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ABSTRACT

Graph neural networks (GNNs) are deep-learning based methods that op-

erate on the framework of graphs. In particular, tasks such as molecular

fingerprinting, protein interfacing, and disease classification are modeled to

learn from graph inputs. The central goal of this project is to use GNNs to

build solutions to the decision version of the famous Traveling Salesperson

Problem (TSP). Given a weighted graph G = (V,E), and a number C ∈ R,

the decision TSP problem asks whether the graph admits a hamiltonian cycle

with cost no larger than C. We begin this project by studying a more gen-

eral class of combinatorial optimization problems known as the Quadratic

Assignment Problems (QAPs). Then, we explore two different variants of

TSP, namely the optimization variant and the decision variant. We also

study the essential concepts of machine learning and see the different types

of neural networks like Artificial Neural Networks (ANNs) and Recurrent

Neural Networks (RNNs) which are relevant to this project. Following this,

we establish a few important results from polyhedral theory, which will help

us understand the Quadratic Assignment Polytope and see its properties.

We then establish a key result which reveals that the Symmetric Traveling

Salesperson Polytope is a projection of the Quadratic Assignment Polytope.

Also, we use some concepts from graph theory to compute the dimension of

the symmetric traveling salesperson polytope. Finally, we study the frame-

work required to model the decision variant of the TSP as a GNN model and

perform computational experiments on the same.
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1. INTRODUCTION

1.1 Introduction

The Quadratic Assignment Problem (QAP) is a classic combinatorial opti-

mization problem introduced in the year 1957 by Koopmans and Beckmann

[17] to model a facility location problem. The problem has been continuously

investigated till date by mathematicians and computer scientists around the

globe. Many real-life problems can be mathematically modelled as a QAP.

Exciting applications of QAP have been found in various domains such as

placement problems, scheduling, VLSI design, statistical data analysis, par-

allel, distributed computing, etc. It is also interesting to note that many

well-known optimization problems from combinatorics and graph-theory can

be modelled as a QAP. Some examples are the traveling salesperson prob-

lem, the maximum clique problem, the graph partitioning problem, and the

minimum feedback arc set problem. Also, from a computational point of

view, the QAP is an extremely difficult problem, indeed, it is proven to be

an NP-Hard problem.

In this chapter, we will formally introduce the problem statement of quadratic

assignment problem and we will see a real-life application of the same, namely

the facility location problem introduced by Koopmans and Beckmann. The

references used for this section are [5, 7]. Following this, we explore well

known Traveling Salesperson Problem (TSP) and the fact that the TSP can

be modelled as a quadratic assignment problem. This section is based on

[6, 13]. In the second half of this chapter, we will introduce the basics of

machine learning and discuss in brief the different types of neural network
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topologies. This section is based on the results from [4, 9, 19, 22].

1.2 Quadratic Assignment Problem

Definition 1.1. Consider the set {1, 2, . . . , n} and three n × n coefficient

matrices A = (aij), B = (bij), and C = (cij). The quadratic assignment

problem denoted by QAP (A,B,C) is as follows:-

min
π∈Sn

( n∑
i=1

n∑
j=1

aijbπ(i)π(j) +
n∑
i=1

ciπ(i)

)
, (1.1)

where Sn denotes the set of permutations of the set {1, 2, . . . , n}.

Remark 1.2. The value of the above sum depends only on the matrices

A, B, C, and on the permutation π. To mathematically formalize these

dependencies, we write as follows:

K(A,B,C, π) =
n∑
i=1

n∑
j=1

aijbπ(i)π(j) +
n∑
i=1

ciπ(i).

The function K(A,B,C, π) is referred to as the objective function of

QAP (A,B,C), and a permutation π0 which minimizes it over all possible

elements of Sn is termed as an optimal solution to QAP (A,B,C). The

corresponding value of the objective function, K(A,B,C, π0), is called the

optimal value of QAP (A,B,C).

We will now see the very first version of Quadratic Assignment Problem

introduced by Koopmans and Beckmann [17], often termed as the facility

location problem.

Example 1.3. Facility location problem: Suppose there are n facilities which

are to be assigned to n different locations. The cost of this allocation process

is proportional to material flow between the facilities multiplied by the dis-

tances between the locations plus, the initial costs for installing the facilities

at their respective locations. The objective of this problem is to allocate each

facility to a location such that the total cost involved is minimized.
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This problem can be modelled as a QAP by defining the following three

n× n coefficient matrices:

• A = (aik), where aik represents the flow from facility i to facility k.

• B = (bjl), where bjl is the distance from location j to location l.

• C = (cij), where cij represents the flow from facility i to facility j.

1.3 Traveling Salesperson Problem

The Traveling Salesperson Problem (TSP) is a well-studied classical problem

from the field of combinatorics and graph theory. While the origin of this

problem is unknown, it was formulated mathematically in the 1800s inde-

pendently by Irish mathematician W.R.Hamilton [12], and by the British

mathematician T.Kirkman [16]. In this section, we will explore two variants

of the TSP.

1.3.1 Traveling Salesperson Problem - Optimization

variant

Given n cities and the pairwise distances between all of them, this problem

deals with the task of finding the minimal length tour for the salesperson

covering each city exactly once and returning back to the initial city. Let us

now formally state the traveling salesperson optimization problem.

Definition 1.4. Consider the set of integers {1, 2, . . . , n} representing the n

cities, and consider a symmetric n×n matrix D = (dij) denoting the distance

between the city i and the city j (dii = 0, for 1 ≤ i ≤ n). Then, the TSP

can be formally stated as follows:

min
π∈Sn

( n−1∑
i=1

dπ(i)π(i+1) + dπ(n)π(1)

)
. (1.2)
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It is interesting to note that the TSP can be formulated as a quadratic

assignment problem with D as the distance matrix and the flow matrix taken

to be the adjacency matrix of a cycle on n vertices. Note that, in the graph

theory setting, the TSP deals with the task of finding the minimum cost

hamiltonian cycle in a weighted undirected graph.

Definition 1.5. A hamiltonian cycle or a spanning cycle of a graph is a

cycle that contains all the vertices of the graph.

See Figure 1.1 for an illustration of the hamiltonian cycle.

Fig. 1.1: A hamiltonian cycle.

1.3.2 Traveling Salesperson Problem - Decision

variant

Unlike the above discussed optimization variant of TSP, this variant seeks

a definitive answer. The decision variant of traveling salesperson problem

can be stated as follows: Given a weighted graph G = (V,E), and a number

C ∈ R, the problem asks whether the graph admits a hamiltonian cycle with

cost no larger than C.
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For the reminder of this thesis, we will use the acronym TSP to refer TSP-

optimization problem and the acronym TSP-Decide to refer TSP-Decision

problem.

1.4 Concepts of Machine Learning

Machine learning (ML), in simple words, can be explained as the branch

of study that deals with developing computer programs capable of learning

through experience and data. In recent times, with the advent of powerful

hardware like Graphics Processing Unit (GPU) and the huge availability

of big data, the world has started witnessing the presence of this field in

various walks of life. Image recognition, product recommendations, speech

recognition, self-driving cars, and medical diagnosis are a few fields where

machine learning finds significant applications. The paradigms of machine

learning can be broadly classified into three categories, namely:

1. Supervised Learning: Given a set of training data points, that is,

a set of inputs and its corresponding outputs, the task of a supervised

machine learning model is to learn the function that maps the data

points. Thus after learning, if the user provides a new input, the model

should correctly predict its output. It has numerous applications like

image classification, spam mail detection, weather prediction, etc.

2. Unsupervised Learning: Unsupervised machine learning algorithms

infer patterns from a dataset without reference to known or labeled

outcomes. Unlike supervised machine learning, unsupervised machine

learning methods are used when the values for the output data of the

training set is unknown. Unsupervised learning is generally used to

discover the underlying structure of the data. Applications include

anomaly detection in bank transactions and clustering data into various

groups based on similarities.

3. Reinforcement Learning: Reinforcement learning algorithms seek
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to learn by interacting with the environment. Deepmind’s Alpha Zero

and Alpha Go are world-famous chess and go software that defeated

the human world champions in their respective games.

In this project, we will be working exclusively with the supervised learning

technique. We will now discuss about Artificial Neural Network (ANN), the

most popular method for implementing supervised learning.

1.4.1 Artificial Neural Network (ANN)

Artificial Neural Network (ANN) is a programming paradigm inspired from

neurons in the brain, though its actual task is not mimicking the brain ac-

tivity. An artificial neural network typically has an input layer, an output

layer, and a few hidden layers to connect the two. If the neural network has

at least one hidden layer, then the network is called a Multi-Layer Percep-

tron (MLP). The number of nodes and the number of layers are chosen for a

problem by the programmer.

As mentioned earlier, ANN is the most popular method of implementing

supervised learning. The reason for ANN to gain popularity among ma-

chine learning researchers is due to a celebrated result called the universal

approximation theorem which roughly states that neural networks with a sin-

gle hidden layer can be used to approximate any continuous function to any

desired precision.
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In Figure 1.2, a three-layered network with layer sizes (4, 6, 3) is shown.

Fig. 1.2: An artificial neural network architecture.

The information passage from the input layer to the hidden layer results in

the updation of the hidden layer parameter values in the following manner:

hi = fa

(∑
j

aijxj

)
.

Here, the input values are made to undergo a linear transformation, following

which it is passed through an activation function (denoted by fa in the above

expression), which is generally a non-linear function. The output of this

activation function serves as the hidden layer parameter values. This is how

the information flow happens over each subsequent layer. The parameter

values for each layer depends on the input it receives from the previous layer.

For instance, considering the above ANN architecture (Fig. 1.2), the output

parameter values get updated in the following manner:

yk = fa

(∑
i

bkihi

)
.

The non-linear activation functions are used in ANN to estimate non-linear
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relationship between input output. In its absence, the power of ANN will

be limited to estimating only linear functions between the input and output,

and the universal approximation theorem will fail in this case. The choice

of activation function rests with the programmer. Generally, developers pre-

fer to use Rectified Linear Unit (ReLU) function for hidden layers and the

sigmoid function for the output layer. The most commonly used activation

functions are:

• Linear function

f(x) = x

• Sigmoid function

f(x) = 1
1+e(−x)

• Rectified Linear Unit (ReLU) function

f(x) = max{0, x}

• Tan hyperbolic function

f(x) = tanh(x)

These functions are illustrated in Figure 1.3 below.

Fig. 1.3: Activation functions - Linear function (top left), Sigmoid function (top right),
ReLU function (bottom left), and Tan hyperbolic function (bottom right).
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The whole objective of ANN is to learn the model parameter values or weights

(aij and bkl in the above illustration). Then on obtaining a new input, the

model could predict the output layer values with good accuracy. The learn-

ing of model parameters by an ANN model will be discussed in detail. Before

we explain the learning process mathematically, we will first try to provide

a rough intuition on the processes involved in the same.

As mentioned earlier, the central goal of an ANN model revolves around

learning the parameter values. Achieving this goal generally involves two

significant steps, which are repeated finitely many times until the learning

process is completed. One is the forward message passing step, and the other

is the backpropagation step. Initially, before the learning happens, the model

parameters will be randomly initialised. As we have seen before, the hidden

layer parameter values and output layer parameter value can be estimated

based on the input values. The output thus obtained will be verified against

the actual output, and the error (cost or loss) is estimated. This concludes

the forward pass step.

Based on the error value, the model parameters will be updated sequentially

in a layer-wise manner starting from the output layer to the input layer. This

is the crucial idea behind the backpropagation step. Both the steps will be

repeated a few times till the model starts predicting correctly (i.e. the error

is minimized). We will now do an in-depth study of the backpropagation

step.

1.4.1.1 Backpropagation algorithm

Before we proceed with our discussion on backpropagation algorithm, we will

introduce a few notations. In the discussion that follows, I assume there is

at least one hidden layer in our network, that is, our network is a multi-layer

perceptron. We define alj to be activation or output of node j in layer l. Also,

we define wljk to be the weight for the connection to node j of layer l from

node k of layer l − 1.
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See Figure 1.4 to obtain better clarity on the notations we have used.

Fig. 1.4: Understanding the backpropagation algorithm.

From our previous discussions, we can define

alj = σ
(∑

k

wljka
l−1
k

)
= σ(z),

where z represents the quantity
∑

k w
l
jka

l−1
k , and σ denotes the activation

function. As said earlier, in order to reduce the cost C function, we need to

update weights (model parameters). For this, we update the weight values

using the technique of gradient descent which updates the weight value in

the following fashion:

wljk = wljk − η
∂C

∂wljk
. (1.3)

That is, the weight values are changed (increased or decreased) in a direc-

tion opposite to the direction of the gradient of the cost function. Here, η

denotes the learning rate which is usually decided by the programmer based

on the requirements. Although gradient descent is a powerful optimization
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algorithm, it has its downside during implementation. It is computationally

very difficult to perform the algorithm on large datasets as it involves the

usage of whole training data to calculate gradients at each step. To overcome

this problem and use algorithm effectively, we resort to choosing only a single

random point or a few points from the dataset to calculate gradients without

compromising the performance drastically. This method is employed in op-

timization techniques like stochastic gradient descent (SGD) and mini-batch

gradient descent. If we observe equation (1.3), all the gradient descent algo-

rithms generally involve the computation of partial derivative with respect

to weight values. To do this computation for a large network with many pa-

rameters is computationally hard. In this scenario, we invoke the technique

of backpropagation. Backpropagation using the chain rule of calculus helps

to compute these derivatives in a sequential and layer-wise manner, starting

with the output side and proceeding towards the input side. Derivatives asso-

ciated with weights of one layer (say, for instance, l) will be used to compute

the same for the previous layer (layer l − 1). We will now see in detail how

the backpropagation actually works.

By the chain rule of calculus, we have:

∂C

∂wljk
=
∂C

∂zlj

∂zlj
∂wljk

=
∂C

∂zlj
al−1
k

= δlj a
l−1
k ,

(1.4)

where δlj denotes the expression ∂C
∂zlj

. Note that in each layer, we have multiple

nodes. So, we can rewrite the expression for δlj in the following manner using

the chain rule

δlj =
∑
k

∂C

∂zl+1
k

∂zl+1
k

∂zlj

=
∑
k

δl+1
k

∂zl+1
k

∂zlj
.

(1.5)
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By definition, we have

zl+1
k =

∑
m

wl+1
km alm

=
∑
m

wl+1
km σ(zlm).

So, we have

∂zl+1
k

∂zlj
= wl+1

kj σ
′(zlj).

Substituting
∂zl+1
k

∂zlj
in equation (1.5), we get

δlj =
∑
k

δl+1
k wl+1

kj σ
′(zlj).

This shows that the δ values of a particular layer depend on the δ values of

the next layer. Substitute the value of δlj in equation (1.4) to obtain the final

expression for ∂C
∂wljk

. Hence, we get

∂C

∂wljk
=
∑
k

δl+1
k wl+1

kj σ
′(zlj)a

l−1
k .

Thus, we conclude our discussion on the working of artificial neural networks.

Next, we will discuss in brief a special type of neural networks known as the

recurrent neural networks.

1.4.2 Recurrent Neural Network (RNN)

In an ANN, a single input ultimately determines the activations of all the

neurons through the remaining layers, and in particular, the network is static

over time. On the other hand, a Recurrent Neural Network has a dynamic

setting (time-varying behavior).
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See Figure 1.5 for an illustration of the RNN architecture.

Fig. 1.5: A recurrent neural network architecture.

Hidden neurons of an RNN network might not just be determined by the

activations in previous hidden layers, but also by the activations at earlier

times. Indeed, a neuron’s activation might be determined partly by its own

activation at an earlier time. Sometimes, activations of hidden and output

neurons will not be determined just by the current input to the network,

but also by earlier inputs. So, RNNs are used in analysing data or processes

that change over time. For instance, recurrent neural networks have their

applications in fields like speech generation and stock price prediction, where

current prediction has its dependence on previous outputs. Training an RNN

model is more or less similar to an ANN, that is, by using backpropagation

and gradient descent with small straightforward modifications. A drawback

of an RNN is that it may sometimes suffer from the problem of vanishing

gradient. Vanishing gradient refers to the problem that during the process

of backpropagation, the gradient gets smaller and smaller as it is propagated

back through the layers. This makes learning in early layers prolonged. The

problem gets much worse in RNNs in comparison with ANNs, and since gra-
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dients are not just propagated backwards through layers, they are propagated

backwards through time. Thus, if the network runs for an extended period

of time, the gradient can become extremely unstable and hard to learn from.

To overcome this problem, we generally use a modified RNN named Long

Short-Term Memory (LSTM). LSTMs are used in situations that demand

the network to remember output from an instance in the past.



2. THE THEORY OF POLYHEDRA

We aim to understand the polytope structure associated with the optimiza-

tion problems. To approach this goal, we must first get familiarised with

some basic terminologies and results from polyhedral theory. The references

used for this chapter are [3, 8].

2.1 Basic Introduction

Let us begin by exploring some basic definitions before we move on to un-

derstand the concepts of polyhedral theory.

Definition 2.1. For x1, . . . , xk ∈ Rn and λ1, . . . , λk ∈ R,

(a) The vector
k∑
i=1

λixi is called a linear combination of x1, . . . , xk.

(b) The vector
k∑
i=1

λixi is called a conical combination of x1, . . . , xk, if

λ1, . . . , λk ≥ 0 holds.

(c) The vector
k∑
i=1

λixi is called an affine combination of x1, . . . , xk, if

k∑
i=1

λi = 1 holds.

(d) The vector
k∑
i=1

λixi is called a convex combination of x1, . . . , xk, if both

λ1, . . . , λk ≥ 0 and
k∑
i=1

λi = 1 hold.
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See Figure 2.1 for an illustration of the vectors in Definition 2.1.

Fig. 2.1: Different combinations of vectors.

Definition 2.2. The set of all possible linear, conical, affine, or convex com-

binations of (finitely many) vectors in a set S ⊂ Rn is termed as the linear

hull, conical hull, affine hull, or convex hull, respectively, of S.

We denote linear hull, conical hull, affine hull, or convex hull of set S by

lin(S), cone(S), aff (S), or conv(S), respectively.

Example 2.3. Consider a set S = {(1, 0, 0), (0, 1, 0), (0, 0, 1)} ⊂ R3. Then:

(a) lin(S) : R3

(b) cone(S) : R3
≥0

(c) aff (S) : Plane passing through (1, 0, 0), (0, 1, 0), (0, 0, 1).

(d) conv(S) : Triangular region with vertices (1, 0, 0), (0, 1, 0), (0, 0, 1).

We have now laid the framework for introducing the notion of a polyhedron.
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2.2 Polyhedron and its properties

We begin our discussion on polyhedral theory by defining the notion of hy-

perplanes and halfspaces.

Definition 2.4. Let a ∈ Rn with a 6= 0, and let α ∈ R. The set {x ∈
Rn : ax = α} is called the hyperplane defined by a and α, and the set

{x ∈ Rn : ax ≤ α} is called the halfspace defined by a and α.

The set {x ∈ Rn : ax = α} is referred to as the boundary hyperplane of the

halfspace {x ∈ Rn : ax ≤ α}. See Figure 2.2 below for an illustration of a

hyperplane.

Fig. 2.2: A hyperplane and two half spaces.

Definition 2.5. A polyhedron is a set of the form {x ∈ Rn : Ax ≤ b}, where

A is a m× n matrix and b ∈ Rm.

Note that a polyhedron is an intersection of a finite number of half-spaces,

as shown in Figure 2.3.

Fig. 2.3: Polyhedra in 2D and 3D formed as intersection of half spaces.
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Definition 2.6. A set L ⊂ Rn is termed as a bounded set if there exists some

constant k such that absolute value of every component of every element of

L is less than or equal to k.

By Definition 2.6, a polyhedron can either extend to infinity, or can be con-

fined to a finite region.

Definition 2.7. A set S ⊂ Rn is convex if for any x1, x2 ∈ S, and for any

λ ∈ [0,1], we have λx1 + (1− λ)y1 ∈ S.

Theorem 2.8. (a) The intersection of convex sets is a convex set.

(b) Every polyhedron is a convex set.

(c) A convex combination of a finite number of elements of a convex set

also belongs to the same set.

(d) The convex hull of a finite number of vectors is a convex set.

Proof. (a) Consider the convex sets Si for i belonging to some index set J .

Suppose elements x1 and x2 belongs to the intersection set ∩i∈JSi. Let

λ ∈ [0,1]. Since each Si is a convex set containing x1 and x2, each Si will

also have the element λx1 + (1− λ)x2. So, the element λx1 + (1− λ)x2

also belongs to intersection of the sets. Hence, by definition, the set

∩i∈JSi is a convex set.

(b) Let c be a vector, and let d be a scalar. Consider vectors x1 and x2

satisfying cx1 ≥ d and cx2 ≥ d, respectively, that is, the vectors x1 and

x2 belong to the same halfspace. Let λ ∈ [0,1]. Then clearly,

c(λx1 + (1− λ)x2) ≥ λd+ (1− λ)d = d,

which means that λx1 + (1− λ)x2 also belongs to the same halfspace.

This implies that a halfspace is convex. Since a polyhedron is the

intersection of a finite number of halfspaces, the required result directly

follows from part (a).
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(c) From the definition of convexity, a convex combination of two elements

of a set belongs to that set. We prove this by induction on the number

of elements in the set. Let us assume the induction hypothesis that

a convex combination of k elements of a convex set belongs to that

set. Now, consider k + 1 elements x1, . . . , xk+1 of a convex set S, and

let λ1, . . . , λk+1 be nonnegative scalars that sum to 1. Without loss of

generality, we assume that λk+1 6= 1. Then,

k+1∑
i=1

λixi = λk+1xk+1 + (1− λk+1)
k∑
i=1

λi
1− λk+1

xi.

Clearly, the coefficients λi/(l − λk+l) for i = 1, . . . , k, are nonnegative

and sum up to unity. By the induction hypothesis,
k∑
i=1

λixi/(1−λk+l) ∈

S. Then, the fact that S is convex along with the above equation imply

that
k+1∑
i=1

λixi ∈ S, which completes the induction step.

(d) Let S denote the convex hull of the finetely many vectors x1, . . . , xk

and let y =
k∑
i=1

αixi, z =
k∑
i=1

βixi be two elements of S, where αi ≥ 0,

βi ≥ 0, and
k∑
i=1

αi =
k∑
i=1

βi = 1. Let λ ∈ [0, 1]. Then,

λy + (1− λ)z = λ
k∑
i=1

αixi + (1− λ)
k∑
i=1

βixi=
k∑
i=1

(λαi + (1− λ)βi)xi.

Clearly, the coefficients λαi+(1−λ)αi for i = 1, . . . , k, are nonnegative

and sum to unity. Hence, λy + (1 − λ)z is a convex combination of

x1, . . . , xk and, therefore, belongs to S. Thus, S is a convex set.

We have seen the basic concepts of polyhedra. Before we move on to under-

stand the polytopes, we will introduce the concepts of cones and we will also

explore some important theorems of Minikowski-Weyl.



2. The Theory of Polyhedra 20

2.3 Minkowski–Weyl Theorem for Cones

Definition 2.9. A set C ⊆ Rn is called a polyhedral cone if C = {x ∈ Rn :

Ax ≤ 0} for some m× n matrix A.

Remark 2.10. A polyhedral cone is the intersection of a finite number of

half-spaces having origin on their boundaries, as shown in Figure 2.4.

Fig. 2.4: A polyhedral cone.

Definition 2.11. A set C ⊆ Rn is called a finitely generated cone if C is

a convex cone generated by some finite set of vectors x1, . . . , xn ∈ Rn, for

n ≥ 1.

In other words, C = cone(x1, . . . , xn).

Theorem 2.12 (Minkowski–Weyl Theorem for Cones). A subset of Rn is a

polyhedral cone if and only if it is a finitely generated cone.

We will skip the proof of this theorem as it involves some results from linear

programming which are beyond the scope of this discussion. We will now

introduce the concepts of polytope and how it differs from a polyhedron.

2.4 Minkowski–Weyl Theorem for Polytopes

Definition 2.13. A subset Q of Rn is called a polytope if it is the convex

hull of some finite set of vectors in Rn.
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Definition 2.14. Given subsets A,B of Rn, the Minkowski sum of A,B is

defined as the set

A+B := {x ∈ Rn : ∃ a ∈ A, b ∈ B such that x = a+ b}.

Theorem 2.15 (Minkowski–Weyl Theorem). A subset P of Rn is a polyhe-

dron if and only if P can be expressed as the Minkowski sum of the polytope

Q ⊂ Rn and a finitely generated cone C ⊆ Rn.

Proof. Let P ⊆ Rn. It suffices to show that the following two statements are

equivalent.

(a) There exist a matrix A and a vector b such that P = {x ∈ Rn : Ax ≤ b}.

(b) There exist vectors u1, . . . , up ∈ Rn and v1, . . . , vq ∈ Rn such that

P = conv(u1, . . . , up) + cone(v1, . . . , vq).

We will first show that the statement (a) =⇒ (b). Assume that (a) holds,

and consider the polyhedral cone CP = {(x, y) ∈ Rn+1 : Ax− by ≤ 0, y ≥ 0}.
Since CP is a polyhedral cone, by Theorem 2.12, it is also a finitely generated

cone. As y ≥ 0 for every vector (x, y) ∈ CP , the generators of CP can be

normalized in such a way that their (n + 1)th component is either 0 or 1.

Thus, there exist u1, . . . , up ∈ Rn and v1, . . . , vq ∈ Rn such that

CP = cone
{[u1

1

]
, . . . ,

[
up

1

]
,

[
v1

0

]
, . . . ,

[
vq

0

]}
.

Since P = {x : (x, 1) ∈ CP}, this implies that P = conv (v1, . . . , vp) + cone

(r1, . . . , rq), from which it follows that (a) =⇒ (b).

For the converse, assume that (b) holds, and let CP ∈ Rn+1 be the finitely

generated cone defined as above. Note that by definition, P = {x : (x, 1) ∈
CP}. Since P is a finitely generated cone. It follows from Theorem 2.12 that

CP is also a polyhedral cone. Thus, there exists a matrix (A, b) such that CP

= {(x, y) ∈ Rn+1 : Ax− by ≤ 0}. This implies that P = {x ∈ Rn : Ax ≤ b}.
Thus we have shown that the statement (b) implies statement (a).
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Theorem 2.15 is illustrated in Figure 2.5 below.

Fig. 2.5: An illustration of the Minkowski–Weyl Theorem.

The following is a direct consequence of Theorem 2.15.

Corollary 2.16 (Minkowski–Weyl Theorem for Polytopes). A set Q ⊆ Rn

is a polytope if and only if Q is a bounded polyhedron.

Next, we will discuss a very significant result relevant to polytopes.

Definition 2.17. Let P be a polyhedron. A vector x ∈ P is an extreme

point of P if x cannot be expressed as the convex combination of two distinct

vectors y, z ∈ P .

Theorem 2.18. A non-empty and bounded polyhedron (a polytope) is the

convex hull of its extreme points.

Figure 2.6 below gives an illustration of Theorem 2.18.

Fig. 2.6: Polytopes in 2D and 3D formed as convex hull of its extreme points.
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As the proof of this theorem involves a few terminologies and results from

future chapters, we will skip the proof for the moment. We have included

the detailed proof of this theorem in Section 3.6.

Definition 2.19. A polytope in Rd is called a 0/1 polytope if all its vertices

are in {0, 1}d.

A 0/1 polytope is the convex hull of a subset of the 2d point set {0, 1}d, for

some d ≥ 0. The polytopes we will discuss as part of this project will be 0/1

polytopes.



3. THE QUADRATIC

ASSIGNMENT POLYTOPE

In this chapter, we will study the quadratic assignment polytope. First, we

will introduce a graph-theoretic framework to introduce the quadratic as-

signment polytope. Following this, we will investigate its properties. This

chapter is based on [14, 15, 18].

Before we develop the required framework to define the QAP polytope, it

is necessary to introduce a reformulated (but equivalent) version of the QAP

using permutation matrices. This reformulated version was introduced by

Lawler in 1936 [18].

Definition 3.1. A permutation matrix is a 0/1 matrix obtained by permut-

ing the rows of an n × n identity matrix according to some permutation of

the integers 1 to n.

Remark 3.2. Every row and column of a permutation matrix contains pre-

cisely a single 1 with 0’s everywhere else, and every permutation corresponds

to a unique permutation matrix.

The Lawler version of quadratic assignment problem can be summarised as

follows:

Let Πn be the set of all n × n permutation matrices. The QAP task is to

find:

min
( n∑
i,k=1
i<k

n∑
j,l=1
j 6=l

dijklxijxkl +
n∑
i=1

n∑
j=1

cijxij

)
,
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s.t X = (xij)i,j=1,..., n ∈ Πn,

where, dijkl = aikbjl ( 1 ≤ i, j, k, l ≤ n; i 6= k or j 6= l).

Now, we build the graph theoretic framework required to establish a founda-

tion for introducing the quadratic assignment polytope. Consider the graph

Gn = (Vn, En) with the node set Vn = {(i, j) : 1 ≤ i, j ≤ n} and the edge set

En = {{(i,j),(k,l)} ∈

(
Vn
2

)
: i 6= k, j 6= l} , where

(
Vn
2

)
denotes the set of

all cardinality 2 subsets of the node set Vn . For ease of working, let us define

the notation, [i, j, k, l] := {(i, j), (k, l)} for all edges {(i, j), (k, l)} ∈ En. See

the illustration in Figure 3.1 below for the graph G4.

1,1 1,2 1,3 1,4

2,1 2,2 2,3 2,4

3,1 3,2 3,3 3,4

4,1 4,2 4,3 4,4

Fig. 3.1: The graph G4.

Note that, the graph Gn has the following two important properties which

help in building a non-trivial connection between the above graph Gn and

the QAP:

(a) The size of maximal clique of graph Gn is n.

(b) The n-cliques of Gn has one to one correspondance with the n × n

permutation matrices.
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See the illustration in Figure 3.2 for a maximal clique in Gn when n = 4.

1,1 1,2 1,3 1,4

2,1 2,2 2,3 2,4

3,1 3,2 3,3 3,4

4,1 4,2 4,3 4,4

Fig. 3.2: A 4-clique in G4.

We will now introduce some notation that we would be using multiple times

in our future discussions. Note that x ∈ RVn is a vector whose components

are associated with the nodes in Vn. For instance, in our previous example,

the graph G4 had 16 vertices. Hence, a vector x ∈ RVn will have 16 compo-

nents, each component associated to a single vertex in Vn.

Earlier in this chapter, we have introduced the Lawler version of QAP. We

would use the same here to formulate quadratic assignment problem as a

graph theory problem. Doing this will help us in defining the QAP Polytope

in our later discussions.

Suppose we are provided with an instance of Lawler QAP say, (QAP )
(n)
(c,d),

min
( n∑
i,j,k,l=1

dijklxijxkl +
n∑

i,j=1

cijxij

)
,

s.t X = (xij)1≤i,j≤n ∈ Πn,

where (c ∈ (Rn)2, d ∈ (Rn)4). To represent the given instance of Lawler

QAP as a graph theory problem, we assign weights to nodes and edges of

Gn by (c′, d′) ∈ RVn × REn by setting c′(i,j) := cij, for each node (i, j) ∈ Vn
and d′[i,j,k,l] := dijkl, for each edge [i, j, k, l] ∈ En (with i < k). So, solving the
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problem of (QAP )
(n)
(c,d) is equivalent to finding the minimal node and edge-

weighted n-clique in the graph Gn weighted by (c′, d′) as above.

We will introduce some new notations that will be of relevance in subse-

quent sections. Suppose x ∈ RV is a vector whose components are associ-

ated with the nodes in V , and U ⊂ V be a subset of the nodes. Then we

denote x(U) to be the sum of all components of x belonging to elements in U .

Let the set of (node sets of) n-cliques of Gn be denoted by

CLn := {C ⊆ Vn : C is a n-clique of Gn}.

In a formal setting, solving QAP can be stated as follows:

min c′(C ) + d′(En(C )),

s.t. C ∈ CLn.

For any subset U ⊂ Vn of Gn, we denote the characteristic vector or incidence

vector of U by xU ∈ RVn , that is, for any v ∈ Vn, we set

xWv :=

1, if v ∈ U , and

0, if v /∈ U.

Analogously, for any subset F ⊆ En of edges of Gn, we denote by yF , the

characteristic vector of F ∈ REn , that is, for e ∈ En, we define

yFe :=

1, if e ∈ F , and

0, if e /∈ F.

The incidence vector of a n-clique C ⊂ Vn in Gn is the 0/1 vector (xC , yEn(C)).

This vector belongs to the space RVn × REn .

Definition 3.3. We define the Quadratic assignment polytope by

QAPn := conv
(
{(xC , yEn(C)) : C ∈ CLn}

)
.
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3.1 Symmetries of QAPn
To describe the symmetry of a polytope, we must formally introduce a few

basic definitions concerning affine spaces and affine transformations.

Definition 3.4. A set S ⊂ Rn is affine subspace of Rn if there exists p ∈ Rn

and a vector subspace V of Rn such that every x ∈ S can be written as p+ v

for some v ∈ V .

We write s = p + V . If S 6= Rn, S is said to be a proper affine space.

Moreover, the dimension of affine space is equal to dimension of vector space

V . In Definition 3.4, p is not unique, but there is a unique choice for V . For

instance, if q = p+V for some v ∈ V , then q+V and p+V render the same

affine subspace.

Example 3.5. Every vector subspace of Rn is an affine subspace. The con-

verse need not be true since an affine subspace need not necessarily have the

zero vector.

Example 3.6. A single point in Rn forms an affine subspace. In this case,

V = {0}.

Example 3.7. Let A ∈ Rm×n and b ∈ Rm, where m and n are positive

integers. If S = {x ∈ Rn : Ax = b} is non-empty, then S is an affine

subspace. To see this, let x′ be a solution of Ax = b. Then, S = x′ + N ,

where N is null space of A.

In fact, the converse of the assertion in Example 3.7 also holds.

Theorem 3.8. Every proper affine subspace of Rn is of form {x ∈ Rn : Ax =

b} for some A ∈ Rm×n and b ∈ Rm.

Proof. Consider an affine subspace given by p + V , where p ∈ Rn and V is

proper vector subspace of Rn. Then, there exists a matrix A such that V

equals null space of A. Taking b = Ap, we have p + V = {x ∈ Rn : Ax =

b}.

We will now discuss the definition of an affine map.
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Definition 3.9. For any two vector spaces E and F , a function f : E → F

is an affine map if for every affine combination
∑

i∈I λiui, we have

f
(∑

i∈I

λiui

)
=
∑
i∈I

λif(ui).

Equivalently, a function f : E → F is an affine map if there is some linear

map h : E → F and some fixed vector c ∈ F such that

f(x) = h(x) + c, ∀ x ∈ E.

Now we will define an affine transformation and see its relevance in the

context of understanding the symmetry of a polytope.

Definition 3.10. An affine transformation is a function that maps an affine

space onto itself while preserving dimension of any affine subspaces.

Affine transformations need not necessarily preserve angles between lines, or

the distances between points, though they preserve the ratio of the distance

between points lying on a straight line. Formally, an affine transformation

on Rn is a map F : Rn → Rn of the form F (p) = Ap+ q, ∀ p ∈ Rn, where A

is a fixed linear transformation.

Affine transformations preserve the dimension of affine subspaces, so to re-

alise symmetries of QAP polytope, it is sufficient to look at the distance

preserving affine transformations of the vector space RVn × REn that maps

the polytopeQAPn to itself. We observe that the graph Gn is invariant under

permutation of rows (or columns) and transposition of nodes (mapping (i, j)

to (j, i) ∀ (i, j) ∈ Vn). So, the automorphisms of the graph Gn clearly in-

duce injective maps from the set of the incidence vectors of n-cliques to itself.

Thus, permutations of the rows or the columns or transposing the node-set

Vn also induce the symmetries for QAPn. Hence, it suffices to prove results

about QAPn polytope up to permutations of the rows (and columns), and

transpositions of Vn.
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3.2 Understanding the QAP polytope better

To better understand the QAP Polytope, we derive a linear description of a

polytope Pn ∈ RVn × REn whose integer points can be shown to be vertices

of QAPn, that is, the incidence vectors of n-cliques of Gn.

For 1 ≤ α ≤ n, we denote rowα := {(α, j) : 1 ≤ j ≤ n} to be the α-th

row of Vn, and we denote colα := {(i, α) : 1 ≤ i ≤ n} to be the α-th col-

umn of Vn. Observe that, for any point (x, y) ∈ QAPn, the following two

equations clearly hold:

x(rowi) = 1, (3.1)

and

x(colj) = 1, (3.2)

where 1 ≤ i, j ≤ n.

For two disjoint subsets U1, U2 ⊂ V of nodes, we denote (U1 : U2) to be

the set of all edges having one node in U1 and one in U2. For the singleton

set {v}, we often omit the brackets and write as follows δ(v).

Note that, for any point (x, y) ∈ QAPn, the following pair of equations

hold:

y((i, j) : rowk)− x(i, j) = 0, (3.3)

y((i, j) : coll)− x(i, j) = 0, (3.4)

where 1 ≤ i, j, k, l ≤ n and i 6= k, j 6= l.

So, from the two sets of equations we have discussed above, it is clear that
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for all (x, y) ∈ QAPn, the following equations hold:

x(rowi) = 1,

x(colj) = 1,

y((i, j) : rowk)− x(i, j) = 0,

y((i, j) : coll)− x(i, j) = 0.

We denote the above system of equations by the system A(n)(x, y) = b(n).

Note that, this system consists of 2n+ 2n2(n− 1) equations. We now define

a polytope

Pn := {(x, y) ∈ RVn × REn : A(n)(x, y) = b(n), y ≥ 0}.

Remark 3.11. From the system of equations, A(n)(x, y) = b(n), it is clear

that (x, y) ∈ Pn implies y ≤ 1, x ≥ 0, and x ≤ 1.

The next theorem reveals that the already found constraints are sufficient to

identify vertices of QAPn (incidence vectors of n-cliques of Gn) among the

integer vectors of the polytope Pn.

Theorem 3.12. QAPn = conv (Pn ∩ ZVn × ZEn).

Proof. Clearly, QAPn ⊆ conv (Pn ∩ ZVn × ZEn) holds. Now, we will show

that QAPn ⊇ conv (Pn ∩ ZVn × ZEn). Let (x, y) ∈ (Pn ∩ ZVn × ZEn). We

have already seen that equations of the type (3.1) and (3.2) hold for the

{0, 1}-vector (x, y). Also, x is the characteristic vector of an n-clique C ⊆ Vn
of graph Gn and y is the characteristic vector of some subset F ⊆ En of the

edges of Gn. So, it suffices to prove that F = En(C). Consider an arbitrary

edge e = [i, j, k, l] ∈ F . Since equations of the type (3.3) hold true, we have

y((i, j) : rowk)− x(i, j) = 0, and

y((k, l) : rowi)− x(k, l) = 0.

So, we can conclude that (i, j), (k, l) ∈ C, and thus F ⊆ En(C). On the other

hand, add up (n− 1) times all the equations of the type (3.1) and (3.2) with
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all the equations of type (3.3) and (3.4). Then divide the obtained result by

4 to obtain the equation

y(En) =
1

2
n(n− 1).

This implies |F | = |En(C)|, and our assertion follows.

Definition 3.13. Two polytopes P ⊆ Rn and Q ⊆ Rn are affinely isomor-

phic if there is an affine map φ : Rn → Rm that induces a bijection between

points of P and Q, or between the vertices of P and the vertices of Q.

Note that by Theorem 3.8, there exits an affine subspace A of RVn × REn

defined by A(n)(x, y) = b(n). In the next section, we will show that with the

aid of an orthogonal projection map, an isomorphism (Definition 3.13) can be

defined between the QAPn polytope and a polytope QAP∗n∗ belonging to a

lower dimensional vector space. Further, we will study the polytope QAP∗n∗
to understand the required structural properties of the quadratic assignment

polytope.

3.3 Another representation of QAPn
We define W ∗ = rown ∪ coln to be the collection of nodes from the nth row

and the nth column of the graph Gn. Let F ∗ = {e ∈ En : e ∩ W ∗ 6= φ},
U = {(x, y) ∈ RVn × REn : xW ∗ = 0, yF ∗ = 0}, and let π : RVn × REn → U

be orthogonal projection onto U .

Proposition 3.14. The projection map π restricted to an affine subspace A
of RVn × REn is injective.

Proof. First, we will show that we can express the components of points in

A belonging to elements in W ∗ ∪ F ∗ as a linear combination of elements in

Vn\W ∗ ∪ En\F ∗. By equations (3.1) and (3.2), this is apparent for elements

in W ∗. To prove this for F ∗, it suffices to consider three possibilities for an

edge [i, j, k, l] ∈ F . The first two cases are i, j, k < n, l = n and i, j, l < n,

k = n. We can use an appropriate equation from (3.3) (with i, j, and k in
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the first case) and an equation of type (3.4) (with i, j, and l in the second

case), to achieve this.

Now the case that remains is, i, j < n, k = n, and l = n. Using equation

(3.3) for i, j, and n, we can express y[i,j,n,n] like we have already expressed

y[i,j,n,l] for l < n. Thus, we have shown that there is a linear function

φ : RVn\W ∗ × REn\F ∗ → RW ∗ × RF ∗

such that for all (x, y) ∈ A, we have (xW ∗ , yF ∗) = φ(xVn\W ∗ , yEn\F ∗).

Hence, we can define

Ψ : RVn × REn → RVn × REn

by Ψ(x, y) = (x′, y′) with

(x′W ∗ , y
′
F ∗) = (xW ∗ , yF ∗)− φ(xVn\W ∗ , yEn\F ∗), and

(x′Vn\W ∗ , y
′
En\F ∗) = (xVn\W ∗ , yEn\F ∗).

Note that, we get a triangular matrix with the same main diagonal entries as

the matrix corresponding to Φ. So, Ψ is an affine transformation of RVn×REn

that induces on Pn the orthogonal projection onto U .

We identify the space U with the space RVn−1 ×REn−1 . Thus, for n∗ = n− 1,

QAP∗n∗ = π(QAPn) ⊂ RVn∗ × REn∗ is a polytope in RVn∗ × REn∗ that is

isomorphic to QAPn.

Remark 3.15. The vertices of the polytope QAP∗n∗ are the projections of

the vertices of the original polytope on the removal of the last row and the

last column of Gn. They are the the incidence vectors of n∗ - and (n∗ − 1) -

cliques of Gn∗ , as illustrated in Figure 3.3.
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Fig. 3.3: Effect of projection π.

We can mimic the earlier notations for the incidence vectors to (n∗−1)-cliques

of Gn∗ and define the new polytope as follows.

Definition 3.16. We define

QAP∗n∗ = conv{(xC∗ , yC∗) : C∗ is an n∗- or an (n∗ − 1)-clique of Gn∗}.

We denote by g, the one-to-one map that assigns to every n-clique C ⊂ Vn
of Gn, the n∗- or (n∗ - 1) clique C∗ ⊂ Vn∗ of Gn∗ that arises from the clique

C by removing the node(s) in the nth row and in the nth column.

Remark 3.17. Suppose two faces of QAPn and QAP∗n∗ correspond to each

other with respect to isomorphism induced by the projection map π. Then

the vertices of the polytopes (identified with the cliques) correspond to each

other via the bijection g.

As in the case of polytope QAPn, permutations of the rows (and columns),

and transpositions of the node set induce symmetries for polytope QAP∗n∗ .
Moreover, it is also possible to derive by similar methods, a linear description

of a polytope whose integer points form the vertices of QAP∗n∗ . We will

explore this description in detail, and we will also see some results that will

help us compute the dimension of QAP Polytope. Note that, from now on,

we will consider the polytope QAP∗n instead of QAP∗n∗ .
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3.4 The Polytope QAP∗n
We will derive a linearly described polytope P∗n ⊆ RVn × REn whose integer

points are the vertices of QAP∗n. Let 1 ≤ ν1, ν2 ≤ n. Then, for all points

(x, y) ∈ QAP∗n, we have:

x(rowν1) + x(rowν2)− y(rowν1 : rowν2) = 1, and

x(colν1) + x(colν2)− y(colν1 : colν2) = 1.

Let us denote this system of equations by A∗(n)(x, y) = b∗(n). Also, for all

v ∈ Vn, i ∈ {{1, . . . , n} \ r(v)}, j ∈ {{1, . . . , n} \ c(v)}, and (x, y) ∈ QAP∗n,

we have

y(v : rowi)− xv ≤ 0, and

y(v : colj)− xv ≤ 0.

Thus, QAP∗n is contained in the polytope

P∗n :=


(x, y) ∈ RVn × REn

∣∣∣∣∣∣∣∣∣∣∣

A∗(n)(x, y) = b∗(n),

y(v : rowi)− xv ≤ 0, (v ∈ Vn, i 6= r(v))

y(v : colj)− xv ≤ 0, (v ∈ Vn, j 6= c(v))

y ≥ 0.


.

Remark 3.18. For all (x, y) ∈ RVn × REn , (x, y) ∈ P∗n =⇒ x ≤ 1, x ≥ 0,

and y ≤ 1.

Lemma 3.19. Let C ⊆ Vn be an arbitrary clique of Gn. If A∗(n)(xC , yEn(C))

= b∗(n), then C is of size n or n− 1.

Proof. We know that |C| ≤ n. If |C| < n−1, then there exists two rows row1

and row2 (assumed without loss of generality) such that C ∩ row1 = C ∩
row2 = φ contradicting the fact that xC(row1) + xC(row2) - yEn(C)(row1 :

row2) = 1.
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Theorem 3.20. QAP∗n = conv(P∗n ∩ (ZVn × ZEn)).

Proof. Clearly, QAP∗n ⊆ conv(P∗n ∩ (ZVn × ZEn)). We need to show that

QAP∗n ⊇ conv(P∗n ∩ (ZVn × ZEn)). By Remark 3.18, we know that (x, y) is

a {0, 1}-vector. So, x ∈ RVn is a characteristic vector of some node set C,

and y ∈ REn is a characteristic vector of some edge set F . Since x(row1) +

x(row2) - y(row1 : row2) = 1 and y(v : row1) − xv ≤ 0 for all v ∈ row2, we

can conclude that x(row1) ≤ 1. A similar argument holds for all other rows

and columns, and thus, C must be a clique of Gn. Hence, by Lemma 3.19, it

suffices to show that F = En(C).

Let {v, w} ∈ F , then y(v : rowr(w)) − xv ≤ 0 implies that v ∈ C. Similarly,

y(w : rowr(v)) − xw ≤ 0 implies that w ∈ C. This shows that F ⊆ En(C).

Also, observe that for any {v, w} ∈ En(C), we have x(rowr(v)) + x(rowr(w)−
y(rowr(v) : rowr(w)) = 1, so there exists an edge in F ∩ (rowr(v) : rowr(w)).

This implies that |En(C)| ≤ |F |, and our assertion follows.

Next, we will study the system A∗(n)(x, y) = b∗(n) describing an affine space

A∗ := {(x, y) ∈ RVn × REn|A∗(n)(x, y) = b∗(n)}

that contains QAP∗n. The system A∗(n)(x, y) = b∗(n) has equations of the

form

x(rowi) + x(rowk)− y(rowi : rowk) = 1 (1 ≤ i < k ≤ n) (3.5)

and

x(colj) + x(coll)− y(colj : coll) = 1. (1 ≤ j < l ≤ n) (3.6)

There are in total n(n − 1) equations in the system. We will now try to

explore the rank of the matrix A∗ as it would help us prove our main result

concerning the dimension of the QAP polytope.

We will work with the “y-part” of the matrix A∗, which we will call M :=

A
∗(n)
◦,En . Let us define a total ordering of edges En by requiring that each edge
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[i, j, k, l] ∈ En with i < k, j < l has the successor edge [i, l, k, j]. The edges

are ordered lexicographically according to the 4-tuples (i, k, j, l). On permut-

ing the columns of M with respect to the above ordering of edges, we get a

n(n− 1)× |En| matrix. For example, for n = 3, we get the matrix

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1


.

We will now focus on exploring the bases of the matrix M . By bases, we mean

the maximal subsets of linearly independent columns of M . Note that as the

columns corresponding to edges [i, j, k, l] and [i, l, k, j] are identical, we may

identify them as one for our ease of working. The resulting n(n−1)× 1
2
|En|ma-

trix, we denote it by M ′. The matrix M ′ resembles the node-edge incidence

matrix of the complete bipartite graph Kn(n−1)
2

,
n(n−1)

2

= (Rn ∪ Cn, (Rn : Cn)),

where Rn ∩ Cn = φ. We may refer to the pair of edges in En of the form

{[i, j, k, l], [i, l, k, j]} as a crossing pair. We identify the “left shore” Rn of

the complete bipartite graph Kn(n−1)
2

,
n(n−1)

2

with the set of all possible pairs

of rows of Vn, and the “right shore” Cn with the set of all possible pairs of

columns of Vn. With this interpretation, the edges (Rn : Cn) are in one-to-

one correspondence with the set of crossing pairs of edge set En.

Balinski and Russakoff [1], showed that the set of bases of the node-edge-

incidence matrix of the complete bipartite graph Kr,r is the set of node-edge-

incidence matrices of spanning trees (connected acyclic subgraph having all

the vertices of the orginal graph) of Kr,r. Thus, the following proposition

concerning the bases of the matrix A∗(n) follows as a consequence of our

discussion.

Proposition 3.21. 1. Exactly one arbitrary equation from the set of

equations A∗(n)(x, y) = b∗(n) is redundant, that is rank(A∗) = n(n −
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1)− 1.

2. A subset B ⊆ En of edges of Gn corresponds to a basis of the matrix

A∗(n) if and only if:

(a) |B| = n(n− 1)− 1,

(b) there exists no crossing pair in B, and

(c) there exists no sequence (x0, y0, x1, y1, . . . , xk−1, yk−1) (k ≥ 2)

of edges in B such that xi and yi connect the same rows of Vn
and xi and y(i+1) mod k connect the same columns of Vn for all

0 ≤ i ≤ k − 1.

We will now shift our focus towards developing the main result of this chapter,

which deals with the dimension of the quadratic assignment polytope.

3.5 Dimension of QAP Polytope

In this section, we will discuss the idea of defining the dimension of a polytope

in general and we will also establish a result concerning the dimension of the

QAP polytope.

Definition 3.22. A finite collection of vectors x1, . . . , xk ∈ Rn is affinely

independent if unique solution to the system
k∑
i=1

λixi = 0,
k∑
i=1

λi = 0 is λ1 =

. . . λk = 0.

Note that a set of linear independent points is by definition affinely indepen-

dent.

Definition 3.23. Dimension of a set S ⊆ Rn is one less than the maximum

number of affinely independent points in S.

A line segment formed as the affine hull of two affinely independent points

has dimension one. On a similar note, by convention, an empty set is said to

have dimension -1.
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Definition 3.24. For any polytope P ⊂ Rn, the dimension of P is the

dimension of its affine hull.

In essence, the dimension of a polytope is the dimension of the smallest

euclidean space that contains it.

Remark 3.25. The dimension of an affine space is equal to the dimension of

vector space V . Also, from our previous discussion of affine spaces (Example

3.7), a non-empty set {x ∈ Rn | Ax = b}, where A ∈ Rm×n and b ∈ Rm is an

affine space having its dimension given by nullity of A. So, by rank-nullity

theorem, dimension of this affine space is equal to n− rank(A).

Theorem 3.26. For n ≥ 3,

dim(QAPn) = (n− 1)2 + (n−1)2(n−2)2

2
− ((n− 1)(n− 2)− 1).

The following theorem reveals the dimension of QAP∗n polytope, which in

turn reveals the dimension of the original quadratic assignment polytope

QAPn.

Theorem 3.27. For n ≥ 2,

dim(QAP∗n) = n2 + n2(n−1)2

2
− (n(n− 1)− 1).

Proof. From the symmetries of polytope QAP∗n, it is clear that we can re-

strict our proof to the case e = [n, n− 1, n− 1, n]. So, we may consider the

face

F := QAP∗n ∩ {(x, y) ∈ RVn × REn | y[n, n−1, n−1, n] = 0}

of QAP∗n.

Denoting

F := {(x, y) ∈ RVn × REn | A∗(n)(x, y) = b∗(n), y[n, n−1, n−1, n] = 0},
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we establish the following.

Claim 1: It suffices to show that F = aff (F ).

Proof of Claim 1. By Proposition 3.21, dim(QAP∗n) ≤ n2 + n2(n−1)2

2
−

(n(n − 1) − 1). As F is a proper face of the polytope QAP∗n, the system

A∗(n)(x, y) = b∗(n) does not imply y[n, n−1, n−1, n] = 0. Thus, from Proposition

3.21, we get dim(F) = n2 + n2(n−1)2

2
− n(n− 1). So, if F = aff (F ), then

n2 +
n2(n− 1)2

2
− n(n− 1) = dim(F )

< dim(QAP∗n)

≤ n2 +
n2(n− 1)2

2
− (n(n− 1)− 1),

which proves the theorem.

Claim 2: For n ≥ 2, we have F = aff (F ).

Proof of Claim 2. For simplifying the proof, we will assume that n ≥ 5. For

the cases n = 2−4, the claim can be verified to hold true using direct compu-

tations. Clearly, F ⊇ aff (F ). So, it suffices to show that dim(F) ≤ dim(F ).

From the proof of Claim 1, we have dim(F) = dim(RVn × REn) − n(n − 1).

Let L := {(x, y)− (x′, y′) | (x, y), (x′, y′) ∈ F}. Then, we have dim(lin(L)) =

dim(F ). It remains to produce a set B ⊆ RVn ×REn of n(n− 1) vectors that

satisfy the equation

lin(L ∪ B) = RVn × REn , (3.7)

for which we will require the following series of technical lemmas. Figure 3.4

illustrates these vectors and a few notations used in the respective proofs.
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Fig. 3.4: The vectors in Lemmas 1 - 4.

Lemma 1. Suppose n ≥ 2 and if v1, . . . , vn ∈ Vn form an n-clique of Gn and

[n, n− 1, n− 1, n] is not an edge belonging to that n-clique, then

(xv1 , 0) +
n∑

α=2

(0, y{v1, vα}) ∈ L.

Proof of Lemma 1. Let C1 := {v1, . . . , vn} and C2 := {v2, . . . , vn}. As

(xC1 , yEn(C1)), (xC2 , yEn(C2)) ∈ F , we can deduce that (xv1 , 0)+
∑n

α=2(0, y{v1,vα}) =

(xC1 , yEn(C1))− (xC2 , yEn(C2)) ∈ F .

Lemma 2. For n ≥ 4, [i, j, k, l] ∈ En and [n, n−1, n−1, n] /∈ {[i, j, k, l], [i, l, k, j]},
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we have

(0, y[i, j, k, l])− (0, y[i, l, k, j]) ∈ lin(L).

Proof of Lemma 2. Consider the following vertices of the graph Gn, v1 :=

(i, j), v2 := (i, l), w1 := (k, j) and w2 := (k, l). Since n ≥ 4, there ex-

ists vertices u1, . . . , un−2 ∈ Vn such that C1 := {v1, w2, u1, . . . , un−2} and

C2 := {v2, w1, u1, . . . , un−2} form n-cliques of Gn. Moreover, [n, n− 1, n−
1, n] /∈ En(Cα) for α = 1, 2. We define C3 := C1 \ {v1}, C4 := C1 \ {w2},
C5 := C2\{v2}, and C6 := C2\{w1}. Then, (xCα , yEn(Cα)) ∈ F for 1 ≤ α ≤ 6.

Therefore, (0, y[i, j, k, l]) − (0, y[i, l, k, j]) = (xC1 , yEn(C1)) − (xC2 , yEn(C2)) −
(xC3 , yEn(C3))− (xC4 , yEn(C4)) + (xC5 , yEn(C5)) + (xC6 , yEn(C6)) ∈ lin(L).

Lemma 3. Let n ≥ 5, 1 ≤ r, i, k ≤ n and 1 ≤ s, j, l ≤ n be pairwise dis-

tinct indices and let [n, n−1, n−1, n] /∈ {[r, s, i, j], [r, s, k, j], [r, s, k, l], [r, s, i, l]}.
Then

(0, y[r, s, i, j])− (0, y[r, s, k, j]) + (0, y[r, s, k, l])− (0, y[r, s, i, l]) ∈ lin(L).

Proof of Lemma 3. We define vertices a := (r, s), v1 := (i, j), v2 := (i, l),

w1 := (k, j) and w2 := (k, l). We have n ≥ 5, so there exists vertices

u1, . . . , un−3 ∈ Vn such that C1 := {a, v1, w2, u1, . . . , un−3} and C2 :=

{a, v2, w1, u1, . . . , un−3} form n-cliques in Gn. Also, note that [n, n −
1, n − 1, n] /∈ En(Cα) for α = 1, 2. We define C3 := C1 \ {a} and C4 :=

C2 \ {a}. Then, (xCα , yEn(Cα)) ∈ F for 1 ≤ α ≤ 4. Therefore, (0, y[r, s, i, j])−
(0, y[r, s, k, j])+(0, y[r, s, k, l])−(0, y[r, s, i, l]) = (xC1 , yEn(C1))−(xC2 , yEn(C2))−
(xC3 , yEn(C3)) + (xC4 , yEn(C4)) ∈ lin(L).

Lemma 4. Let n ≥ 5, 1 ≤ r, i, k ≤ n and 1 ≤ s, j, l ≤ n are pairwise dis-

tinct and [n, n−1, n−1, n] /∈ {[i, s, r, j], [r, j, k, s], [k, s, r, l], [r, l, i, s]}
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then

(0, y[i, s, r, j])− (0, y[r, j, k, s]) + (0, y[k, s, r, l])− (0, y[r, l, i, s]) ∈ lin(L).

Proof of Lemma 4. Consider the following vertices of graph Gn, v1 := (r, j),

v2 := (r, l), w1 := (i, s) and w2 := (k, s). Since n ≥ 5, there exists

vertices u1, . . . , un−3 ∈ Vn, such that C1 := {w1, v1, u1, . . . , un−3}, C2 :=

{v1, w2, u1, . . . , un−3}, C3 := {w2, v2, u1, . . . , un−3}, and

C4 := {v2, w1, u1, . . . , un−3} form n-cliques of Gn. Also, note that [n, n −
1, n−1, n] /∈ En(Cα), for 1 ≤ α ≤ 4. Therefore, (0, y[i, s, r, j])−(0, y[r, j, k, s])+

(0, y[k, s, r, l])− (0, y[r, l, i, s]) = (xC1 , yEn(C1))− (xC2 , yEn(C2))+(xC3 , yEn(C3))−
(xC4 , yEn(C4)) ∈ lin(L).

Proof of claim 2 (contd.) Let B := {[1, j, 2, l] | 1 ≤ j < l ≤ n} ∪
{[i, 1, k, 2] | 1 ≤ i < k ≤ n} and denote by B := {(0, ye) | e ∈ B ∪ [n, n −
1, n − 1, n]}. We will now prove that Equation (3.7) is valid by showing

(0, ye) ∈ lin(L∪B) for all e ∈ En and (xv, 0) ∈ lin(L∪B) for all v ∈ Vn. We

will break this proof into five steps and the result from each step is depicted

in Figure 3.5, while Figure 3.6 illustrates the notations used in the proofs of

Steps 2-4. For brevity, we will fix the notation Rα := rowα and Cα := colα,

for all 1 ≤ α ≤ n.

Step 1: (0, ye) ∈ lin(L ∪ B) for all e ∈ (R1 : R2) ∪ (C1 : C2).

Proof of Step 1. This step follows from Lemma 2.

Step 2: (0, ye) ∈ lin(L ∪ B) for all e ∈ ((R1 ∪R2) : (C1 ∪ C2)).

Proof of Step 2. Let e = [i, j, k, l] ∈ (Ri : Cl) where i, l ∈ {1, 2}. If j or

k ∈ {1, 2}, then by Step 1, we are done. So, we assume j, k /∈ {1, 2},
and we define i′ := {1, 2} \ {i} and l′ := {1, 2} \ {l}. By Lemma 4,

(0, y[i, j, k, l])− (0, y[k, l, i, l′]) + (0, y[i, l′, i′, l])− (0, y[i′, l, i, j]) ∈ lin(L). Then,

by Step 1, we have (0, y[i, j, k, l]) ∈ lin(L ∪ B).
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Fig. 3.5: The vectors ye ∈ B and the ones newly shown to be in lin(L∪B) for each of the
steps in the proof.

Step 3: (0, ye) ∈ lin(L ∪ B), for all e ∈ δ(R1 ∪R2 ∪ C1 ∪ C2).

Proof of Step 3. Let e = [i, j, k, l] ∈ δ(R1 ∪ R2 ∪ C1 ∪ C2) with i ∈ {1, 2}
and k, l /∈ {1, 2} (The case j ∈ {1, 2} and k, l /∈ {1, 2} can be shown in

a similar manner). We define i′ := {1, 2} \ {i} and j′ := {1, 2} \ {j}. By
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Fig. 3.6: The notations used in the proofs of Steps 2 - 4.

Lemma 3, y[i, j, k, l]−y[i, j, i′, l] +y[i, j, i′, j′]−y[i, j, k, j′] ∈ lin(L). Then, by Steps

1 and 2, we have y[i, j, k. l] ∈ lin(L ∪ B).

Step 4: (0, ye) ∈ lin(L ∪ B) for all e ∈ En(Vn \ (R1 ∪R2 ∪ C1 ∪ C2)).

Proof of Step 4. Let e = [i, j, k, l] ∈ En(Vn \ (R1 ∪ R2 ∪ C1 ∪ C2)). If

e = [n, n− 1, n− 1, n], then the claim is trivial. So, we assume e 6= [n, n−
1, n−1, n]. By Lemma 3, y[i, j, k, l]−y[i, j, 1, l] +y[i, j, 1, 1]−y[i, j, k, 1] ∈ lin(L).

Then, by Step 3, we have y[i, j, k. l] ∈ lin(L ∪ B).

Step 5: (xv, 0) ∈ lin(L ∪ B), for all v ∈ Vn.

Proof of Step 5. From the above four steps, it is clear that (0, ye) ∈ lin(L∪B)

for all e ∈ En. The proof for this step follows directly from Lemma 1.
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Thus, the proof for claim 2 is complete and our assertion follows.

3.6 Polytope and its extreme points

Before we conclude the chapter, we will use the concepts discussed in earlier

sections of this chapter to provide a detailed proof of Theorem 2.18.

Proof (of Theorem 2.18). Since polyhedra are convex sets, every convex

combination of extreme points belongs to the polyhedron. Thus, it suffices

to prove the converse, that is, to show that every element of a bounded poly-

hedron can be represented as a convex combination of the extreme points.

By definition, the dimension of P is the smallest integer k such that P is

contained in some k-dimensional affine subspace of Rn. We will use induc-

tion on the dimension of the polyhedron P .

Suppose that P has dimension equal to 0. Then it has just one point,

namely the extreme point and hence the result holds trivially. Let us as-

sume that the result holds true for all polyhedra of dimension less than k.

Consider a non-empty and bounded k-dimensional polyhedron P = {x ∈
Rn : aix ≥ bi, i = 1, . . . , m}. Then by definition, P will be contained in a

k-dimensional affine subspace S of Rn. Without loss of generality, we can

assume S = {x0 +λ1x1 +. . .+λkxk | λ1, . . . , λk ∈ R}, where x1, . . . , xk ∈ Rn.

Let h1, . . . , hn−k be n − k linearly independent vectors that are orthogonal

to vectors x1, . . . , xk. Consider fi = hix0, for 1 ≤ i ≤ n − k. Then, every

element x of S satisfies

hix = fi, i = 1, . . . , n− k. (3.8)

As P ⊂ S, this also holds true for all elements of P .

Consider an element p of P . If p is an extreme point of P , we are done.

So, let p ∈ P be a non-extremal point. Choose an arbitrary extreme point

q of P and form a half-line consisting of all points of the form p + λ(p− q),
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where λ is a non-negative scalar. As P is a bounded polyhedron, the half-

line would eventually exit P and violate one of the constraints. Let us for

instance, assume that constraint to be ajx ≥ bj. By considering what hap-

pens when this constraint is just about to be violated, we find some λ∗ ≥ 0

and v ∈ P , such that v = p + λ∗(p − q) and ajv = bj. Since the constraint

ajx ≥ bj gets violated if λ > λ∗, it follows that aj(p− q) < 0. Now, consider

the polyhedron Q defined by

Q = {x ∈ P | ajx = bj} = {x ∈ Rn | aix ≥ bi, i = 1, . . . , m, ajx = bj}.

As p, q ∈ P , we have hip = fihiq. This shows that p−q is orthogonal to each

vector hi, for i = 1, . . . , n − k. On the other hand, we have already shown

that aj(p− q) < 0, which shows that vector aj is linearly independent from

vectors hi. Furthermore, we have equation (3.8) valid for all elements of P ,

and hence Q ⊂ {x ∈ Rn | ajx = bj, hix = fi, i = 1, . . . , n − k}. The set on

the right is defined by n − k + 1 linearly independent equality constraints.

Hence, it is an affine subspace of dimension k − 1 and Q has dimension at

most k − 1.

Applying the induction hypothesis to Q and v, we observe that v can be

expressed as a convex combination

v =
∑
i

λiui

of the extreme points ui of Q, where λi are nonnegative scalars that sum up

to one. Note that at any extreme point u of Q, the equation set aiu = bi is

valid for n linearly independent vectors ai. So, u must also be an extreme

point of P . From the definition of λ∗, we also have

p =
v + λ∗q

1 + λ∗
.
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Therefore,

p =
λ∗q

1 + λ∗
+
∑
i

λi
1 + λ∗

ui,

which shows that an arbitrarily chosen p ∈ P can be expressed as the convex

combination of extreme points of P .



4. SYMMETRIC TRAVELING

SALESPERSON POLYTOPE

We will begin this chapter by introducing the symmetric traveling salesper-

son polytope. Following this, we will see the relationship between the earlier

discussed quadratic assignment polytope and the symmetric traveling sales-

person polytope. Finally, we would conclude our discussion on the symmetric

traveling salesperson polytope by exploring its dimension. For this chapter,

we have used the references [10, 13, 15].

Let Hn represent the set of all hamiltonian cycles of the complete graph

Kn = (V,E). For every hamiltonian cycle, Γ ∈ Hn, we associate a vector

xΓ ∈ RE such that, xΓ
e = 1 if e ∈ Γ and 0 otherwise. This is the incidence or

characteristic vector. Now, we can formally define the symmetric traveling

salesperson polytope.

Definition 4.1. The symmetric TSP polytope, Qn is defined as

Qn := conv
(
{xΓ : Γ ∈ Hn}

)
.

4.1 TSP Polytope as a projection of QAP

Polytope

The necessary framework to identify polytopes of various combinatorial op-

timization problems like TSP as a projection of QAPn will be introduced in

this section. Consider a complete undirected graph G = (V,E) on n nodes

and let A0 ⊆ E be a subset of edges. Denote by ΠV , the set of all permu-

tations of the node set V . Any permutation σ ∈ ΠV of the nodes induces a



4. Symmetric Traveling Salesperson Polytope 50

map σ̂ : E → E by σ̂({v, w}) = {σ(v), σ(w)}.

Now, consider the combinatorial optimization problems with the set of feasi-

ble solutions Ω = {σ̂(A0) : σ ∈ ΠV }. Denote the incidence vectors associated

with the feasible solutions by

Ω = {σ̂(A0) : σ ∈ ΠV },

and define the polytope

PΩ = conv
(
{Y A : A ∈ Ω}

)
.

Note that the symmetric TSP polytope Qn by definition, is a polytope of the

form PΩ. Thus, the results we prove for the polytope PΩ applies automati-

cally for the symmetric TSP polytope, Qn.

Theorem 4.2. Every PΩ defined as above is a projection of the QAP Poly-

tope (QAPn).

Proof. In order to simplify the notations, assume without loss of generality,

V = {1, . . . , n}. Define a projection map πA0 : RVn×REn → RE by assigning

πA0(x, y) = Y with

Y{i, k} =
∑

{j, l}∈A0

(y[i, j, k, l] + y[i, l, k, j]), (a)

where {i, k} ∈ E and this holds ∀ (x, y) ∈ RVn × REn . It suffices to show

that for any permutation σ of V and for vertex (x, y) of QAPn that belongs

to the inverse permutation σ−1 of σ the equation

πA0(x, y) = Y σ̂(A0) (b)

holds true. Thus, πA0 induces a surjective map between the vertices ofQAPn
and those of PΩ. Consider any edge {i, k} ∈ E of G. The vector (x, y) is

the incidence vector belonging to the n-clique that corresponds to σ−1, and

so we can conclude y[i, σ−1(i), k, σ−1(k)] = 1. Note that {σ−1(i), σ−1(k)} ∈ A0
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if and only if {i, k} ∈ σ̂(A0), y[i, σ−1(i), k, σ−1(k)] occurs as a summand in (a),

which holds if and only if i, k ∈ σ̂(A0). As j 6= σ−1(i) or l 6= σ−1(k), the

term y[i, j, k, l] = 0 for any edge [i, j, k, l] ∈ En. Hence, the polytope PΩ is a

projection of the QAP Polytope.

Corollary 4.3. The Symmetric TSP polytope, Qn is a projection of QAP

Polytope, QAPn.

By now, we have seen that traveling salesperson polytope can be realised as

projection of the quadratic assignment polytope. We will now explore the

dimension of traveling salesperson polytope. For this purpose, we need to

get familiarised with a few important terminologies and results from graph

theory concerning the factorization of graphs.

4.2 Factorization of Graphs

A problem that occurs in many contexts is determining whether a given

graph can be decomposed into finitely many line-disjoint spanning subgraphs

having some prescribed property. Generally, we will be interested in the

property of regularity of some specified degree. Before discussing this idea of

factorization of graphs, let us see some basic definitions from graph theory.

Definition 4.4. A subgraph having all the vertices of the original graph is

called a spanning subgraph.

Definition 4.5. A graph with empty edge set is called null graph or totally

disconnected graph.

Now, we will see the definition for factor of a graph.

Definition 4.6. A spanning subgraph of graph G which is not totally dis-

connected is called a factor of graph G.

Definition 4.7. If the graphG is the line-disjoint union of its factorsGi, then

G is termed as sum of its factors Gi and such a union is called a factorization

of G.
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Definition 4.8. A n-factor is a regular graph of degree n. If a graph G is a

sum of n-factors, then their union is termed as n-factorization. Such a graph

G can be called a n-factorable graph.

In Figure 4.1, the 1-factorization of the complete graph K6 is depicted.
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Fig. 4.1: A 1-factorization of K6.

Note that we will use terms spanning cycle, hamiltonian cycle, and tour,

interchangeably, in this chapter. All of these terminologies will refer to the

same entity, unless specified otherwise.

Theorem 4.9. The complete graph K2n+1 can be expressed as the sum of n

spanning cycles.

Proof. The aim is to construct n line-disjoint spanning cycles in the complete

graph K2n+1. First we label the vertices v1, . . . , v2n+1 and construct n paths
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Fig. 4.2: K7 as the sum of three spanning cycles Z1, Z2, and Z3.

Pi through these vertices as follows:

Pi = vi vi−1 vi+1 vi−2 . . . vi+n−1 vi−n.

Note that, the jth vertex in the path Pi is vk, where k = i + (−1)j+1[j/2],

and all subscripts are taken as the integers 1, 2, . . . , 2n (mod 2n). Finally,

construct the spanning cycle Zi by joining the vertex v2n+1 to the endpoints

of Pi.

The construction described in the proof of Theorem 4.9 is illustrated in Figure

4.2 for the graph K7. The lines of the paths Pi are solid and the two added

lines are dashed.

Theorem 4.10. The complete graph K2n can be expressed as the sum of a

1-factor and n-1 spanning cycles.

An illustration of Theorem 4.10 is shown in Figure 4.3.
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Fig. 4.3: K6 as the sum of two spanning cycles Z1, Z2, and a 1-factor X1.

4.3 Dimension of Symmetric Traveling

Salesperson Polytope

Theorem 4.11. The dimension of symmetric TSP polytope, Qn, equals dn =
1
2
n(n− 3).

Proof. It suffices to prove that Qn has (dn + 1) affinely independent tours.

For n = 3, this holds trivially. We will consider the cases when n is odd and

n is even separately.

Suppose that n = 2k + 2. Then, since G is a complete graph, the induced

subgraph of first n−1 nodes of G is also a complete graph. Thus, by Theorem

4.9, G can be expressed as the sum of k spanning cycles Ti of length (n− 1).

From each Ti, construct new (n − 1) tours Tij of length n by replacing one

at a time, each edge {x, y} ∈ Ti by the chain [x, n, y]. Thus, we get a total
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of k(n − 1) = dn + 1 tours. Observe that the incidence matrix of the tours

Tij for j = 1, . . . , n − 1 (rows) versus the edges of Kn (columns) contains

the submatrix E − I, where E is the (n − 1) × (n − 1) matrix of all ones

and I is the (n− 1)× (n− 1) identity matrix. Also, note that the incidence

matrix of dn + 1 tours Tij contains a (dn + 1)× (dn + 1) submatrix M , which

is block-diagonal with its diagonal-blocks being equal to E − I after some

permutation of the rows and columns. Since, E − I is nonsingular, it clearly

follows that N is also a nonsingular matrix. So, there exist (dn + 1) linearly

independent tours. Therefore, by definition, the dimension of the polytope

Qn is dn, and hence the theorem holds when n is even.

Now, let us consider the case when n = 2k + 1 for k ≥ 2. We proceed as in

the first case and construct (k − 1)(n − 1) linearly independent tours from

the k− 1 tours of length n− 1. The 1-factor of Kn−1 (by Theorem 4.10) can

be completed arbitrarily to a (n− 1) tour of graph Kn−1, which in turn can

be used to construct k tours of length n by replacing each edge {x, y} in

1-factor by the chain [x, n, y]. Thus, we obtain a total of dn + 1 tours whose

incidence matrix contains a (dn + 1) × (dn + 1) block triangular matrix M

with k − 1 blocks E − I of size (n− 1)× (n− 1) and an additional block of

similar type but of size k × k. By similar arguments as in the first case, the

assertion follows for this case.



5. USING THE METHOD OF

GRAPH NEURAL NETWORKS TO

SOLVE DECISION TSP

5.1 Introduction

The advent of neural networks has pushed research on pattern recognition

and data mining. Many machine learning tasks such as face recognition, ob-

ject detection, machine translation has been revolutionised by various end-

to-end deep learning paradigms, e.g., convolutional neural networks (CNNs),

recurrent neural networks (RNNs), etc. The success of deep learning in many

domains can be attributed to the rapid progress in computational resources

(e.g., GPU), the availability of big training data, and the effectiveness of the

deep learning model to extract representations from various kinds of data

like images, text, videos etc. A core assumption of these machine learning

algorithms is that the instances are independent of each other. But, this

assumption no longer holds for graph data because each instance (node) is

related to others by links of various types. Let us discuss a few real-life

instances where graph data predominates, thereby motivating the need to

develop a neural network model that can handle graph data.

In e-commence, a graph-based learning system can exploit the interactions

between users and products to make accurate recommendations. In chem-

istry, molecules can be modeled as graphs, and their bioactivity can be iden-

tified for drug discovery. In a citation network, papers are linked to each

other via citationships, and the model can be trained to perform the task of
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categorising. Likewise, there are many scenarios where data represented in

graph format is the most convenient and most appropriate mode of repre-

sentation for learning tasks and problem-solving. This chapter is based on

[2, 20, 21, 23].

5.2 Message Passing in Graphs

Consider a graph G = (V,E) on which a certain computational experiment

has to be performed upon. The basic idea of message passing in graphs can

be thought of as a algorithm in which vertices of the graph communicate

with one another to learn about their neighborhood. See the illustration in

Figure 5.1 to get an intuitive understanding of message passing in graphs.

Fig. 5.1: Message passing in graphs.
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To facilitate message passage, a “memory” (a vector embedding to a lower

dimensional space) xi ∈ Rd needs to be allocated for each node vi (which

can be initialized randomly or with zeros). In simple words, vi can com-

pute a “message” msg(xi) to send to each of its neighbors. Upon receiving

a set of messages X = {msg(xj) : vj ∈ N (vi)} from its neighbors vj, each

node vi can update its previous memory through some “update” function,

x′i ← update(xi, X).

The motivation behind the GNN architecture is that suppose the functions

msg() and update() can be well-trained, then after a finite number of it-

erations, each node will have in its memory, the information regarding its

neighborhood. For this purpose, we model the function msg(): Rd → Rd as

a Multi-Layer Perceptron (MLP) and the function update(): R2d → Rd as

an LSTM.

5.3 Graph Neural Network - A General

Architecture

For a given graph G = (V,E):

1. Assign a multidimensional vector (embedding) xi ∈ Rd to each vertex

vi ∈ V and collect all those vectors a matrix X ∈ RV × d.

2. Compute a (|V | × d) matrix of messages MSGS ← msg(X).

3. Compute the matrix product with G’s adjacency matrix: A×MSGS.

This yields (|V | × d) dimensional matrix, where the i-th row is the

vector sum of all the messages received by vertex vi.

4. Now pass it as input for the update function: update(X,A × MSGS).

This yields a |V | × d matrix where the i-th row is the updated memory

vector of vertex vi.

Thus, the core structure of GNN is a Recurrent Neural Network (RNN). More

specifically, it is an LSTM applied over a matrix multiplication between an
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adjacency matrix and a function applied row-wise on a matrix of embeddings.

Furthermore, the whole process iterated multiple times:

X(t+1) ← update(X(t), A × msg(X(t))).

Remark 5.1. In order to evaluate a decision problem on graphs, we associate

the matrix X to a scalar quantity, say mean(X) and perform the gradient

descent on loss = (Y−mean(X))2. Then the GNN model learns to solve the

decision problem on graphs, given enough training examples. The input for

each problem is an adjacency matrix A ∈ R|V | × |V | and the output Y is a

boolean value (0 or 1).

We will now focus on our main goal of solving the decision variant of TSP

using GNN. Given a weighted graph G = (V,E) and a number C ∈ R, we saw

that the decision TSP problem asks whether G admits a hamiltonian route

with cost no larger than C. For this problem, in addition to the relational

(graph) data as in the case of GNN architecture, we also need to assign

weights (euclidean distance between the adjacent vertices) to the edges. So,

in addition to the idea of vertex embedding, we need to introduce the idea

of edge embeddings (a “memory” for edges).

5.4 Algorithm

The idea of the algorithm used for GNN model development can be sum-

marised as follows:

Step 1: Vertices send messages to edges of which they are endpoints (i.e.

vertex v sends messages to ∀ {v1, v2} : v = v1 ∨ v = v2).

Step 2: Each edge {v1, v2} sends a message to vertices v1 and v2.

Step 3: Repeat Steps 1 - 2 for some finite number of message-passing it-

erations, until each edge has in its memory, the sufficient numerical and

relational information relevant to the TSP problem.

Step 4: This information received by each of the edges will be associated to

a scalar value and will be considered as that edge’s “vote” (i.e. the proba-

bility with which it thinks that a route actually exists).
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Step 5: Finally, the votes from all edges will be averaged to render the final

prediction.

The GNN algorithm for decision TSP problem can be formally stated as

follows:

Algorithm 1 Graph Neural Network TSP-Decide Solver

1: procedure GNN–TSP (G = (V, E), C)
2:

3: // Compute binary adjacency matrix from from edges to source and
target vertices.

4: EV[i, j]←1 if and only if (∃ v′ | ei = (vj, v
′, w))| ∀ei ∈ E, vj ∈ V

5:

6: // Compute initial edge embeddings.
7: E(1)[i]← Einit(w, C) | ∀ei = (s, t, w) ∈ E
8:

9: // Run tmax message-passing iterations.
10: for t = 1, . . . , tmax do
11: // Refine each vertex embedding with messages received from

edges in which it appears either as a source or a target vertex.
12: V

(t+1)
h , V(t+1) ← Vu(V

(t)
h , EVT × Emsg(E(t)))

13: // Refine each edge embedding with messages received from its
source and its target vertex.

14: E
(t+1)
h , E(t+1) ← Eu(E

(t)
h , EV× Vmsg(V(t)))

15: // Translate edge embeddings into logit probabilities.
16: Elogits ← Evote(E

(tmax))
17: // Average logits and translate to probability (the operator <> in-

dicates the arithmetic mean).
18: prediction ← sigmoid (< Elogits >)

Upon training, the model learns:

1. A single Rd vector to be used as the initial vertex embedding for all

vertices.

2. A function Einit : R2 → Rd to compute an initial edge embedding for

each edge given an edge weight w and a target cost C (MLP).

3. A function Vmsg : Rd → Rd to compute messages to send from vertices

to the edges of which they are endpoints (MLP).
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4. A function Emsg : Rd → Rd to compute messages to send from each

edge to the respective vertices connected to them (MLP).

5. A function Vu : R2d → R2d to compute an updated vertex embedding

(plus an updated RNN hidden state) given the current RNN hidden

state and a message (LSTM).

6. A function Eu : R2d → R2d to compute an updated edge embedding

(plus an updated RNN hidden state) given the current RNN hidden

state and a message (LSTM).

7. A function Evote : Rd → R to compute a logit probability for predicting

the existence of a route given an edge embedding (MLP).

5.5 Training the GNN model

The input for our GNN model comprises adjacency matrices from edge to

source, target vertices (incidence matrices) S, T ∈ {0, 1}|E|×|V |, the edge

weight matrix D, and a target cost C ∈ R. Since we are working on a

decision problem, the actual output for any instance is YES (1) or NO

(0). Hence, it is a binary classification type problem. So, we will be using

binary-cross entropy function as the cost function (error function). Before,

we introduce the binary cross entropy function, let us understand the term

entropy. Generally, we will use the term entropy to indicate disorder or

uncertainty.

Definition 5.2. For a random variable X with probability distribution p(X),

entropy is defined as follows:

S :=

-
∫
p(x) logp(x) dx, if x is continuous, and

-
∑

x p(x)logp(x)dx, if x is discrete.

Definition 5.3. The binary cross entropy function for output label y (y can
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take values 0 and 1) and predicted probability p is defined as follows:

L = −y log(p)− (1− y) log(1− p).

To minimize the binary-cross entropy error between model prediction and

the ground truth, the model was trained with Stochastic Gradient Descent

(SGD). Further, to speed up the training, SGD was performed on batches

with multiple instances. For this purpose, a batch graph was generated by

performing a disjoint union of all graphs in the batch. As subgraphs of the

batch graph are disjoint, messages will not traverse between any pair of them,

and there will be no change to the embedding refinement process when com-

pared to a single run. A logit probability was computed for each edge in

the batch graph, which was averaged among individual instances to compute

a prediction for each one of them. Following this, the binary-cross entropy

error was computed between model prediction and actual solution.

To train the model, training samples were created by sampling n ∼ U(20, 40)

random points on a
√

2
2
×
√

2
2

square and computing a distance matrix D ∈
Rn×n with the euclidean distance computed between each pair of points.

These distances, by construction, belong to [0, 1]. To obtain the accurate

TSP optimal cost, we have taken the aid of Concorde TSP solver [11]. We

have generated a total of 220 graphs, from which we had sampled only 1024

graphs per epoch to ensure that the model had minimal chance encounter

the same graph twice during training time. The key idea used for model

training is as follows, we showed the model very similar instances with op-

posite answers. For each graph G with optimal tour cost C∗ we produced

two decision instances X+ = (G, 1.02C∗) and X− = (G, 0.98C∗) for which

the answers are by construction YES and NO, respectively. As a result, we

trained our model to predict the decision problem within a 2% positive or

negative deviation from the optimal tour cost. Upon 2000 training epochs,

the model achieved 80.16% accuracy averaged over the 221 instances of the

training set, and the model obtained 77% accuracy on a testing set of 2048

instances it had never seen before. The model used 64-dimensional embed-
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dings for vertices as well as edges, and three-layered (64,64,64) MLPs were

used with ReLU nonlinearities as the activations for all layers except for the

last one, which had a linear activation. The edge embedding initialisation

MLP was three-layered with layer sizes (8, 16, 32). We ran the GNN model

for tmax = 32 time steps of message-passing.

5.6 Experiments and Discussions

5.6.1 Extracting Route Costs

Once we developed the required model for solving TSP-DECIDE, we tried to

exploit the same model to predict TSP route cost within a reasonable margin

from the optimal cost. Figure 5.2 shows how the model behaves when asked

to solve the decision problem for varying target costs.

Fig. 5.2: Acceptance curves and its derivatives.
(Figure taken from the original work in [20] for illustration purpose).
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The characteristic S shape reveals that the model feels confident that routes

with very less target costs do not exist and also confident that routes with

very large costs do exist. Between these two regimes, the prediction made by

the model underwent phase transition, with the model becoming increasingly

unsure as the target cost approach zero deviation from the optimal TSP cost.

Note that the prediction for each deviation is averaged over 1024 instances.

Beardwood, Halton, and Hammersley [2] revealed a theoretical result that

average TSP tour length for a set of n random (uniform) points on a plane is

asymptotically proportional to
√
n. As a corollary, large instances allow for

proportionally shorter routes than small instances. Observing Figure 5.2, we

can see the theoretical result is also reflected in our experiment. For devia-

tions close to zero, the model feels more confident that a route exists when

the instance size is larger. Thus, the critical point (the deviation at which

the model starts guessing YES) undergoes a left shift as the instance size

increases, as seen in the curves’ derivatives in Figure 5.2.
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Algorithm 2 Binary Search to compute the optimal cost of TSP tour

1: procedure BINARY–SEARCH (G = (V, E), p, δ)

2:

3: // Choose an initial guess for the optimal route cost.

wn− and wn+ are the sets of the costs of the n edges with smallest/largest

costs respectively.

4:

5: Cmin ←
∑
wn−i

6: Cmax ←
∑
wn+
i

7: C ∼ U(Cmin, Cmax)

8: while Cmin < C(1− δ) ∨ C(1− δ) < Cmax do

9: if GNN–TSP(G, C) < p then

10: Cmin ← C

11: else

12: Cmax ← C

13: C ← (Cmin + Cmax)/2

14: return C

From our above discussion on S shaped acceptance curves, we get an intu-

itive idea that if we know nothing about the optimal cost, we can assume

that we are closest to this value when the model’s predictions are closest to

50%. That is, when model prediction is nearing 50%, the optimal cost of

TSP lies within close range from the input target cost. Thus, we estimate

an initial cost and perform a binary search on the x-axis of Figure 5.2. The

detailed procedure is summarised in Algorithm 2.

For the algorithm, we took δ = 0.01, p = 0.5 and used the weights after the

model training and the single epoch of training was conducted for greater

deviations. Algorithm 2 is able to predict TSP route costs with on average

1.5% absolute deviation from the ground truth value after running the algo-

rithm for average 8-9 iterations on the test dataset (1024 n-city graphs with

n ∼ U(20, 40)).
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5.6.2 Model Performance on Larger Instances
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Fig. 5.3: Model performance on instances of varying sizes.

We had trained our model on instances with 20 ≤ n ≤ 40 cities. The model

learnt on smaller instance sizes, but we assessed its performance calibre on

larger problem sizes. We averaged the trained model accuracy over test

datasets of 1024 instances for varying values of n. We have displayed the

results in Figure 5.3. As expected, the model was seen to perform better

for larger deviations like 5% and 10%, and worse for smaller deviations like

1%. Note that a problem of double the size would require 2n more time to

compute by traditional algorithms, and thus such a rapid decay in accuracy

seen in the figure was expected.

5.6.3 Model Performance on Larger Deviations

From the acceptance curves in Figure 5.2 and the accuracy curves in Fig-

ure 5.3, it is clear that the model generalises to larger deviations from the
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Fig. 5.4: Model performance on various values of deviation.

optimal tour cost than the 2% it was trained on. We checked the accuracy

of the trained model on the same test dataset of 1024 n-city instances with

n ∼ U(20, 40) for varying deviations from the optimal tour cost. As we had

expected, the model becomes more confident for larger deviations (see illus-

tration in Figure 5.4), which is not surprising given that the corresponding

decision instances were comparatively more relaxed than before. Figure 5.4

shows that accuracy increases until it plateaus near 100% for large devia-

tions. Further, we observe that the model could obtain accuracies above the

baseline (50%) for instances more constrained than those it was trained on,

for instance, with 65% accuracy at 1%.
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