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ABSTRACT

The primary objective of this project is to study the results in [13] pertain-

ing to a family of Cayley graphs on finite commutative rings, called quadratic

unitary Cayley graphs (QUCG). Let R be such a ring and R× be its set of

units. Let QR = {u2 : u ∈ R×} and TR = QR ∪ (−QR). We define the

QUCG of R, denoted by GR, to be the Cayley graph on the additive group

of R with respect to TR. It is well known that any finite commutative ring R

can be decomposed as R = R1 ×R2 × · · · ×Rs, where each Ri is a local ring

with maximal ideal Mi [3]. Let R0 be a local ring with maximal ideal M0

such that |R0| / |M0| ≡ 3 (mod 4). We study the spectra of GR and GR0×R

under the condition that |Ri| / |Mi| ≡ 1 (mod 4)) for 1 ≤ i ≤ s. We also

understand the conditions under which these graphs are Ramanujan.
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1. INTRODUCTION

Algebraic graph theory [7] is a field of mathematics that focuses on studying

various properties of graphs using algebraic techniques. One such approach

known as spectral graph theory [5] employs widely known concepts of lin-

ear algebra on graphs, which includes the study of the Laplacian and the

spectrum of a graph (i.e. the eigenvalues of its adjacency matrix). Thus,

spectral graph theory lends a unique perspective to the study of the fun-

damental properties of graphs such as graph-connectivity, which has broad

applications in the fields of communication systems and computer science.

It is well known the spectra of graphs are linked with many of their ex-

tremal properties. One such connection arises during the study of graph-

connectivity. A graph is well-connected if it has large spectral gap (i.e. the

difference between largest two eigenvalues of the adjacency matrix is large).

The Alon-Boppana theorem [10, Chapter 3] asserts that for a large, k-regular

graph G, the strongest upper bound for the second highest eigenvalue of its

adjacency matrix is 2
√
k − 1. Consequently, k-regular graphs which have this

property (also known as Ramanujan graphs) are of great importance. In the

past few decades, the expander families of Ramanujan graphs, particularly

those arising from families of Cayley graphs have been extensively studied

(see [11, 14, 15, 16] and the references therein).

In Chapter 1, we begin by building a basic understanding of algebraic graph

theory. We start by understanding the basic notion of a graph isomorphism.

We then understand the interplay between linear algebra and graph theory

by studying the properties of graph invariant matrices such as the adjacency

matrix and the Laplacian. Further more we examine the correlation between
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properties of a k-regular graph and the eigenvalues of its adjacency matrix.

We then introduce two types of graph products, namely, dot product and

tensor product, and also study the relation between spectra of graphs and

their products. Since QUCGs are generalizations of Paley graphs, which are

a strongly regular family of Cayley graphs, we conclude this chapter with a

study of the basic theory of these special families of graphs.

In Chapter 2, we see a widely used graph invariant that quantifies the connec-

tivity of a graph G known as the isoperimetric constant [10] or the Cheeger

constant, denoted by h(G). Interestingly, for a k-regular graph the isoperi-

metric constant is closely related to its spectral gap. In this context, we will

also study the Rayleigh-Ritz theorem. Moreover, for a k-regular graph G

with second-largest eigenvalue λ1(G), the following inequality holds:

k − λ1(G)

2
≤ h(G) ≤

√
2k(k − λ1(G)).

Thus, k-regular graphs with large spectral gaps k−λ1(G) have higher Cheeger
constant and hence higher connectivity. Additionally, we study a combina-

torial proof of the Alon-Boppana theorem which further motivates the study

of Ramanujan graphs [14, 16].

In Chapter 3, we begin by introducing QUCG as in [13] and look at some

properties of QUCG for finite fields. We then determine the spectra of

QUCGs associated with local rings which we then use to determine the spec-

tra of QUCGs for certain finite commutative rings. Finally, we explicitly

determine the conditions under which the QUCG of a finite commutative

ring is also a Ramanujan graph.



2. INTRODUCTION TO

ALGEBRAIC GRAPH THEORY

In this chapter, we will start by introducing basic notions from algebraic

graph theory that are relevant to this thesis. In Sections 1.2 and 1.3 we

introduce matrices associated with graphs called adjacency matrix and the

Laplacian. We also study the set of eigenvalues for their matrices for k-

regular graphs. In Section 1.4, we look at two different kinds of products

on graphs and also see their relations to their eigenvalues. In the last two

sections, we introduce two special families of graphs namely strongly regular

graphs and Cayley graphs and study their spectral properties. The results in

this chapter are based on [2, Chapters 3,4], [4, Chapter 9], [7, Chapter 10],

and [10, Chapter 1,3].

2.1 Preliminaries

Definition 2.1. An undirected graph X is a pair (V (X), E(X)), where V (X)

is a set called the vertex set of X and E(X) is a multiset of pairs unordered

pairs {x, y} for x, y ∈ V (X), called an edge set of X.

We say that x, y ∈ V (X) are adjacent if {x, y} ∈ E(X).

Definition 2.2. A graph X is said to be finite if |V (X)| <∞.

The order of a finite graph, denoted by |X|, is defined by |X| := |V (X)|.

Definition 2.3. A graph X is said to be simple if each unordered pair in

E(X) has multiplicity one.

In this thesis, we will be only concerned with finite simple graphs.
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Definition 2.4. Let X, Y be a graphs, then we say graph Y is subgraph of

X if V (X) ⊆ V (Y ) and E(X) ⊆ E(Y ).

A subgraph Y of X is called spanning subgraph if V (X) = V (Y ).

Definition 2.5. For v ∈ V (X) we define order of the vertex, denoted as |v|,
to be the number of vertices adjacent to v. We say a graph X is k-regular if

for all v ∈ V (X) we have |v| = k.

Example 2.6. Fig 2.1(a) shows a 2-regular graph of order four. Every 2-

regular graph of order n ≥ 3 is called a cycle graph denoted by Cn.

(a) The 2-regular graph C4. (b) The complete graph K4.

Fig. 2.1: Example of a k-regular and a complete graph.

Definition 2.7. A graph X is called a complete graph if for every pair of

distinct vertices x, y ∈ V (X) there exists an edge e = {x, y} ∈ E(X).

A complete graph with n vertices is denoted as Kn.

Note that a complete graph Kn is always (n− 1)-regular.

Example 2.8. Fig 2.1(b) shows a complete graph K4 which is also a 3-

regular graph of order four.

Definition 2.9. A graph X is called bipartite graph if there exist disjoint

subsets V1, V2 of V (X) such that V (X) = V1 ∪ V2 and for every x, y ∈ E(X)

we have x ∈ V1 and y ∈ V2.

A complete bipartite graph (i.e. bipartite graph where every vertex in one

subset is adjacent to every vertex in other set) with |V1| = n and |V2| = m is

denoted as Kn,m.

Example 2.10. The graph K3,4 is shown in Figure 2.2 below.
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Fig. 2.2: A bipartite graph, K3,4.

Definition 2.11. Let X be a graph.

1. A walk in X is a sequence w = (v0, e1, v1, . . . , ek, vk) of vertices vi ∈
V (X) and edges ei ∈ E(X) such that for 1 ≤ i ≤ k, the edge ei =

{vi−1, vi}. The number of edges in the sequence is called the length of

the walk.

2. The walk w = (v0, e1, v1, . . . , ek, vk) is called a closed walk if v0 = vk.

3. A trail is a walk with no repeated edges. A closed trail is called a

circuit.

4. A path is a walk with no repeated vertex. A closed path is called a

cycle.

5. A walk w = (v0, e1, v1, . . . , ek, vk) is called non backtracking if ei ̸= ei+1

for all 1 ≤ i ≤ k − 1 otherwise, the walk is called backtracking.

6. A closed walk u = (v0, e1, v1, . . . , ek, v0) is called unfactorable if vi ̸= v0

for all 1 ≤ i ≤ k − 1 otherwise, it is called a factorable walk.

Note that every path is a trail but the opposite need not be true.

Definition 2.12. A graph is called connected if for any two vertices of the

graph there is a walk in the graph joining them. A non-connected graph is

said to be disconnected.

Definition 2.13. A graph X is called a tree if it is connected and has no

circuits.
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Example 2.14. A tree of order 7 is shown in Figure 2.3 below.

Fig. 2.3: A tree graph of order 7.

Definition 2.15. The distance between any two vertices u, v, denoted by

dist(u, v), is the length of a shortest path joining u and v in the graph,

where dist(u, v) = 0 if and only if u = v.

If no such path exist then we say that dist(u, v) is infinite.

Definition 2.16. The diameter of a graph X, denoted by diam(X), is de-

fined as

diam(X) = max{dist(u, v) : u, v ∈ V (X)}.

Definition 2.17. Let X,H be graphs. A map ϕ : V (X) → V (H) is said to

be a graph homomorphism if {ϕ(v), ϕ(u)} ∈ E(H), whenever {v, u} ∈ E(X).

Example 2.18. We exhibit a graph homomorphism between K2,3 and C2.

Let V1, V2 ⊂ V (K2,3) = {y1, y2, y3, y4, y5} such that |V1| = 2 and |V2| = 3. If

V (C2) = {x1, x2}, then ϕ : V (K2,3) → V (C2) such that

ϕ(yi) =

x1, if yi ∈ V1, and

x2, if yi ∈ V2.

is a graph homomorphism as {ϕ(v), ϕ(u)} ∈ E(C2), whenever {v, u} ∈
E(K2,3).

Definition 2.19. Two graphs X and H are isomorphic if there exists a

bijective map ϕ : V (X) → V (H) such that {ϕ(v), ϕ(u)} ∈ E(H) if and only

if {v, u} ∈ E(X).
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Example 2.20. Consider the following graphs X and Y as seen in Figure 2.4

below. Then ϕ : V (X) → V (Y ) such that ϕ(x1) = y1, ϕ(x2) = y4, ϕ(x3) =

y2, ϕ(x4) = y5, and ϕ(x5) = y3 is a graph isomorphism as {ϕ(x), ϕ(y)} ∈
E(X) if and only if {x, y} ∈ E(Y ).

(a) X (b) Y

Fig. 2.4: Two isomorphic graphs.

2.2 The Adjacency Operator

In the section, we will study the spectra of k-regular graphs.

Definition 2.21. Let X be a graph with V (X) = {v1, . . . , vn}. The adja-

cency matrix of X, denoted by A(X), is defined by A(X) = (aij)n×n, where

aij =

1, if {vi, vj} ∈ E, and

0, otherwise.
.

Remark 2.22. Note that A(X) of an undirected graph X is a real and

symmetric matrix. Hence, by the Spectral theorem [10, Theorem A.53] for

symmetric matrices, all of its eigenvalues are real.
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Example 2.23. For the cycle graph C4 shown in Figure 2.1a(a), we have

A (C4) =


0 1 0 1

1 0 1 0

0 1 0 1

1 0 1 0

 .

Definition 2.24. The spectrum of a graph X is said to be the multiset of

eigenvalues of A(X).

We write the spectrum of X as

Spec(X) =

(
λ0(X) λ1(X) · · · λk(X)

n0 n1 · · · nk

)
,

where for each 0 ≤ i ≤ k, λi(X) are distinct eigenvalues of A, and
∑k

i=0 ni =

n i.e. the order of graph X.

From here on, we will fix an ordering on V (X) so that λ0(X) ≥ λ1(X) ≥
. . . ≥ λn−1(X). ( Note that the spectrum of the graph is independent to

ordering of its vertices.)

Example 2.25. A complete pseudo graph of order n, denoted by K̊n, is

a graph obtained by attaching a loop at each vertex of Kn. Then K̊n has

adjacency matrix A(K̊n) = Jn where Jn is a matrix with each entry as 1.

Since, Jn is real and symmetric, by the Spectral theorem, we know that it is

diagonalisable and has n real eigenvalues. But, note that rank(Jn) = 1, so it

has only one non-zero eigenvalue. Consider the vector v = (1, 1, . . . , 1) ∈ R

. Clearly, Jnv = λv, which implies the λ is an eigenvalue of Jn. So,

Spec(K̊n) =

(
n 0

1 n− 1

)
.

For a finite set S we consider the complex vector space L2(S) := {f : S → C}.
Then L2(S) is an inner product space and for f, g ∈ L2(S) and α ∈ C:

1. The vector sum in L2(S) is given by (f + g)(x) = f(x) + g(x) for all

x ∈ S.
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2. Scalar multiplication is given by f(αx) = αf(x) for all x ∈ S.

3. The standard inner product are given is by ⟨f, g⟩2 =
∑

x∈S f(x)g(x).

Let X be a graph with V (X) = {v1, . . . , vn}. Given f ∈ L2(V ), we may

think of f as a vector in Cn and we A(X) as a linear transformation from

L2(V ) → L2(V ) given by the formula:

(Af)(v) =
∑
w∈V

Av,wf(w).

The linear operator A defined above is called the adjacency operator of X.

Proposition 2.26. If X is a k-regular of order n. Then

1. λ0(X) = k,

2. |λi(X)| ≤ k for i = 0, 1, . . . , n− 1,

3. λ1(X) < λ0(X, ) if and only if X is a connected graph, and

4. If X is bipartite, then Spec(X) is symmetric about 0 i.e. if λ ∈ Spec(X)

with multiplicity m then −λ ∈ Spec(X) with multiplicity m.

Proof. Throughout this proof, let V = V (X) and A denote the adjacency

operator of X.

1. We show that there exists a eigenfuction associated with k. Let f0 ∈
L2(V ) be defined as f0(x) = 1 for all x ∈ V . Then

(Af0) (x) =
∑
y∈V

Ax,yf0(y) =
∑
y∈V

Ax,y = k = k · f0(x)

Thus, k is an eigenvalue of A.

2. Let λ be an eigenvalue of A and f be a real-valued eigenfunction of

A associated with λ (By Spectral theorem [10, Theorem A.53] we know such

an f exists). Pick an x ∈ V such that |f(x)| = maxy∈V |f(y)|. Note that
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f(x) ̸= 0 since f is an eigenfunction of A. By the definition of x, we see that

|λ||f(x)| = |(Af)(x)| =

∣∣∣∣∣∑
y∈V

Ax,yf(y)

∣∣∣∣∣ ≤∑
y∈V

|Ax,y| |f(y)|

≤ |f(x)|
∑
y∈V

|Ax,y| = k|f(x)|.

Thus, |λ| ≤ k.

3. Suppose that X is connected. We want to show that |λ1| < k. Let

v = (v1, v2, · · · , vn)t ∈ Rn be an eigenvector corresponding to k. Again, let

1 ≤ i ≤ n be such that

|vi| = max {|vj| | 1 ≤ j ≤ n} .

Replacing v by −v if necessary, assume that vi is positive. Then we have

kvi =
n∑

j=1

ai,jvj =⇒ vi =
n∑

j=1

ai,j
k
vj.

This implies vi is a convex linear combination of vj, 1 ≤ j ≤ n. Since for each

j, |vj| ≤ vi, we get vj = vi for all j such that ai,j = 1. Since X is connected,

any two distinct vertices are connected by a walk, which eventually gives

vj = vi for all j. Hence, v is a scalar multiple of (1, 1, · · · , 1)t, which implies

eigenvalue k has multiplicity one.

To prove the converse, suppose that X is disconnected. Let v ∈ V (X),

and let V1 be the set of all vertices w ∈ V (X) such that there exists a walk

in X connecting v and w. We note that, if w ∈ V is adjacent to a vertex in

V1, then w ∈ V1. Since, V \V1 ̸= ϕ, X splits into two k-regular graphs with

vertex sets V1 and V2 = V \V1, respectively. Hence, k is an eigenvalue of both

these graphs, which implies that λ1(X) = k.

4. Suppose that X is a bipartite graph and V = V1∪V2 is a bipartition of

V . Let λ be an eigenvalue of A with multiplicitym. By the Spectral theorem,

there exist linearly independent real-valued eigenfunctions f1, . . . , fm of A
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associated with λ. Consider the functions

gi(x) =

fi(x) x,∈ V1 and

−fi(x) x,∈ V2,

for i = 1, . . . ,m.

We will now show that each gi is an eigenfunction of A associated with

−λ. Suppose that x ∈ V1. Then, since every y adjacent to x is in V2, we see

that
(Agi) (x) =

∑
y∈V2

Ax,ygi(y) = −
∑
y∈V

Ax,yfi(y) = − (Afi) (x)

= −λfi(x) = −λgi(x).

Similarly, if x ∈ V2, then (Agi) (x) = −λgi(x). One can check that g1, . . . , gm

form a linearly independent set. Hence, −λ is an eigenvalue of A with mul-

tiplicity l ≥ m. The same argument, on reversing the roles of λ and −λ,
shows that m ≥ l.

2.3 The Laplacian

In this section, we will discuss another linear operator associated to a graph,

called the Laplacian. The Laplacian on a graph is the discrete analogue of

the Laplacian ∆ = div(grad(f)) from multivariable calculus.

Let X be a graph. Give edges in E(X) an arbitrary orientation. In par-

ticular, for each edge e ∈ E(X), labelling one endpoint e+ and the other e−,

we call e+ the origin of e, and e− the extremity of e (as illustrated in Figure

2.5 below).

Fig. 2.5: An oriented edge e ∈ E(X).

Definition 2.27. Let X be a graph with V = V (X) and E = E(X). We
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define:

1. d : L2(V ) → L2(E ) for each f ∈ L2(V ) as

(df )(e ) = f
(
e+
)
− f

(
e−
)
, and (2.1)

2. d∗ : L2(E ) → L2(V ) for each f ∈ L2(E ) as

(d∗f) (v ) =
∑
e∈E
v=e+

f(e )−
∑
e∈E
v=e−

f(e ). (2.2)

If we think of the function f as a flow on the edges of the graph G, (df)(e)

measures the change of f along the edge e of the graph and (d∗f) (v) measures

the total inward flow at the vertex v. Hence, we have the following definition

of the Laplacian for a graph.

Definition 2.28. Let X = (V,E) be a graph with a orientation on its edges.

We define laplacian operator ∆ : L2(V ) → L2(V ) to be ∆ = d∗d.

We will see in the following lemma that the Laplacian operator is inde-

pendent of the orientation of the edges.

Lemma 2.29. If X = (V,E) is a k-regular graph with adjacency operator

A, then ∆ = kI − A.

Proof. Let f ∈ L2(V ) and x ∈ V . Then:

(∆f)(x) = (d∗(df)) (x)

=
∑
e∈E
x=e+

(df)(e)−
∑
e∈E
x=e−

(df)(e)

=

∑
e∈E
x=e+

f(x)−
∑
e∈E

x=e+ and y=e−

f(y)

−

 ∑
e∈E

x=e−and y=e+

f(y)−
∑
e∈E
x=e−

f(x)


= kf(x)−

∑
y∈V

Ax,yf(y)

= ((kI − A)f)(x).



2. Introduction to Algebraic Graph Theory 14

Theorem 2.30. Suppose X = (V,E) is a k-regular graph of order n. For a

fixed ordering of vertices and orientation for edges the following holds:

1. The eigenvalue of ∆ are given by

0 = k − λ0(X) ≤ k − λ1(X) ≤ . . . ≤ k − λn − 1(X).

In particular, the eigenvalues of ∆ lie in the interval [0, 2k].

2. Let f ∈ L2(V ) and g ∈ L2(E). Then ⟨df, g⟩2 = ⟨f, d∗g⟩2 and

⟨∆f, f⟩2 =
∑
e∈E

|f(e+)− f(e−)|2 (2.3)

Proof. 1. Let f be an eigenfuction of A corresponding to the eigenvalue

λ. Then we have

∆f = (kI − A)f = kf − Af = (k − λ)f.

Thus, f is an eigenfuction of ∆ corresponding to eigenvlaue (k − λ).

Then (1) follows from Proposition 2.30 and Proposition 2.26.

2. Note that

⟨df, g⟩2 =
∑
e∈E

(df)(e)g(e) =
∑
e∈E

[
f
(
e+
)
− f

(
e−
)]
g(e)

=
∑
e∈E

f
(
e+
)
g(e)−

∑
e∈E

f
(
e−
)
g(e)

=
∑
v∈V

f(v)
∑
e∈E
v=e+

g(e)−
∑
v∈V

f(v)
∑
e∈E
v=e−

g(e)

=
∑
v∈V

f(v)(d∗g) (v)

= ⟨f, d∗g⟩2

.
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Thus,

⟨∆f, f⟩2 = ⟨d∗df, f⟩2 = ⟨f, d∗df⟩2 = ⟨df, df⟩2 = ⟨df, df⟩2 = ∥df∥22,

so it follows that

⟨df, df⟩2 =
∑
e∈E

(
f
(
e+
)
− f

(
e−
))

(f (e+)− f (e−)) =
∑
e∈E

∣∣f (e+)− f
(
e−
)∣∣2 .

2.4 Product and Powers of Graphs

Definition 2.31. Let X1 = (V,E1) and X2 = (V,E2) be two finite graphs.

We define the dot product of graphs X1 ·X2 to be a graph (V,E), where the

multiplicity of the edge in E from v1 to v2 equals the number of pairs (e1, e2 )

such that e1 ∈ E(X1) is an edge with end point v1 and e2 is an edge from

the terminal point of e1 to v2.

The nth power of a graph X(V,E) is defined to be Xn = X ·X . . . ·X. In

this case, edge of Xn from v1 to v2 is a walk of length n from v1 to v2 in X

and mutliplicity of edge is the number of walks of length n.

Example 2.32. Let X1 = (V,E1) and X2 = (V,E2) be two finite graphs as

seen in the Figure 2.6, where V = {a, b, c}, E1 = {{a, b}, {a, c}, {b, c}}, and
E2 = {{a, b}, {b, c}, {b, b}}. Then the dot product X1 ·X2 is as shown in the

third subfigure.

Theorem 2.33. Let X1(V,E1) and X2(V,E2) be two finite graphs.Choose

an ordering of V . Let A1 and A2 be adjacency matrices of graphs X1 and

X2 with respect to this ordering. Then the adjacency matrix of X1 ·X2 with

respect to this ordering is A1 · A2.

Proof. Choose an ordering of V , let it be {v1, v2, . . . , vn}. Let A be adjacency

matrix of X1 ·X2, then by definition of adjacency matrix we get aijn×n = kij,
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(a) X1

(b) X2

(c) X1 ·X2

Fig. 2.6: A dot product of graphs.

where kij is multiplicity of edge between vi and vj. Then,

kij = |{(e1, e2) | e1 ∈ E1 and e2 ∈ E2 such that e1 = vi, vk and e2 = vk, vj}|

=
∑
e1∈E1

e1=vi,vk

∑
e2∈E2

e2=vk,vj

1

=
n∑

k=1

aikbkj

= A1A2.

Corollary 2.34. For a X be a finite graph. Then A(Xk) = Ak. Conse-

quently, the eigenvalues of Xk are given by λ(X)j, for 1 ≤ j ≤ n− 1.

Theorem 2.35. Let X be a finite graph with eigenvalues λ0, . . . , λn−1, where
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λi ≤ λi−1 for 1 ≤ i ≤ n− 1. Then the eigenvalues for Xj are λj0, . . . , λ
j
n−1.

Proof. Let A be an adjacency matrix of X. Let O such that OAO−1 is the

diagonal matrix with diagonal entries λ0, . . . , λn−1, as in [10, Theorem A.56].

Then OAjO−1 is the diagonal matrix with diagonal entries λj0, . . . , λ
j
n−1. The

result follows from [10, Theorem A.61].

Definition 2.36. The tensor product of two graphs X1 and X2, denoted

by X1 ⊗X2, is the graph with V (X1 ⊗X2) = V (X1) × V (X2) and (u, v) is

adjacent to (x, y) in E(X1 ⊗X2) if and only if u is adjacent to x in X1 and

v is adjacent to y in X2.

Since the tensor product on graphs is associative [8], a finite tensor product

X1 ⊗X2 ⊗ · · · ⊗Xs of graphs X1, X2, . . . , Xs (where s ≥ 1 ) is well-defined.

Theorem 2.37. Let X1 and X2 be graphs with eigenvalues λ1, λ2, . . . , λn and

µ1, µ2, . . . , µm, respectively. Then the eigenvalues of X1 ⊗ X2 are λiµj, 1 ≤
i ≤ n, 1 ≤ j ≤ m.

Proof. Let A be adjacency matrix of X1 and B be adjacency matrix of X2.

It is easy to see that adjacency matrix of X1 ⊗ X1 is tensor product of

matrices, A ⊗ B. Let λ be an eigenvalue of A corresponding to eigenvector

x = (x1, x1, . . . , xm). Similarly, µ be an eigenvalue of B corresponding to

eigenvector y = (y1, y1, . . . , yn). Then we have,

(A⊗B)(x⊗ y) = Ax⊗By = λx⊗ µy = λµ(x⊗ y).

2.5 Strongly regular graph

In the case of a k-regular graph, the regularity only tells us about the order

of each vertex in the graph. In this section, we introduce strongly regular

graphs, which also give information about a number of adjacent and non-

adjacent vertices.
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We will also show that the spectrum of connected strongly regular graphs

comprises exactly three distinct eigenvalues and study how the eigenvalues,

as well as their multiplicities, are only dependent on certain parameters as-

sociated with such graphs. Finally, we will end with an example of a Paley

graph. This section is based on [4, Chapter 9] and [7, Chapter 10]. We will

start by introducing the parameters related to such graphs and study their

properties.

Definition 2.38. Let X be a regular graph that is neither complete nor

empty. We say that X is strongly regular graph with parameters (n, k, λ, τ)

if it is a k-regular graph of order n, in which every pair of adjacent vertices

has λ common neighbors and every pair of non adjacent vertices have µ

common neighbors.

Example 2.39. The simplest example of strongly regular graph is the graph

C4 as seen in Fig 2.1(a). Clearly, the graph is 2-regular or order 4. Every pair

of adjacent vertices has 1 neighbor in common and every pair of non-adjacent

vertices has 0 neighbor in common. Thus, C4 is a (4, 2, 1, 0) strongly regular

graph.

Remark 2.40. If X is a (n, k, λ, µ) strongly regular graph and X̄ be its

graph complement with V (X̄) = V (X) and E(X̄) = E(Kn)\E(X). Then X̄

is also a strongly regular graph with parameters (n, k̄, λ̄, µ̄) given by:

k̄ = n− k,

λ̄ = n− 2k + µ− 2, and

µ̄ = n− 2k + λ.

A strongly regular graph X is called primitive if X and its compliment are

complete. A non-primitive graph is called imprimitive. The lemma provides

a characterization of imprimitive strongly regular graphs.

Lemma 2.41. Let X be an (n, k, λ, µ) strongly regular graph. Then the

following statments are equivalent:

1. X is not connected,
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2. µ = 0,

3. λ = k − 1, and

4. X is isomorphic to graph with m number of components as Kk+1 for

some m > 1.

Thus, in the case of imprimitive strongly regular graph X, finding the spec-

trum for X is equivalent to finding spectrum of Kk+1. We will now show that

for any primitive strongly regular graph there are exactly three eigenvalues

in its spectrum.

Theorem 2.42. Let X be a (n, k, λ, µ) primitive strongly regular graph.

Then

Spec(X) =

(
k θ τ

1 mθ mτ

)
,

where

θ, τ =
(λ− µ)±

√
(λ− µ)2 + 4(k − µ)

2
,

and

mθ,mτ =
1

2

 1

n
∓ 2k + (n− 1)(λ− µ)√

(λ− µ)2 + 4(k − µ)

 .

Proof. Let A = A(X) the (uv)th-entry of the matrix A2 is the number of

walks of length two from the vertex u to the vertex v. In a strongly regular

graph, this number is determined only by whether u and v are equal, adjacent,

or distinct and nonadjacent. Therefore, we get the equation

A2 = kI + λA+ µ(J − I − A). (2.4)

Here the (uv)th-entry of kI counts the number of walks length 2 starting and

ending at u. The (uv)th-entry of λA counts the number of walks of length 2

starting from u to its adjacent vertex. Finally the (uv)th-entry of µ(J−I−A)
counts the number of walks of length 2 starting from u to its non-adjacent

verter.
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We rewrite (2.4) as

A2 − (λ− µ)A− (k − µ)I = µJ

and can use it to determine the eigenvalues of A. Since X is regular with

valency k, it follows that k is an eigenvalue of A with eigenvector 1. We know

by [7, Lemma 8.4.1] that any other eigenvector of A is orthogonal to 1. Let

z be an eigenvector for A with eigenvalue θ ̸= k. Then

A2z − (λ− µ)Az − (k − µ)Iz = µJz = 0,

so

θ2 − (λ− µ)θ − (k − µ) = 0.

Therefore, the eigenvalues of A different from k must be zeros of the quadratic

x2 − (λ − µ)x − (k − µ). If we set ∆ = (λ − µ)2 + 4(k − µ) and denote the

two zeros of this polynomial by θ and µ, we get

θ =
(λ− µ) +

√
∆

2
and

τ =
(λ− µ)−

√
∆

2
.

Now, θτ = (µ − k), and so, provided that µ < k, we get that θ and τ

are nonzero with opposite signs. Assuming that θ > 0, we see that the

eigenvalues of a strongly regular graph are determined by its parameters.

To see the multiplicities of the eigenvalues, let mθ and mτ be the multi-

plicities of θ and τ , respectively. Since k has multiplicity equal to one and

the sum of all the eigenvalues is the trace of A (which is 0), we have

mθ +mτ = n− 1, mθθ +mττ = k.

Hence,

mθ = −(n− 1)τ + k

θ − τ
and mτ =

(n− 1)θ + k

θ − τ
,
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and so,

(θ − τ)2 = (θ + τ)2 − 4θτ = (λ− µ)2 + 4(k − µ) = ∆.

Substituting the values for θ and τ into the expressions for the multiplicities,

we get

mθ =
1

2

(
(n− 1)− 2k + (n− 1)(λ− µ)√

∆

)
,

and

mτ =
1

2

(
(n− 1) +

2k + (n− 1)(λ− µ)√
∆

)
.

We will now look at a well-known example of a primitive strongly regular

graph.

Definition 2.43. Let p be a prime number and n be a positive integer such

that pn ≡ 1 (mod 4). The graph P = (V,E) with

V (P ) = Fpn and E(P ) =
{
{x, y} : x, y ∈ Fpn , x− y ∈

(
F×
pn

)2}
is called the Paley graph of order pn.

Note that the set E(P ) in the Definition 2.43 of Paley graph is well-defined

because x−y ∈
(
F×
pn

)2
if and only if y−x ∈

(
F×
pn

)2
. Since x−y = −1(y−x),

we need only to show that −1 ∈
(
F×
pn

)2
.

Example 2.44. Let P be a Payley graph as defined above of order q = pn,

then P is strongly regular graph with the parameters(
q,
q − 1

2
,
q − 5

4
,
q − 1

4

)
.

Then by Theorem 2.42 we get

Spec(P ) =

(
q

−1+
√
q

2

−1−√
q

2

1 q−1
2

q−1
2

)
.
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2.6 Cayley Graph

In this section, we will introduce an important class of regular graphs called

Cayley graphs, which are graphs that capture the abstract structures of

groups. Given a group and a subset of that group, we can construct a Cayley

graph with respect to the subset. The properties of the group often determine

the properties of its Cayley graph and vise versa.

Definition 2.45. Let G be a group and Γ ⊆ G. We say that Γ is a symmetric

subset of G if γ ∈ Γ, then γ−1 ∈ Γ.

Example 2.46. Consider the group Z6. Consider subsets of Z6, Γ1 =

{1, 2, 5} and Γ2 = {1, 3, 5}. Clearly, Γ1 is not symmetric since −2 = 3 /∈ Γ1,

but Γ2 is symmetric.

Definition 2.47. Let G be a finite group and Γ ⊆ G be symmetric. The

Cayley graph on G with respect to Γ is defined by Cay(G,Γ) := X(V,E),

where

1. V = G, and

2. for x, y ∈ G, {x, y} ∈ E if and only if y−1x ∈ Γ.

Example 2.48. Consider the group Z6 and Γ = {1, 3, 5}. Then the Cay(Z6,Γ)

has vertex set V = Z6 and edge set E = {{0, 1}, {0, 3}, {0, 5}, {1, 2}, {1, 4},
{2, 3}, {2, 5}, {3, 4}, {4, 5}}.

Proposition 2.49. Let G be a finite group and Γ ⊆ G be symmetric. Then:

1. Cay(G,Γ) is |Γ|-regular, and

2. Cay(G,Γ) is connected if and only if Γ generates G.

Proof. 1. For a vertex g of the graph Cay(G,Γ), let Eg denote the set of

edges incident to g. By definition, it is clear that

Eg = {{g, gγ} | γ ∈ Γ} =⇒ |Eg| = |Γ|.
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2. Suppose that Cay(G,Γ) is connected. Then for any two vertices a, b ∈
G, there is a path in Cay(G,Γ) joining them, that is, there exists

γ1, γ2, · · · , γr ∈ Γ such that

a = bγ1γ2 · · · γr =⇒ b−1a = γ1γ2 · · · γr.

Since the vertices chosen were arbitrary, it proves that Γ generates G.

Conversely, suppose that Γ generates G. Then for any g ∈ G, there

exists γ1, γ2, · · · , γr ∈ Γ such that g = γ1γ2 · · · γr. This implies that all

the vertices are connected to the identity element of G, which proves

the assertion.



3. THE ALON-BOPPANA

THEOREM

Study of graph spectra [4, 5] has wide applications in the areas of computer

science [9], chemistry [12] as well as communication systems [10]. In this

chapter, we define a discreet analog of the Cheeger constant for a graph X,

also known as the isoperimetric constant (h(X)), measures the connectivity

of X. In Section 3.2 we study the proof of the Rayleigh-Ritz Theorem,

which provides a method to calculate the second-largest eigenvalue of a graph.

Additionally, we see the relation between h(X) and Spec(X). In section 3.3,

we look at a combinatorial proof of the Alon-Boppana theorem as stated

by A. Lubotsky, P. Sarnak, and R. Philips [14] in their seminal paper on

Ramanujan graphs.

3.1 Isoperimetric constant

One can see any communication network as a graph, where entities that want

to communicate are vertices, and the connection between them is represented

by edges. Then two entities can communicate if there is a path from one of

them to the other, and the larger the length of the path, the longer it takes

for the communication. Thus, a communication network is efficient if it is

reliable and fast, i.e., if the graph is “well-connected”.

Definition 3.1. Let X be a graph and F ⊂ V (X). The boundary of F ,

denoted by ∂F , is defined to be the set of edges with one end point in F and

one endpoint in V (X) \ F .

Definition 3.2. The isoperimetric constant or the Cheeger constant of a
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graph X, denoted by h(X), is defined as follows

h(X) = min

{
|∂F |
|F |

∣∣∣∣ F ⊂ V (X) and |F | ≤ |V (X)|
2

}
.

The boundary of a subset F of V (X) tells us the number of connections

between the set and its complement. Thus, the larger the boundary, the more

the number of connections between the subset F and its complement. Thus,

the higher the value of the isoperimetric constant, the more “well-connected”

the graph is.

Example 3.3. In Figure (2.1) below, we see all possible F ⊂ V (C4) such

that |F | ≤ |V (C4)|/2.

C4
|∂F1|
|F1| = 2 |∂F2|

|F2| = 1 |∂F3|
|F3| = 2

Fig. 3.1: Computing h(C4).

Thus h(C4) = 1.

Definition 3.4. Let (an) be a sequence of nonzero real numbers. We say

that (an) is bounded away from zero if there exists ϵ > 0 such that an ≥ ϵ

for all n.

Definition 3.5. Let k be a positive integer. Let (Xn) be a sequence of k-

regular graphs such that |Xn| → ∞ as n → ∞. We say that (Xn) is an

expander family if the sequence (h(Xn)) is bounded away from zero.

Remark 3.6. One can think of expander families as infinite families of “well-

connected” graphs, particularly from the viewpoint of communication net-

works.
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Example 3.7. Consider (Cn), a sequence of 2-regular connected graphs. If

m is a fixed integer such that 1 ≤ m ≤ n/2 then,

min

{
|∂F |
|F |

∣∣∣∣ F ⊂ V and |F | = m

}
=

2

m
.

Note that there exists a F ⊂ V (Cn) such that |F | is n/2 or (n − 1)/2,

depending on whether n is even or odd. Therefore,

h(Cn) = min
F⊂V

0<|F |<n/2

{
|∂F |
|F |

}
=

4/n, if n is even and

4/n− 1, if n is odd.

Therefore h(Cn) → 0 as n→ ∞. Thus, (Cn) is not an expander family.

3.2 The Rayleigh-Ritz Theorem

Definition 3.8. Let X be a finite set and f0 be the function that is equal

to 1 for all of X. Define,

L2(X,R) = {f : X → R}, (3.1)

and L2
0(X,R) = {f ∈ (X,R) : ⟨f, f0⟩2 = 0}

= {f ∈ (X,R) :
∑
x∈X

f(x) = 0}. (3.2)

Theorem 3.9. (Rayleigh-Ritz) Let X = (V,E) be a k-regular graph with

A = A(X). Then,

λ1(X) = max
f∈L2

0(V,R)

⟨Af, f⟩2
∥f∥22

= max
f∈L2

0(V,R)
∥f∥22=1

⟨Af, f⟩2. (3.3)

Consequently,

k − λ1(X) = min
f∈L2

0(V,R

⟨∆f, f⟩2
∥f∥22

= min
f∈L2

0(V,R)
∥f∥22=1

⟨∆f, f⟩2. (3.4)
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Proof. By Spectral theorem, there exists an orthanormal basis {f0, f1, . . . , fn}
for L2(V,R), such that every fi is a real valued eigenfuntion of A associated

with the eigenvalue λi = λi(X) where i = 0, 1, . . . , n− 1.

Consider f ∈ L2
0(V,R) with ∥f∥22 = 1. Then we have f = c0f1 + c1f1 + · · ·+

cn−1fn−1, where ci ∈ R for all i = 0, 1, . . . , n− 1. So,

0 = ⟨f, f0⟩2 = c0⟨f0, f0⟩2 + c1⟨f1, f0⟩2 + · · ·+ cn−1⟨fn−1, f0⟩2 = c0.

Therefore,

f = c1f1 + · · ·+ cn−1fn−1.

Now,

⟨Af, f⟩2 =

〈
A

n−1∑
i=1

cifi,
n−1∑
i=1

cifi

〉
2

=

〈
n−1∑
i=1

ciλifi,
n−1∑
i=1

cifi

〉
2

=
n−1∑
i=1

n−1∑
j=1

ciλicj ⟨fi, fj⟩2 =
n−1∑
i=1

ci
2 λi

≤ λ1

n−1∑
i=1

ci
2 = λ1∥f∥22 = λ1.

Since this is holds for any f ∈ L2
0(V,R) with ∥f∥22 = 1, we have

λ1 ≥ max
f∈L2

0(V,R)
∥f∥22=1

⟨Af, f⟩2.

Taking f = f1, we get ⟨Af, f⟩2 = ⟨λ1f, f⟩2 = λ1, and so it follows that

λ1(X) = max
f∈L2

0(V,R)

⟨Af, f⟩2
∥f∥22

= max
f∈L2

0(V,R)
∥f∥22=1

⟨Af, f⟩2.
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Consequently, by Theorem 2.30, we get that

k − λ1(X) = min
f∈L2

0(V,R

⟨∆f, f⟩2
∥f∥22

= min
f∈L2

0(V,R)
∥f∥22=1

⟨∆f, f⟩2.

By applying Rayleig-Ritz, theorem we obtain a lower bound on h(X) in terms

of the spectral gap of X given by k − λ1(X).

Theorem 3.10. Let X be a k-regular graph. Then,

k − λ1(X)

2
≤ h(X) ≤

√
2k(k − λ1(X)). (3.5)

Thus, we get an alternate condition to check whether a sequence of graphs

given by (Xn) forms an expander family.

Corollary 3.11. Let (Xn) be a sequence of k-regular graphs with |Xn| → ∞
as n → ∞. Then (Xn) is a family of expanders if and only if the sequence

(k − λ1 (Xn)) is bounded away from zero.

3.3 Alon-Boppana Theorem

3.3.1 Catalan Numbers

Definition 3.12. Let a = (a1, a2, . . . , a2k) be a sequence where ai = ±1 for

i = 1, 2, . . . , 2k. We say that the sequence a is balanced if
2k∑
i=1

ai = 0 and

n∑
i=1

ai ≥ 0 for n = 1, 2, . . . , 2k.

Example 3.13. The sequence a = (1, 1,−1, 1,−1,−1) is balanced since the

sum is zero and
n∑

i=1

ai ≥ 0 for n = 1, 2, . . . , 6.

However, the sequence a = (1, 1,−1,−1,−1, 1) is unbalanced, as even

though the sum is zero at n = 5, we have
n∑

i=1

ai = −1 ≤ 0.
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Remark 3.14. Let X be a connected graph. Then for a fixed vertex v0 ∈
V (X), every walk w = (v0, e1, v1, . . . , ek, vk) can be seen as a sequence a as

above, where ai = +1 when ei takes a step away from v0 and ai = −1 when

ei takes a step towards v0. Thus, when the sequence a is balanced, w is a

unfactorable walk.

Definition 3.15. Let n be a positive integer. The nth Catalan number Cn is

the number of balanced sequences of length 2n consisting of n positive ones

and n negative ones.

By convention C0 = 1.

Remark 3.16. It is easy to see that definition above is equivalent to the

recurring relation as stated below.

Cn+1 =
n∑

i=0

CiCn−i and C0 = 1.

Lemma 3.17. [10, Lemma 3.23] The nthCatalan number is given by Cn =

1
n+1

(
2n

n

)
.

3.3.2 Universal Covering Graphs

Definition 3.18. Let x be a connected k-regular graph. Let v0 ∈ V (X) be

a fixed vertex. The universal covering graph, denoted by Uv0 , of X using v0

as a base point is constructed as follows.

1. Each vertex of Uv0 is a non backtracking walk of X that begins at v0.

2. Two vertices are adjacent via an edge of multiplicity 1 if one walk

extends the other by a single step.

Example 3.19. Consider the graph X as shown in Figure 3.2. Then uni-

versal covering graph of X corresponding to fixed vertex v0 is Uv0 as in the

Figure 3.3. Notice that Uv0 is an infinte tree.

Proposition 3.20. Let X be a connected k-regular graph . Let Uv0 be the

universal covering graph of X constructed using some fixed vertex v0 ∈ V (X)
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Fig. 3.2: Graph X.

Fig. 3.3: Universal covering graph UV0 .

as a base point. Let d be a fixed positive integer. Then the number of unfac-

torable walks of length 2d in Uv0 that begin and end at (v0) equals

1

d

(
2d− 2

d− 1

)
k(k − 1)d−1.

Definition 3.21. Let X be a connected k-regular graph Uv0 be the universal

covering graph of X constructed using some fixed vertex v0 ∈ V as a base

point. We define the covering map ϕv0 : Uv0 → X, of Uv0 as follows:

1. For a vertex (v0, e0, v1, . . . , vn−1, en−1, vn) of Tv0 , ϕv0(v0, e0, v1, . . . , vn−1,

en−1, vn ) = vn.

2. Let e be the edge of T that is incident to (v0, e0, v1, . . . , vn−1, en−1, vn)
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and (v0, e0, v1, . . . , vn, en, vn+1), ϕv0(e) = en.

Lemma 3.22. Let X, v0, Uv0 , ϕv0 be as described above. The number of closed

walks of length 2d in X beginning and ending at v0 is greater than or equal to

the number of closed walks of length 2d in Uv0 beginning and ending at (v0).

3.3.3 A combinatorial proof of the Alon-Boppana

theorem

Definition 3.23. Let X be a k-regular graph with n vertices. We define

λ(X) =

max{|λ1(X)|, |λn−1(X)|}, if X is non bipartite, and

max{|λ1(X)|, |λn−2(X)|}, if X is bipartite.

Lemma 3.24. lim
d→∞

(
2d− 2

d− 1

)1/2d

= 2.

Theorem 3.25. If (Xn) is a sequence of connected k-regular graphs with

|Xn| → ∞ as n→ ∞, then

lim inf
x→∞

λ(Xn) ≥ 2
√
k − 1.

Proof. For n ≥ 3, let X be a k-regular graph of order n and A = A(X). Let

w(2d) be the number of walks of length 2d in X then by [10, Lemma A.60],

we have
n−1∑
i=0

λi(X)2d = tr
(
A2d
)
=

n∑
i=1

(
A2d
)
i,i
= w(2d).

Given a vertex v ∈ V , let ρν(2d ) be the number of walks of length 2d

beginning and ending at (v) in the covering graph Uv. By Lemma 3.22, we

have
n−1∑
i=0

λi(X)2d = w(2d ) ≥
n∑

i=1

ρvi(2d). (3.6)

Let ρ′v(2d) denote the number of unfactorable closed walks of length 2d in

the covering graph Uv beginning and ending at (v). Then, ρv(2d) ≥ ρ′v(2d).
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By Lemma 3.20, we have

ρ′v(2d ) =
1

d

(
2d− 2

d− 1

)
k(k − 1 )d−1. (3.7)

Hence, ρ′v(2d) is independent of the choice of v. Henceforth, we denote ρ
′
v(2d)

by ρ′(2d). So, from (2.6) , we have

n−1∑
i=0

λi(X, )
2d ≥

n∑
i=1

ρ′(2d) = nρ′(2d).

Now, we consider the following cases:

• If X is bipartite, then by Proposition 2.26 we have λ0(X) = k and

λn−1(X) = −k, so

(n− 2)λ(X)2d ≥
n−2∑
i=1

λi(X)2d ≥ nρ′(2d)− 2k2d

=⇒ λ(X)2d ≥ n

n− 2
ρ′(2d)− 2d2d

n− 2
≥ ρ′(2d)− 2k2d

n− 2
.

• If X is not bipartite, then λ0(X) = k, so

(n− 1)λ(X)2d ≥
n−1∑
i=1

λi(X)2d ≥ nρ′(2d)− k2d

=⇒ λ(X)2d ≥ n

n− 1
ρ′(2d)− k2d

n− 1
≥ ρ′(2d)− 2k2d

n− 2
.

In either case, we have

λ(X)2d ≥ ρ′(2d)− 2k2d

n− 2
.

Letting d→ ∞ and applying Lemma 3.24, we get the desired result.

Thus, the Alon-Boppana theorem allows us to infer that for a large, k-

regular graph X, the strongest upper bound for λ(X) is 2
√
k − 1. Since
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(k−λ(X)) ≤ (k−λ1(X)), for large k-regular graphs the best spectral gap is

k− 2
√
k − 1. This motivates the study of Ramanujan graphs [14, 16], which

are regular graphs with spectral gaps as large as possible.

Definition 3.26. Let X be a k-regular graph. We say that X is Ramanujan

if λ(X) ≤ 2
√
k − 1.

Example 3.27. The complete graph Kn is a Ramanujan graph for n ≥ 3.

Its spectrum is given by

Spec (Kn) =

(
n− 1 −1

1 n− 1

)
.

Since Kn is n− 1 regular, (n− 1) is the trivial eigenvalue of Kn. Therefore,

λ (Kn) = 1 < 2
√
n− 2 for n ≥ 3.



4. QUADRATIC UNITARY

CAYLEY GRAPHS

In this chapter, we will look at a special family of Cayley graphs called

quadratic unitary Cayley graphs. Furthermore, we also calculate their spec-

trum for a few cases. Finally, we will study the conditions under which these

graphs are Ramanujan. This chapter is based on the results in [13].

4.1 Introduction

Definition 4.1. Let R be a finite commutative ring. The quadratic unitary

Cayley graph (QUCG), denoted by GR, is the Cayley graph Cay(R, TR).

Here, TR = QR ∪ (−QR) where QR = {u2 : u ∈ R×}.

In the above definition while defining Cay(R, TR) we consider R as group

under addition. Thus, V (GR) = R and E(GR) = {{x, y} : x, y ∈ R and x−
y ∈ TR}.

Remark 4.2. Notice that Cay(R, TR) is well defined as TR = QR ∪ (−QR)

is a symmetric subset of R under the addition operation.

Example 4.3. Let R = Z5 then Z×
5 = Z5\{0̄}. Now QZ5 = {1̄, 4̄} and

−QZ5 = {−1̄,−4̄} = QZ5 . Hence, TZ5 = {1̄, 4̄} i.e. x, y ∈ Z5 are adjacent iff

x− y = 1̄ or x− y = 4̄. The graph GZ5 is depicted in Figure 4.1 below..

From Proposition 2.49 dicussed in Chapter 2 we know that GR is con-

nected if and only if the set TR generates R as a group under addition. Clearly

in the above example we see that TZ5 generates Z5 hence the graph GZ5 is

connected, but this might not be true for every QUCG.
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Fig. 4.1: The QUCG GZ5 .

Example 4.4. Let R = Z4 × Z4, so R
× = {(1, 1), (1, 3), (3, 1), (3, 3)}. We

get QR = {(1, 1)} and −QR = {(3, 3)}, so TQR
= {(1, 1), (3, 3)}. It is clear

that the set TR does not generate R as a group under addition. Figure 4.2

below shows how the graph GR is disconnected with four components.

Fig. 4.2: A disconnected QUCG.

Example 4.5. Let P be a Paley graph of order q = pn. Then

V (P ) = Fq and E(P ) =
{
{x, y} : x, y ∈ Fq, x− y ∈

(
F∗
q

)2}
.

We can observe that Paley graph is a QUCG for Fq. This makes sense because

Fq is a finite field, which is also a finite commutative ring.
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Proposition 4.6. Let Fq be a finite field of order q = pn for odd prime p

and some non negative integer n. Let GFq be corresponding QUCG. Then we

have the following.

1. −1 ∈ QFq if and only if q ≡ 1 (mod 4).

2. |TFq | = |QFq | = q−1
2

if and only if q ≡ 1 (mod 4).

Proof. For a finite field Fq we have Fq
× = Fq\{0}.

1. If −1 ∈ QFq then there exists x ∈ Fq such that x2 = −1 i.e. x4 =

1. Therefore, subgroup generated by x has order 4. It follows from

Lagrange’s theorem 4 | |Fq| = q − 1, hence we get that q ≡ 1 (mod 4).

Conversely, suppose that q ≡ 1 (mod 4). Let Fq
× = ⟨g⟩ for some

g ∈ Fq, since Fq
× forms a cyclic group under multiplication. Then

for some positive integer m, gm = −1 and gq−1 = 1. We then have

g2m = 1, and by Lagrange’s theorem we get q− 1|2m i.e. m is an even

integer. If m = 2b, then −1 = gm = g2b = (gb)
2
. Hence, we get that

−1 ∈ QFq .

2. Note that |QFq | =
∣∣F×

q

∣∣ = q−1
2
. By part 1., we know that −1 ∈ QFq

if and only if q ≡ 1 (mod 4). Thus, if −1 ∈ QFq , then QFq = −QFq ,

implying that QFq ∪ −QFq = QFq = TFq . Hence, we get that |TFq | =
|QFq | = q−1

2
if and only if q ≡ 1 (mod 4).

Corollary 4.7. Let Fq be a finite field of order q = pn for odd prime p and

some non-negative integer n. Let GFq be corresponding QUCG. Then we have

the following.

1. −1 /∈ QFq if and only if q ≡ 3 (mod 4).

2. |TFq | = 2|QFq | = q − 1 if and only if q ≡ 3 (mod 4).
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4.2 Spectra of quadratic unitary Cayley

graphs

Let R be a finite commutative ring. From [3, Theorem 3.1.4] we know that

R = R1 × R2 × · · · × Rs where Ri, 1 ≤ i ≤ s are local rings with maximal

ideals Mi of order mi such that

|R1|
m1

≤ |R2|
m2

≤ · · · ≤ |Rs|
ms

.

Also, note that

|R×| =
s∏

i=1

|R×
i | =

s∏
i=1

|Ri| −mi =
s∏

i=1

mi

(
|Ri|
mi

− 1

)
. (4.1)

Let R0 be a local ring with maximal idealM0 with orderm0 such that |R0|
m0

≡ 3

(mod 4). In this section, we determine the spectra of GR and GR0×R under

the condition that |Ri|
mi

≡ 1 (mod 4) for 1 ≤ i ≤ s.

We begin with studying the spectra of QUCG for a finite local ring R. First,

we recall the following well-known from ring theory.

Lemma 4.8. [1, Proposition 2.1] Let R be a finite local ring and m the order

of its unique maximal ideal. Then there exists a prime p such that |R|, m
and |R|/m are all powers of p.

Lemma 4.9. Let R be a finite local ring with maximal ideal M . If |R|/|M |
is odd, then QR

∼= QR/M ×M .

Proof. Define ρ : R× → (R/M)×by ρ(r) = r +M for r ∈ R×. Then ρ is

a well-defined surjective homomorphism from the multiplicative group R×

to the multiplicative group (R/M)× with kernel ker(ρ) = 1 + M . Thus,

R×/(1+M) ∼= (R/M)× and the corresponding isomorphism from R×/(1+M)

to (R/M)×is given by

r(1 +M) 7→ r +M for r ∈ R×.
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Since |1+M | = pt (as |M | = pt) and |R×| /|1+M | = (|R| − |M |)/|M | =
ps − 1, |1 +M | and |R×| /|1 +M | are coprime, and so 1 +M is a Sylow p-

subgroup of R×. Thus, R× ∼= R×/(1+M)× (1+M), say, with isomorphism

given by

r 7→ (r̂(1 +M), 1 +mr) ,

where r̂ ∈ R and mr ∈M are determined by r ∈ R×.

Since R×/(1 +M) ∼= (R/M)×, it follows that R× ∼= (R/M)× × (1 +M)

and the corresponding isomorphism is given by ψ(r) = (r̂ +M, 1 +mr) for

r ∈ R×. Since 1 +M is a Sylow p-subgroup of R×and p is odd, we have

(1 +M)2 = 1 +M . This together with R× ∼= (R/M)× × (1 +M) implies

that QR
∼= QR/M × (1 +M) as groups with the corresponding isomorphism

giving by

ψ
(
r2
)
=
(
r̂2 +M, (1 +mr)

2) (4.2)

for r ∈ R×. Thus, by choosing appropriate isomorphism from (1+M) to M

we get that QR
∼= QR/M ×M .

Theorem 4.10. Let R be a finite local ring with maximal idealM . If |R|/|M |
is odd, then GR

∼= GR/M⊗
◦
K |M |.

Proof. By Definition 2.19, to show that GR
∼= GR/M⊗

◦
K |M | it suffices to show

that there exists a bijective map, τ : V (GR) → V (GR/M⊗
◦
K |M |) such that

{x, y} ∈ E(GR) if and only if {τ(x), τ(y)} ∈ E(GR/M⊗
◦
K |M |). Note that

V (GR) = R and V (GR/M⊗
◦
K |M |) = R/M ×M .

Since R is a local ring and M is its maximal ideal, we have R× = R\M
and R/M is a finite field. By Lemma 4.8 we have |R|/|M | = ps and

|M | = pt for a prime p and some integers s ≥ 1, t ≥ 0. Write R/M =

{r1 +M, r2 +M, . . . , rps +M}. Then for each r ∈ R there is a unique i

and nr ∈ M such that r = ri + nr. Let τ : R → R/M × M be defined

by τ(r) = (ri +M,nr) = (r +M,nr). Since τ is clearly surjective, it is a

bijection from R to R/M ×M as the two sets have the same size.

We now show that {x, y} ∈ E(GR) ⇐⇒ {τ(x), τ(y)} ∈ E(GR/M⊗
◦
K |M |).

Note that, GR/M⊗
◦
K |M | is defined on R/M×M such that (x+M,a), (y+M, b)
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are adjacent if and only if x+M, y+M are adjacent in GR/M (since any pair

of vertices are adjacent in ⊗
◦
K |M |). Suppose that x, y ∈ R are adjacent in

GR, that is, by the definition 4.1, x − y = ±r2 for some r ∈ R×. Without

loss of generality, we may assume x − y = r2 so that (x +M) − (y +M) =

r2 +M = (r +M)2. Since r /∈ M and M is the zero-element of the field

R/M , it follows that (x+M)− (y +M) ∈ QR/M . Therefore, τ(x) and τ(y)

are adjacent in GR/M⊗
◦
K |M |. So we have proved that GR is embedded into

GR/M⊗
◦
K |M | via τ as a spanning subgraph since the two graphs have the

same number of vertices.

Conversely, if x+M, y+M are adjacent in GR/M then we have following

cases.

• If |R|/m ≡ 1 (mod 4), then by Proposition 4.6, we have −1 ∈ QR/M

and −1 ∈ QR. By Lemma 4.8, the degree of GR/M⊗
◦
K |M | is equal to∣∣QR/M

∣∣ |M | = |QR|, which is the same as the degree of GR.

• If |R|/m ≡ 3 (mod 4), then by Corollary 4.7, we have −1 /∈ QR/M and

−1 /∈ QR, and the degree of GR/M⊗
◦
K |M | is equal to 2

∣∣QR/M

∣∣ |M | =
2 |QR|, which is also the same as the degree of GR.

In either case GR and GR/M⊗
◦
K |M | must be isomorphic to each other because

they have the same degree and one is a spanning subgraph of the other.

Theorem 4.11. Let R be a local ring with maximal ideal M of order m.

1. If |R|/m ≡ 1 (mod 4), then

Spec (GR) =

(
|R|−m

2

m(−1+
√

|R|/m)

2

m(−1−
√

|R|/m)

2
0

1 (|R|/m− 1)/2 (|R|/m− 1)/2 |R| − |R|/m

)
.

2. If |R|/m ≡ 3 (mod 4), then

Spec (GR) =

(
|R| −m −m 0

1 |R|/m− 1 |R| − |R|/m

)
.

Proof. Let R be a local ring with maximal ideal M of order m.
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1. If |R|/m ≡ 1 (mod 4), then |R|/m is an odd prime power and GR/M

coincides with the Paley graph of order |R|/m as seen in the Example

4.5. As we calculated in Example 2.44, the spectrum of Paley graph P

of order q is,

Spec(P ) =

(
q

−1+
√
q

2

−1−√
q

2

1 q−1
2

q−1
2

)
.

Also, recall from Example 2.25 that

Spec(K̊n) =

(
n 0

1 n− 1

)
.

Thus, by Proposition 2.37 we get the required result.

2. If |R|/m ≡ 3 (mod 4), then from Corollary 4.7 and Proposition 2.49,

we get that GR/M is a complete graph of order |R|/m. We know that

A(K|R|/m) = Jn − In. Thus, if λ is as eigenvalue of Jn, λ − 1 is an

eigenvalue of Jn − In. Hence, the spectrum of GR/M given by

Spec(K|R|/m) =

(
|R|
m

− 1 −1

1 |R|/m− 1

)
.

Thus, by Proposition 2.37 we get the required result.

The next theorem gives us the condition under which GR is equal to graph

tensor product of GRi
, where Ri are finite local rings.

Theorem 4.12. Let A and B finite commutative rings then GA×B = GA⊗GB

if and only if −1 lies in at least one one of QA or QB.

Proof. Note that GA×B = Cay(A × B, TA×B). Since A and B are finite

commutative rings thus A × B is also a finite commutative ring with |A ×
B| = |A||B| with ring addition and multiplication as element wise-operations

respectively. Since

(A×B)× = {(a, b) | a ∈ A× and b ∈ B×},
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we get

TA×B = {(a2, b2), (−a2,−b2) | a ∈ A× and b ∈ B×}}.

Given GA = Cay(A, TA) and GB = Cay(B, TB), we get the graph GA⊗GB

defined by

V (GA ⊗ GB) = {(a, b) | a ∈ A and b ∈ B} = A×B = V (GA×B)

E(GA ⊗ GB) ={{(a1, b1), (a2, b2)} | {a1, a2} ∈ E(GA) and {b1, b2} ∈ E(GB)}

={{(a1, b1), (a2, b2)} | a1 − a2 ∈ TA and b1 − b2 ∈ TB}

={{(a1, b1), (a2, b2)} | (a1 − a2, b1 − b2) ∈ TA × TB}

Therefore, GA ⊗ GB = Cay(A×B, TA × TB).

Since TA × TB = {(a2, b2), (−a2, b2), (a2,−b2), (−a2,−b2) | a ∈ A× and b ∈
B×}}, it follows that TA×B ⊆ TA×TB. As V (GA×B) = V (GA⊗GB) = A×B,

we get that GA×B = GA ⊗ GB if and only if TA×B = TA × TB. Hence, it now

suffices to show that TA×B = TA × TB if and only if −1 lies in at least one

one of QA or QB.

If −1 /∈ QA and −1 /∈ QB, then both (−1, 1) and (1,−1) are elements of

TA × TB but neither of them is an element of TA×B. Thus, TA×B ̸= TA × TB

and so GA×B ̸= GA ⊗ GB. On the other hand, suppose that at least one of

QA and QB contains −1, then we have following cases.

• If −1 ∈ QA and −1 ∈ QB then it is easy to see that TA×B = TA × TB.

• If exactly one of QA and QB has −1. Without loss of generality we

may suppose −1 ∈ QA so that i2 = −1 for some i ∈ A×. Then for any

(a, b) ∈ (A×B)×and s, t ∈ {0, 1} we have

(
(−1)sa2, (−1)tb2

)
= (−1)t

(
(−1)(s−t)a2, b2

)
= (−1)t

((
i(s−t)a

)2
, b2
)
.

Hence TA × TB ⊆ TA×B. Therefore, we proved the required result.
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Theorem 4.13. Let R be a finite commutative ring such that R = R1×R2×
· · · ×Rs where Ri, 1 ≤ i ≤ s are local rings with maximal ideals Mi of order

mi. Then GR = GR1 ⊗GR2 ⊗ · · · ⊗ GRs if and only if there exists at most one

Rj such that −1 ∈ QRj
.

Proof. We prove the above using induction. The induction hypothesis states

that for some natural number s, GR = GR1 ⊗ GR2 ⊗ · · · ⊗ GRs if and only if

there exists at most one Rj such that −1 ∈ QRj
.

In the case when s = 1, the induction hypothesis holds trivially. The case

when s = 2 follows from Theorem 4.12. Using the induction on s suppose

that for the induction hypothesis holds for some integer k such that 2 ≤ k ≤ s

i.e., GR = GR1 ⊗ GR2 ⊗ · · · ⊗ GRk
if and only if there exists at most one Rj

such that −1 ∈ QRj
. Hence, we now show that the above hypothesis also

holds when s = k + 1.

Assume that there is at most one j between 1 and k + 1 such that −1 /∈
QRj

. Then (−1,−1, . . . ,−1) ∈ QR1×R2×···×Rk
or −1 ∈ QRk+1

no matter

whether 1 ≤ j ≤ k or j = k + 1, and hence GR = GR1×R2×···×Rk
⊗ GRk+1

by

Theorem 4.12 . On the other hand, by the induction hypothesis, we have

GR1×R2×···×Rk
= GR1 ⊗ GR2 ⊗ · · · ⊗ GRk

. Therefore, GR = GR1 ⊗ GR2 ⊗ · · · ⊗
GRk

⊗ GRk+1
.

Conversely, assume that GR = GR1 ⊗ GR2 ⊗ · · · ⊗ GRk
⊗ GRk+1

. We aim

to prove that there exists at most one j between 1 and k + 1 such that

−1 /∈ QRj
. Suppose we assume otherwise. Without loss of generality we may

assume that, for some integer t with 2 ≤ t ≤ k + 1, we have −1 /∈ QRj
for

1 ≤ j ≤ t and −1 ∈ QRj
for t < j ≤ k + 1. If t < k + 1, then by Theorem

4.12, since −1 ∈ QRk+1
we have GR = GR1×R2×···×Rk

⊗ GRk+1
. Similarly, if

t < k, then by Theorem 4.12, GR1×R2×···×Rk
= GR1×R2×···×Rk−1

⊗ GRk
, and

hence GR =
(
GR1×R2×···×Rk−1

⊗ GRk

)
⊗GRk+1

= GR1×R2×···×Rk−1
⊗GRk

⊗GRk+1
.

Continuing in this manner, we obtain GR = GR1×R2×···×Rt⊗GRt+1⊗· · ·⊗GRk+1
.

Comparing this with the assumption GR = GR1 ⊗GR2 ⊗· · ·⊗GRk
⊗GRk+1

, we

obtain that GR1×R2×···×Rt = GR1 ⊗ GR2⊗ · · · ⊗ GRt .

Our aim is to find spectrum of the QUCG GR, where R is a finite com-

mutative ring. Note that by Theorem 3.14, we can get the spectrum of GR
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since the spectrum of component QUCG for local rings is already know to

us from Theorem 4.11.

Define

λA,B = (−1)|B| |R×|

2s
∏
i∈A

(√
|Ri| /mi + 1

)∏
j∈B

(√
|Rj| /mj − 1

)

for disjoint subsets A,B of {1, 2, . . . , s}. In particular, λ∅,∅ = |R×| /2s.

Theorem 4.14. Let R be a finite commutative ring such that R = R1 ×
R2 × · · · × Rs where Ri is a local rings with maximal ideal Mi of order mi

and |Ri| /mi ≡ 1 (mod 4) for 1 ≤ i ≤ s. Then the eigenvalues of GR are

1. λA,B, repeated 1
2|A|+|B|

∏
k∈A∪B

(|Rk| /mk − 1) times, for all pairs (A,B)

of subsets of {1, 2, . . . , s} such that A ∩B = ∅; and

2. 0 with multiplicity |R| −
∑

A,B⊆{1,...,s}
A∩B=∅

(
1

2|A|+|B|

∏
k∈A∪B

(|Rk| /mk − 1)

)
.

Proof. Let R be as in our hypothesis such that |Ri| /mi ≡ 1 (mod 4) for

1 ≤ i ≤ s. From Theorem 4.11 (1), we get the spectrum of GRi
for 1 ≤ i ≤ s

to be

Spec (GRi
) =

(
|Ri|−mi

2

mi(−1+
√

|Ri|/mi)

2

mi(−1−
√

|Ri|/mi)

2
0

1 (|Ri|/mi − 1)/2 (|Ri|/mi − 1)/2 |Ri| − |Ri|/mi

)
.

Let λ be any eigenvalue of GR. By Theorem 2.37, we know that λ =
s∏

i=1

µi

where µi is some eigenvalue of GRi
. If at least one of the µi = 0, then λ = 0.

Suppose that µi ̸= 0 for each 1 ≤ i ≤ s, then each µi can take any of the

three values; |Ri|−mi

2
, |Ri|−mi

2(
√

|Ri|/mi+1
, −|Ri|+mi

2(
√

|Ri|/mi−1
. Then each of the non-zero

eigenvalues λ can be written as

λA,B = (−1)|B| |R×|

2s
∏
i∈A

(√
|Ri| /mi + 1

)∏
j∈B

(√
|Rj| /mj − 1

)
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for disjoint subsets A,B of {1, 2, . . . , s}. Here A is set of all µi which take

value |Ri|−mi

2(
√

|Ri|/mi+1)
and B is set of all µi which take value −|Ri|+mi

2(
√

|Ri|/mi−1)
. The

multiplicities of eigenvalues λA,B and 0 can be found as a direct consequence

of the Theorem 2.37.

Theorem 4.15. Let R be as in Theorem 4.14 such that |Ri| /mi ≡ 1 (mod 4)

for 1 ≤ i ≤ s, and let R0 be a local ring with maximal ideal M0 of order m0

such that |R0| /m0 ≡ 3 (mod 4). Then the eigenvalues of GR0×R are

1.
∣∣R×

0

∣∣ · λA,B, repeated 1
2|A|+|B|

∏
k∈A∪B

(|Rk| /mk − 1) times, for all pairs

(A,B) of subsets of {1, 2, . . . , s} such that A ∩B = ∅;

2. − |R×
0 |

|R0|/m0−1
· λA,B, repeated

|R0|/m0−1

2|A|+|B|

∏
k∈A∪B

(|Rk| /mk − 1) times, for all

pairs (A,B) of subsets of {1, 2, . . . , s} such that A ∩B = ∅; and

3. 0 with multiplicity |R| −
∑

A,B⊆{1,...,s}
A∩B=∅

(
|R0|/m0

2|A|+|B|

∏
k∈A∪B

(|Rk| /mk − 1)

)
.

The proof of this theorem is similar to that of Theorem 4.14 above.

4.3 Ramanujan quadratic unitary Cayley

graphs

In the past few decades, the expander families of Ramanujan graphs, par-

ticularly those arising from families of Cayley graphs have been extensively

studied (see [11, 14, 15, 16] and the references therein). In this section, we

see the conditions under which a QUCG is Ramanujan.

Lemma 4.16. [6] The only finite commutative local rings whose maximal

ideal has prime order p and Zp2 and Zp[x]/(x
2).

Theorem 4.17. Let R be as in Theorem 4.14 such that |Ri| /mi ≡ 1 (mod 4)

for 1 ≤ i ≤ s, and let R0 be a local ring with maximal ideal M0 of order m0

such that |R0| /m0 ≡ 3 (mod 4). Then the following hold:
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1. GR0 is Ramanujan if and only if |R0| ≥ (m0 + 2)2 /4;

2. GR is Ramanujan if and only if R is isomorphic to F5 × F5 or Fq for a

prime power q ≡ 1 (mod 4).

Proof. 1. From Theorem 4.11.2, we know that,

Spec (GR0) =

(
|R0| −m0 −m0 0

1 |R0|/m0 − 1 |R0| − |R0|/m0

)
.

Thus, we get that GR0 is Ramanujan if and only if m0 ≤ 2
√
|R0| −m0 − 1,

which is equivalent to |R0| ≥ (m0 + 2)2 /4.

2. From Theorem 4.14, we have eigenvalues of GR to be λA,B and 0 where

λA,B = (−1)|B| |R×|

2s
∏
i∈A

(√
|Ri| /mi + 1

)∏
j∈B

(√
|Rj| /mj − 1

)

for disjoint subsets A,B of {1, 2, . . . , s}. Note that, λA,B ≤ |R|×
2s

and λϕ,ϕ =
|R|×
2s

= λ0. Therefore, we get that GR is Ramanujan if and only if |λA,B| ≤
2
√

|R×| /2s − 1 for all eigenvalues λA,B ̸= ± |R×| /2s.
Note that |λA,B| < |R×| /2s is maximized if and only if

∏
i∈A

(√
|Ri| /mi + 1

)
∏
j∈B

(√
|Rj| /mj − 1

)
is minimized. Since |λA,B| ≤

∣∣λ∅,{1}∣∣ ̸= |R×| /2s,GR is

Ramanujan if and only if

∣∣λ∅,{1}∣∣ = |R×|

2s
(√

|R1| /m1 − 1
) ≤ 2

√
|R×| /2s − 1. (4.3)

Since 2
√

|R×| /2s − 1 < 2
√

|R×| /2s, this condition is not satisfied unless

∣∣R×∣∣ /2s < 4
(√

|R1| /m1 − 1
)2
. (4.4)
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In particular, if s ≥ 4, then since√ |R1|
m1

− 1

2

=
|R1|
m1

− 2

√
|R1|
m1

+ 1 <
|R1|
m1

− 1,

by (4.1), we have

|R×|
2s

≥ 1

2s

s∏
i=1

(
|Ri|
mi

− 1

)
≥ 4

(
|R1|
m1

− 1

)
> 4

√ |R1|
m1

− 1

2

.

Hence GR is not Ramanujan.

It remains to consider the case when 1 ≤ s ≤ 3.

• Case 1: s = 3.

By (4.1), we see that (4.4) takes the form

1

8

3∏
i=1

mi

(
|Ri|
mi

− 1

)
< 4

√ |R1|
m1

− 1

2

.

If
∏3

i=1mi ≥ 2 or |R3|
m3

≥ 9, then GR does not satisfy the conditon above,

and so it is not Ramanujan. Now assume
∏3

i=1mi = 1 and |R3|
m3

≤ 8.

Since |Ri|
mi

≡ 1 (mod 4), we get that R1
∼= R2

∼= R3
∼= F5. As GR does

not satisfy the 4.3, thus it is not Ramanujan.

• Case 2: s = 2.

In this case, (4.4) takes the form

1

4

2∏
i=1

mi

(
|Ri|
mi

− 1

)
< 4

√ |R1|
m1

− 1

2

.

Thus, if m1m2 ≥ 4 or |R2| /m2 ≥ 17, then GR is not Ramanujan.

Assume m1m2 ≤ 3 and |R2| /m2 ≤ 16. Since |Ri| /mi ≡ 1 (mod 4) for

i = 1, by Lemma 4.8, we have m1m2 = 1 or m1m2 = 3. From Lemma

4.16, we get that Z9 and Z3[X]/ (X2) are the only local rings whose
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unique maximal ideal has exactly three elements. But their residue

fields are Z3, which is a contradiction to |Ri| /mi ≡ 1 (mod 4) for

i = 1, 2. So m1m2 = 3 cannot occur. Thus, m1m2 = 1 and one of the

following occurs:

1. R1
∼= R2

∼= F5;

2. R1
∼= R2

∼= F9;

3. R1
∼= R2

∼= F13;

4. R1
∼= F5 and R2

∼= F9;

5. R1
∼= F5 and R2

∼= F13;

6. R1
∼= F9 and R2

∼= F13.

In Case 1., (4.3) is satisfied, and so GR is Ramanujan. In Cases 2-6,

(4.3) is not satisfied and so GR is not Ramanujan.

• Case 3: s = 1.

In this case, (4.4) takes the form

m1

(
|R1|
m1

− 1

)
< 8

√ |R1|
m1

− 1

2

.

Thus, if m1 ≥ 8, then GR is not Ramanujan.

Assume m1 ≤ 7. Since |R1|
m1

≡ 1 (mod 4), by Lemma 4.8 and Lemma

4.16, we have m1 = 1 or 5. In the former case, R1
∼= Fq, where q ≡ 1

(mod 4) is a prime power. Since (4.3) is satisfied, GFq is Ramanujan.

In the latter case, R1
∼= Z25 or Z5[X]/ (X2), and so (4.3) would show

that GR is not Ramanujan.

Theorem 4.18. Let R be as in Theorem 4.14 such that |Ri| /mi ≡ 1 (mod 4)

for 1 ≤ i ≤ s, and let R0 be a local ring with maximal ideal M0 of order m0

such that |R0| /m0 ≡ 3 (mod 4). Then GR0×R is Ramanujan if and only if

R0 ×R is isomorphic to F3 × F5,F3 × F9 or F3 × F13.
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Proof. Define

|λ| = max

{∣∣R×
0

∣∣ |λA,B| ,
∣∣R×

0

∣∣
|R0| /m0 − 1

|λA,B|

}
.

By Theorem 4.15, GR0×R is Ramanujan if and only if

|λ| ≤ 2

√
|R×

0 ||R×|
2s − 1

for λ ̸= |R×
0 ||R×|
2s

.

Let µA,B =
∏
i∈A

(√
|Ri| /mi + 1

)∏
j∈B

(√
|Rj| /mj − 1

)
. Note that |λ| <∣∣R×

0

∣∣ |R×| /2s is maximized if and only if min {µA,B, (|R0| /m0 − 1)µA,B} is

minimized. Then we have the following cases.

• Case 1:
√
|R1| /m1 < |R0| /m0.

In this case GR0×R is Ramanujan if and only if∣∣R×
0

∣∣ |R×|

2s
(√

|R1| /m1 − 1
) ≤ 2

√∣∣R×
0

∣∣ |R×| /2s − 1.

Since 2
√∣∣R×

0

∣∣ |R×| /2s − 1 < 2
√∣∣R×

0

∣∣ |R×| /2s, this condition is not

satisfied unless

|R×
0 ||R×|
2s

< 4

√ |R1

m1

− 1

2

.

If s ≥ 3, then by (4.1) we have

|R×
0 ||R×|
2s

≥ 1

2s
(|R0| /m0 − 1)×

s∏
i=1

((|Ri| /mi)− 1)

≥ 4 ((|R1|| /m1)− 1)

> 4
(√

|R1| /m1 − 1
)2
,

and hence GR0×R is not Ramanujan.

It remains to consider the case where 1 ≤ s ≤ 2. We follow similar
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approach as we did in the proof of Theorem 4.18 and get that in the

case of s = 1, GR0×R is Ramanujan when R0 × R ∼= F3 × F5 and for

s = 2, GR0×R is not Ramanujan.

• Case 2:
√

|R1| /m1 ≥ |R0| /m0.

In this case GR0×R is Ramanujan if and only if∣∣R×
0

∣∣ |R×|
2s (|R0| /m0 − 1)

≤ 2
√∣∣R×

0

∣∣ |R×| /2s − 1

Since 2
√∣∣R×

0 ∥R×
∣∣ /2s − 1 < 2

√∣∣R×
0 ∥R×

∣∣ /2s, this condition is not sat-

isfied unless
|R×

0 ||R×|
2s

< 4

(
|R0|
m0

− 1

)2

.

In particular, if s ≥ 3, then by 4.1 we have

∣∣R×
0

∣∣ |R×|
2s

≥ 1

2s

(
|R0|
m0

− 1

)
×

√ |R1|
m1

− 1

√ |R1|
m1

+ 1

 s∏
i=2

(
|Ri|
mi

− 1

)

> 4

(
|R0|
m0

− 1

)2

,

and hence GR0×R is not Ramanujan. It remains to consider the case

where 1 ≤ s ≤ 2. We follow similar approach as we did in the proof of

Theorem 4.18 and get that in the case of s = 1, GR0×R is Ramanujan

when R0 × R ∼= F3 × F9 or R0 × R ∼= F3 × F13 and for s = 2, GR0×R is

not Ramanujan.
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