xk for any k > 1.

Then F is pseudo-Anosov.

We now consider the conjugates

W ′
4g+2 = (Ta1

g−1∏
i=1

(TbiTci)Tbg) and W ′
4g = (T 2

b1

g−1∏
i=1

(TciTbi+1)Tag)

ofW4g+2 andW4g, respectively. (It is not hard to check that these are indeed conjugates).

Let W = W ′
4gW

′
4g+2. A direct computation shows that

PW (x) = x2g + 2x2g−1 + 3x2g−2 + · · ·+ gxg+1 + (g + 3)xg + gxg−1 + · · ·+ 2x+ 1.

We will require the following technical lemma.

Lemma 4.7.6. No complex root of unity can be a root of PW (x).

Proof. It is apparent that x = ±1 is not a root of PW (x). Suppose that an nth root of

unity eιθ for some θ ∈ R and n ≥ 3, is a root of PW (x). Then we have PW (eιθ) = 0,

which yields the following two equations:

2g∑
j=0

cos(jθ) +
2g−1∑
j=1

cos(jθ) + · · ·+
g+1∑
j=g−1

cos(jθ) + 3 cos(gθ) = 0

2g∑
j=0

sin(jθ) +
2g−1∑
j=1

sin(jθ) + · · ·+
g+1∑
j=g−1

sin(jθ) + 3 sin(gθ) = 0

Applying the formulas

n−1∑
j=0

cos(α + jβ) = cos(α + (n− 1)β/2) sin(nβ/2)
sin(β/2) and

n−1∑
j=0

sin(α + jβ) = sin(α + (n− 1)β/2) sin(nβ/2)
sin(β/2)
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in the pair of equations above, we obtain the pair of equations

cos(gθ)(sin2((g + 1)θ/2) + 2 sin2(θ/2)) = 0

sin(gθ)(sin2((g + 1)θ/2) + 2 sin2(θ/2)) = 0

These equations yield a contradiction, as there does not exist any θ such that cos(gθ) =

0 = sin(gθ), from which our assertion follows.

This leads us to the following proposition.

Proposition 4.7.7. For g ≥ 2, there exists conjugates W ′
4g and W ′

4g+2 of W4g and W4g+2,

respectively, such that W ′
4gW

′
4g+2 is pseudo-Anosov in Mod(Sg).

Proof. It is apparent that PW (x) satisfies condition (iii) of Theorem 4.7.5. Further,

condition (ii) of Theorem 4.7.5 holds true in view of Lemma 4.7.6. Finally, to show

condition (i) it suffices to show that W does not preserve any subsurface of Sg with

genus greater than 0. To show this, we consider the chain of simple closed curves C =

{b1, c1, b2, c2, · · · , cg−1, bg, ag} in Sg (as indicated in Figure 4.14). For simplicity, we relabel

the curves (appearing in sequence) in C by {α1, · · · , α2g}. By the properties of chain

maps, we have

W (αi) = αi+2, for 1 ≤ i < 2g − 1

and further it is easily seen that there exists a k such that each component of Sg \ ∪ki=0W
i(αj)

has genus 0. Consequently, it follows that W cannot preserve a subsurface of Sg of genus

greater than 0, from which our assertion follows.
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