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ABSTRACT

We will start by defining the upper half plane model H for two-dimensional

hyperbolic space. We will discuss the geometry of the hyperbolic plane by

considering general Möbius group Möb, which is generated by Möbius trans-

formations and reflections in Ĉ. We then derive a metric in H, under which

Möb forms a group of isometries. After introducing the notions of convex

sets and hyperbolic polygons, we derive the Gauss-Bonnet theorem, which ex-

presses the area of a hyperbolic polygon in terms of its angles. We then define

Fuchsian groups, which are discrete subgroups of PSL(2,R)(∼= Isom+(H)).

We will show that a subgroup of PSL(2,R) is Fuchsian if, and only if, it has

a properly discontinuous action on H. To further understand the properties

of Fuchsian groups, we consider the fundamental domain under their actions

on H. We derive some geometric properties of the fundamental domain,

and provide a procedure to construct a special kind of fundamental domain

known as the Dirichlet region.
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1. HYPERBOLIC GEOMETRY

1.1 Introduction

Hyperbolic geometry is an area of mathematics which has an interesting

history. Let start with basic geometry we study in high school, know as

Euclidean geometry. The postulates stated by Euclid are the foundation of

this geometry, which we enlist here,

1. A straight line segment can be drawn joining any two points.

2. Any straight line segment can be extended indefinitely in a straight

line.

3. Given any straight lines segment, a circle can be drawn having the

segment as radius and one endpoint as center.

4. All right angles are congruent.

5. If two lines are drawn which intersect a third in such a way that the

sum of the inner angles on one side is less than two Right Angles,

then the two lines inevitably must intersect each other on that side if

extended far enough. This postulate is equivalent to what is known as

the Parallel Postulate.

In the mid 18th century, Lobachevsky, Gauss, and some other mathemati-

cians, in an attempt of eliminating Euclid’s fifth postulate, realized that the

first four axioms of Euclid could give rise to a separate geometry. Gauss

claimed to have made the discovery of this new geometry in his unpublished

work “Non- Euclidean Geometry”, which he had mentioned in a letter he had



1.2. Upper half-Plane Model 1. HYPERBOLIC GEOMETRY

sent to Franz, Taurinus, another mathematician who was then studying the

same geometry. Finally, Nikolai Lobachevsky published the complete system

of hyperbolic geometry around 1830, where he had altered the parallel postu-

late by stating the existence of infinitely many lines passing through a point

which are parallel to a given line (see [5]). In the 19th century, mathemati-

cians started studying hyperbolic geometry extensively, and it is still being

actively studied by researchers around the world. Hyperbolic geometry has

close connections with a number of different fields, which include Abstract

Algebra, Number theory, Differential geometry, and Low-dimensional Topol-

ogy. In this chapter, which is based on [1, Chapters 1-5], we will explore

upper half-plane model for hyperbolic geometry.

1.2 Upper half-Plane Model

In this section, we develop hyperbolic geometry for dimension 2. For that

we use a model, known as upper half-plane model. The underlying space for

this model is the upper half-plane H of the complex plane C, defined as

H = {z ∈ C | Im(z) > 0}.

Now, we are ready to define the geometry i.e. the lines and angles on this

plane. First, we define straight line for this geometry as follows, which we

called hyperbolic lines. We will prove the existence and uniqueness of these

lines between any two points.

1.2.1 Hyperbolic lines

Definition 1.2.1. There are two different types of hyperbolic lines:

1. Intersection of Euclidean lines perpendicular to the R with H in C.

2. Intersection of Euclidean circles in C centered at R with H.

Proposition 1.2.1. For each pair of p and q of distinct points in H, there

exist a unique hyperbolic line ‘`’ in H passing through p and q.

3



1.2. Upper half-Plane Model 1. HYPERBOLIC GEOMETRY

Fig. 1.1: Hyperbolic lines

Proof. To prove this proposition we give the way to construct a hyperbolic

line for given any two points in H, and the uniqueness of such line holds by

our construction of these lines. Depending on the equalities of the real part

of p and q we have the following two cases:

Case 1 : If Re(p) = Re(q), we draw a Euclidean line passing through p and

q. By construction this line is perpendicular to R. Intersection of this line

with H is the desired hyperbolic line Lp,q. In mathematical terms,

Lp,q = {z ∈ H | Re(z) = Re(p)}.

Case 2 : If Re(p) 6= Re(q). Let `pq be the Euclidean line segment joining p

and q, and let ` be the perpendicular bisector of `pq. Then, every Euclidean

circle that passes through p and q has its center on `. As p and q have non-

equal real parts, ` cannot be parallel to R, so ` and R intersect at a unique

point c. Let A be the Euclidean circle centered at this point of intersection

point c with radius | c − p |. Note that | x − p | = | x − q |, for each point

x ∈ `. So, A passes through q also. The intersection  Lp,q = H∩A is then the

desired hyperbolic line passing through p and q. Equation of this line can be

given by,

Lc,r = {z ∈ H || z − c |2= r2},

where r =| c− p |=| c− q |.

We define the angle between two hyperbolic lines as looking at them as curves

in complex plane. Note that under this notion of angle, we can define the

parallelism of two lines as follows.

4



1.3. The General Möbius group 1. HYPERBOLIC GEOMETRY

Definition 1.2.2. Two hyperbolic lines are said to parallel if they are dis-

joint in the H.

The following theorem shows the difference between the Euclidean and hy-

perbolic geometry. In Euclidean geometry, Euclid’s fifth postulates tell us

that “For given line ` and point x disjoint from the line, we have unique

line passing through x and parallel to the given line `.” But in hyperbolic

geometry, we can find infinitely many parallel lines with the same condition.

Theorem 1.1. Let ` be a hyperbolic line, and let p be a point in H not on `.

Then, there exist infinitely many distinct hyperbolic lines through p that are

parallel to `.

Proof. There are two cases to consider. First, suppose that ` is contained

in a Euclidean line, L. As p is not on L, there exists a Euclidean line K

through p that is parallel to L. As L is perpendicular to R, we have that K

is perpendicular to R as well. So, one hyperbolic line in H through p and

parallel to ` is the intersection H ∩K.

`
p

Fig. 1.2

To construct another hyperbolic line through p and parallel to `, take a point

x on R between K and L, and let A be the Euclidean circle centered on R
that passes through x and p. We know that such a Euclidean circle A exists

because Re(x) 6= Re(p).

1.3 The General Möbius group

We begin with the group of homeomorphisms of C, and we denote it by

Homeo(C̄), now we determine the group of homeomorphisms of C taking

5



1.3. The General Möbius group 1. HYPERBOLIC GEOMETRY

circles in C to circles in C, and denote it by Homeoc(C̄).

Note that Homeo(C̄) and Homeoc(C̄) form a group under composition.

Example 1.3.1. The functions

F (z) =

az + b if z ∈ C and a 6= 0

∞ if z =∞.

and

J(z) =



z

if z ∈ C− {0}

∞ if z = 0

0 if z =∞.

belong to Homeoc(C̄).

To show F (z) ∈ Homeoc(C̄), set w = az+ b, so that z = 1
a
(w− b). Substitut-

ing this into the equation of a Euclidean circle, namely, αzz+βz+βz+γ = 0,

gives

αzz + βz + βz + γ = α
1

a
(w − b)1

a
(w − b) + β

1

a
(w − b) + β

1

a
(w − b) + γ

=
α

|a|2
(w − b)(w − b) +

β

a
(w − b) +

(
β

a

)
w − b+ γ

=
α

|a|2

∣∣∣∣w +
βa

α
− b
∣∣∣∣2 + γ − |β|

2

α
= 0,

which is again the equation of a Euclidean circle in C.

To show J(z) ∈ Homeoc(C̄), set w = 1
z
, so that z = 1

w
. Substituting this

back into the equation of Euclidean circle, αzz + βz + βz + γ = 0, gives

α
1

w

1

w
+ β

1

w
+ β

1

w
+ γ = 0.

Multiplying through by ww, we see that w satisfies the equation

α + βw + βw + γww = 0

6



1.3. The General Möbius group 1. HYPERBOLIC GEOMETRY

As α and γ are real and as the coefficients of w and w are complex conjugates,

this is again the equation of a circle in C.

Definition 1.3.1. A Möbius transformation is a function m : C̄→ C̄ of the

form

m(z) =
az + b

cz + d
,

where a, b, c, d ∈ C and ad− bc 6= 0. Let Möb+ denote the set of all Möbius

transformations.

The set of all Möbius transformations (Möb+) on C̄ forms a group under

composition.

Theorem 1.2. Möb+ ⊂ Homeoc(C̄)

Proof. We prove this by writing a typical element of Möb+ as a composi-

tion of elements of Homeoc(C̄), using Example 1.3.1. Consider the Möbius

transformation

m(z) =
az + b

cz + d

where a, b, c, d ∈ C and ad− bc 6= 0.

If c = 0, then m(z) = a
d
z + b

d
. If c 6= 0, then m(z) = f(J(g(z))), where

g(z) = cz + cd and f(z) = −(ad− bc)z + a
c

for z ∈ C, and f(∞) =∞ = g(∞)

and J(z) = 
z

for z ∈ C̄ − {0}, J(0) = ∞, and J(∞) = 0. Hence, we can

see that every element of Möb+ can be written in terms of elements of

Homeoc(C̄).

Theorem 1.3.

Möb+ ∼= PGL2(C) = PSL2(C).

Proof. Consider the map µ : GL2(C)→Möb+ defined as

µ

(
a b

c d

)
=

(
m(z) =

az + b

cz + d

)
, with a, b, c, d ∈ C and ad− bc 6=0.

Observe that kernel of µ is given by,

ker(µ) = {λI2 | λ ∈ C} ≤ GL2(C).

7



1.3. The General Möbius group 1. HYPERBOLIC GEOMETRY

By the First Isomorphism Theorem, we get

Möb+ ∼= GL2(C)/ker(µ) = PGL2(C).

Now we talk about uniquely triply transitive action of Möb+ on C̄. Which

means for given two distinct triples (z1, z2, z3) and (w1, w2, w3) of points of

C̄, there exists a unique element m ∈Möb+ so that m(z1) = w1, m(z2) = w2,

and m(z3) = w3.

Definition 1.3.2. A group G acts on a set X if there is a homomorphism

from G into the group bij(X) of bijections of X.

Definition 1.3.3. Suppose that a group G acts on a set X, and let x0 ∈ X.

If for each point y ∈ X there exists an element g ∈ G so that g(y) = x0,

then, G is said to act transitively on X.

Theorem 1.4. Möb+ acts transitively on the set C of circles in C̄.

Proof. We use the fact that any triple of distinct points in C̄ defines a unique

circle in C̄. To check this, let (z1, z2, z3) be a triple of distinct points of C̄ and

are not collinear, then there exists a unique Euclidean circle passing through

all three with center at the intersection of the perpendicular bisector of the

line joining z1, z2 and the line joining z2, z3. If the points are collinear, then

there exists a unique Euclidean line passing through all three. If one of the

z1, z2, z3 is∞, then there is a unique Euclidean line passing through the other

two.

Let C1 and C2 be two circles in C̄. Choose a triple of distinct points on C1

and a triple of distinct points on C2, and let m be the Möbius transformation

taking the triple of distinct points determining C1 to the triple of distinct

points determining C2. As m(C1) and C2 are two circles in C̄ that pass

through the same triple of distinct points and as Möbius transformations

take circles in C̄ to circles in C̄, we have that m(C1) = C2.

8



1.4. The group Möb(H) 1. HYPERBOLIC GEOMETRY

1.4 The group Möb(H)

We have seen that Möb+ is contained in the set Homeoc(C̄) of homeomor-

phisms of C̄ that takes circles in C̄ to circles in C̄. There is a natural extension

of Möb+ that also lies in Homeoc(C̄). Consider the homeomorphism of C̄ not

in Möb+, namely, complex conjugation, which helps to extend Möb+ to a

larger group.

Note that C is its own inverse, that is C−(z) = C(z), so C is a bijection.

Further C is continuous, because, for any, point z ∈ C and any ε > 0, we

have that C (Uε(z)) = Uε(C(z)).

Definition 1.4.1. The general M öbius group (Möb) is the group generated

by Möb+ and C. That means we can express every element p ∈ Möb as a

composition

p = C ◦mk ◦ ...C ◦m

for some k ≥1, where each mk is an element of Möb+.

Theorem 1.5. Möb ⊂ Homeoc(C̄).

Proof. By Definition 1.4.1, we can see that elements of the general Möbius

group are either from Möb+ or a composition of elements of Möb+ with the

reflection C(z) = z̄ for, z ∈ C and C(∞) = ∞. Hence, by Theorem 1.2,

we have that every element of Möb+ lies in Homeoc(C̄). So we only need to

check that complex conjugation C lies in Homeoc(C̄). Let A be the circle in

C given by the equation αzz + βz + βz + γ = 0. Set w = C(z) = z, so that

z = w and note that w then satisfies the equation αww + βw + βw + γ = 0,

which is again the equation of a circle in C, as desired.

1.5 Isometries of H

Definition 1.5.1. A homeomorphism of C̄ that preserves the absolute value

of the angle between curves is said to be conformal.

Theorem 1.6. The elements of Möb are conformal homeomorphisms of C̄.

9



1.5. Isometries of H 1. HYPERBOLIC GEOMETRY

Proof. As Möb is generated by the transformations of the form f(z) = az + b

for a, b ∈ C and a 6= 0, and J(z) = 
z

and C(z) = z̄. So, we only need to

check for these transformations. Let X1 and X2 be two Euclidean lines in C
that intersect at a point z0, let zk be a point on Xk not equal to z0, and let

sk be the slope of Xk. These quantities are connected by the equation

sk =
Im (zk − z0)

Re (zk − z0)
.

Let θk be the angle that Xk makes with the real axis R, and note that

sk = tan (θk). In particular, the angle angle(X1, X2) between X1 and X2 is

given by

angle (X1, X2) = θ2 − θ1 = arctan (s2)− arctan (s1) .

Consider f(z) = az + b, where a, b ∈ C and a 6= 0. Write a = ρeiβ. As

f(∞) =∞, both f (X1) and f (X2) are again Euclidean lines in C. As f(Xk)

passes through the points f(z0) and f(zk), the slope tk of the Euclidean line

f(Xk) is

tk =
Im (f (zk)− f (z0))

Re (f (zk)− f (z0))
=

Im (a (zk − z0))

Re (a (zk − z0))

=
Im
(
eiβ (zk − z0)

)
Re (eiβ (zk − z0))

= tan (β + θk) .

We see that,

angle (f (X1) , f (X2)) = arctan (t2)− arctan (t1)

= (β + θ2)− (β + θ1)

= θ2 − θ1 = angle (X1, X2) ,

and so m is conformal.

For the case J(z) = 1
z
, J(X1) and J(X2) need not be necessarily Euclidean

lines in C, but instead they may be both Euclidean circles in C that intersect

at 0, or one might be a Euclidean line and other a Euclidean circle. We give

10



1.5. Isometries of H 1. HYPERBOLIC GEOMETRY

the argument for the case. When both are Euclidean circles.

Let Xk is given as the solutions of the equation βkz + βkz + 1 = 0, where

βk ∈ C. The slope of Xk is given by

sk =
Re (βk)

Im (βk)
.

Given the form of the equation for Xk, we also know that J(Xk) is the set

of solutions to the equation

zz + βkz + βkz = 0,

which we can rewrite as

|z + βk|2 = |βk|2 ,

so that J(Xk) is the Euclidean circle with Euclidean center −βk and Eu-

clidean radius |βk|. The slope of the tangent line to J(Xk) at 0 is then

−Re (βk)

Im (βk)
= − tan (θk) = tan (−θk) ,

and so J(Xk) makes angle −θk with R. The angle between J(X1) and J(X2)

is then given by

angle (J (X1) , J (X2)) = −θ2 − (−θ1) = − angle (X1, X2) ,

and so J is conformal.

Now consider C(z) = z̄. As Xk passes through z0 and zk, we have that C(Xk)

passes through C(z0) = z0 and C(zk) = zk, and so C(Xk) has slope

Sk =
Im (zk − z0)

Re (zk − z0)
= −Im (zk − z0)

Re (zk − z0)
= −sk.

Then

angle (C (X1) , C (X2)) = arctan (S2)− arctan (S1)

= − arctan (s2) + arctan (s1) = − angle (X1, X2) .

11



1.5. Isometries of H 1. HYPERBOLIC GEOMETRY

Hence, C is conformal, as it preserves the absolute value of the angle between

Euclidean lines.

Definition 1.5.2. The group Möb(H) : = {m ∈ Möb | m(H) = H }.

Theorem 1.7. Every element of Möb(H) takes hyperbolic lines in H to hy-

perbolic lines in H.

Proof. By Definition 1.2.1 of hyperbolic line, every hyperbolic line in H is

the intersection of H with a circle in C̄ perpendicular to R̄ and that every

element of Möb takes circles in C̄ to circles in C̄. Now by Theorem 1.6, we

know that every element of Möb(H) preserves angle between circles in C̄,

from which the assertion follows.

As H is a disc in C̄ determined by the circle in C̄, R̄, let us first determine

the explicit form of an element of

Möb(R) = {m ∈ Möb |m(R) = R}.

As we know that every element of Möb can be written either as m(z) = az+b
cz+d

or as m(z) = az+b
cz+d

, where a, b, c, d ∈ C and ad − bc = 1. Now we determine

some condition on a, b, c, d by requiring that m(R) = R.

As m takes R to R, we have that the three points

m−1(∞) = −d
c
,m(∞) =

a

c
, and m−1(0) = − b

a
.

all lie in R.

If a 6= 0 and c 6= 0, then all these three points lie in R. We can express each

coefficient of m as a multiple of c. We have that

a = m(∞)c, b = −m−1(0)a = −m−1(0)m(∞)c, and d = −m−1(∞)c.

So, we can rewrite m as

m(z) =
az + b

cz + d
=
m(∞)cz −m−1(0)m(∞)c

cz −m−1(∞)c
.

12



1.5. Isometries of H 1. HYPERBOLIC GEOMETRY

As determinant of m is 1, we have

1 = ad− bc = c2
[
−m(∞)m−1(∞) +m(∞)m−1(0)

]
= c2

[
m(∞)

(
m−1(0)−m−1(∞)

)]
.

As m(∞),m−1(0), and m−1(∞) are all real, this implies that c is either real

or purely imaginary. Hence the coefficients of m are either all real or all

purely imaginary.

Theorem 1.8. Every element of Möb(H) has the form

m(z) =
az + b

cz + d
, where a, b, c, d ∈ R and ad− bc =1,

or the form

m(z) =
az̄ + b

cz̄ + d
, where a, b, c, d are purely imaginary and ad− bc =1.

Proof. Note that each element of Möb(R) either preserves each of the two

discs in C̄ determined by R̄, namely the upper and lower half-planes, or

interchanges them. We consider the image of a single point in one of the

discs. An element m of Möb(R) is an element of Möb(H) if and only if

the imaginary part of m(i) is positive. So, it suffices to check the value of

Im(m(i)) for m ∈Möb(R).

If m is of the form m(z) = az+b
cz+d

, where a, b, c, d are real and ad− bc = 1, then

the imaginary part of m(i) is,

Im(m(i)) = Im

(
ai+ b

ci+ d

)
= Im

(
(ai+ b)(−ci+ d)

(ci+ d)(−ci+ d)

)
=
ad− bc
c2 + d2

=
1

c2 + d2
> 0,

and so m lies in Möb(H).

If m is of form m(z) = az+b
cz+d

, where a, b, c, d are real and ad − bc = 1, then

13
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the imaginary part of m(i) is,

Im(m(i)) = Im

(
−ai+ b

−ci+ d

)
= Im

(
(−ai+ b)(ci+ d)

(−ci+ d)(ci+ d)

)
=
−ad+ bc

c2 + d2
=
−1

c2 + d2
< 0,

and so m does not lie in Möb(H).

If m is of the form m(z) = az+b
cz+d

, where a, b, c, d are purely imaginary and

ad−bc = 1, write a = αi, b = βi, c = γi and d = δi, such that αδ−βγ = −1.

then the imaginary part of m(i) is,

Im(m(i)) = Im

(
ai+ b

ci+ d

)
= Im

(
−α + βi

−γ + δi

)
= Im

(
(−α + βi)(−γ − δi)
(−γ + δi)(−γ − δi)

)
=
αδ − βγ
γ2 + δ2

=
−1

γ2 + δ2
< 0,

and so m does not lie in Möb(H).

If m has the form m(z) = az+b
cz+b

, where a, b, c, and d are purely imaginary and

ad−bc = 1, write a = αi, b = βi, c = γi and d = δi, such that αδ−βγ = −1.

then the imaginary part of m(i) is,

Im(m(i)) = Im

(
−ai+ b

−ci+ d

)
= Im

(
α + βi

γ + δi

)
= Im

(
(α + βi)(γ − δi)
(γ + δi)(γ − δi)

)
=
−αδ + βγ

γ2 + δ2
=

1

γ2 + δ2
> 0,

and so m lies in Möb(H).

Theorem 1.9. Möb(H) acts transitively on H.

Proof. It suffices to show that for any point w of H, there exists an element

m of Möb(H), such that m(w) = i. Let w = a+ ib, where a, b ∈ R and b > 0.

Now we construct an element of Möb(H) which takes w to i. First, move w to

the positive imaginary axis using p(z) = z−a, so that p(w) = p(a+ ib) = bi.

Now, we apply q(z) = 1
b
z to p(w), so that q(p(w)) = q(bi) = i. Observe that

q ◦ p(z) = z−a
b

lies in Möb(H) for −a ∈ R and 1
b
> 0 as desired.

14
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Theorem 1.10. Möb(H) acts transitively on the set L of hyperbolic lines in

H.

Proof. Let ` be a hyperbolic line. Using definition of transitive action it

is enough to construct an element of Möb(H) which takes ` to the positive

imaginary axis. We can construct such element by taking the endpoints at

infinity of ` to 0 and ∞.

1.5.1 Classification of elements of Möb+(H)

Two Möbius transformations m1, m2 ∈ Möb+ are said to be conjugate if

there exists p ∈ Möb+ such that m2 = p ◦ m1 ◦ p−1. As az+b
cz+d

= z yields a

quadratic equation

p(z) = cz2 + (d− a)z − b = 0,

any m ∈Möb+ can have at most 2 fixed points in C.

Definition 1.5.3. Using the notion of fixed points we classify elements of

Möb+ into three categories:

1. If any element m ∈Möb+ has one fixed point in R called parabolic.

2. If m has two fixed points in R called hyperbolic.

3. If m has one fixed point in H called elliptic.

Theorem 1.11. Let m(z) = az+b
cz+d
∈Möb+(H); where a, b, c, d ∈ R and ad− bc = 1,

then on the basis of fixed point of m, we have following classifications of the

elements of Möb+(H),

1. If m is parabolic then it is conjugate in Möb+(H) to q(z) = z+1.

2. If m is hyperbolic then it is conjugate in Möb+(H) to q(z) = λz for

some positive real number λ 6= {0, 1}.

3. If m is elliptic then it is conjugate in Möb+(H) to q(z) = cos(θ)z+sin(θ)
−sin(θ)z+cos(θ)

for some real number θ.

15
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Proof. 1. Let the fixed point of m in R be x. Let y be any point in C−{x},
and observe that (x, y,m(y)) is a triple of distinct points. Let p ∈Möb+(H)

which maps (x, y,m(y)) to the triple (∞, 0, 1). Now by our construction,

p ◦m ◦ p−1(∞) = p ◦m(x) = p(x) =∞. As p ◦m ◦ p−1 fixes ∞, we can write

it as p ◦m ◦ p−1(z) = az + b,with a 6= 0. As p ◦m ◦ p−1 has only one fixed

point, and there is no other fixed point to the equation p ◦m ◦ p−1(z) = z,

so it must be that a = 1. As p ◦m ◦ p−1(0) = p ◦m(y) = 1, we have b = 1,

and so p ◦m ◦ p−1(z) = z + 1.

2. Let the fixed points of m in R be x and y, and let q ∈Möb+(H) such that

q(x) = 0 and q(y) = ∞. Now by our construction q ◦m ◦ q−1(∞) = ∞ and

q ◦m◦q−1(0) = 0. Hence, we can write q ◦m◦q−1(z) = λz for λ ∈ C−{0, 1}.
3. We may assume without loss of generality that m(i) = i. As m is an

element of Möb+(H), has form m(z) = az+b
cz+d

where ad− bc = 1. As i is fixed,

we have
ai+ b

ci+ d
= i,

so we get

ai+ b = −c+ di.

By comparing real and imaginary parts, we get a = d and b = −c, now

substituting these in equation ad − bc = 1 we get a2 + b2 = 1. This shows

that a = d = cos(θ) and b = −c = sin(θ) for some real θ.

1.5.2 Length and distance in H

We construct an invariant notion of distance on H and explore some of its

basic properties.

The metric for the upper half plane model is defined as

ds =
|dz|

Im(z)
.

For every piecewise C path f : [a, b]→ H, we define the hyperbolic length

16



1.5. Isometries of H 1. HYPERBOLIC GEOMETRY

of f to be

lengthH(f) =

∫
f

1

Im(z)
|dz| =

∫ b

a

1

Im(f(t))
|f ′(t)|dt.

Theorem 1.12. Hyperbolic length of any piecewise continuous path γ in H
is invariant under the action of Möb(H).

Proof. Let

T (z) =
az + b

cz + d
(a, b, c, d ∈ R, ad− bc = 1).

Then,
dT

dz
=
a(cz + d)− c(az + b)

(cz + d)2
=

1

(cz + d)2
.

Also, if z = x+ iy, T (z) = u+ iv, then

v =
y

|cz + d|2
,

and hence, we have ∣∣∣∣dTdz
∣∣∣∣ =

v

y
.

Thus,

lengthH(T (γ)) =

∫ 1

0

∣∣dT
dt

∣∣ dt
v

=

∫ 1

0

∣∣dT
dz

dz
dt

∣∣ dt
v

=

∫ 1

0

v
∣∣dz
dt

∣∣ dt
y

=

∫ 1

0

∣∣dz
dt

∣∣ dt
y

= lengthH(γ).

Proposition 1.5.1. For every element γ ∈Möb(H) and for every pair x, y ∈
H, we have

dH(x, y) = dH(γ(x), γ(y)).

Definition 1.5.4. An isometry of a metric space (X, d) is a homeomorphism

f of X that preserve distance, that is,

d(x, y) = d(f(x), f(y)).
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Isom(H, dH) denotes the group of isometries of (H, dH).

Theorem 1.13. Möb(H) = Isom(H, dH).

Proof. We have already seen that Möb(H) ⊂ Isom(H, dH). It remains to

show that

Möb(H) ⊃ Isom(H, dH).

Let f be a hyperbolic isometry. For any pair p, q ∈ H, let `pq denote the

hyperbolic line segment joining p to q. We have that `f(p)f(q) = f(`pq). Let

` = {z ∈ H | dH(p, z) = dH(q, z)} (perpendicular bisector of `pq), so that f(`)

is the perpendicular bisector of f(`pq).

Choose x and y on the positive imaginary axis I+ in H, and let H be one

of the half-planes in H determined by I+. We can find γ ∈ Möb(H), which

satisfies γ(f(x)) = x and γ(f(y)) = y, because dH(x, y) = dH(f(x), f(y)). We

can see that γ ◦ f fixes both x and y, and so γ ◦ f takes I+ to I+ and H to

H.

As we can determine every point z ∈ I+ using dH(y, z) and dH(x, z), and

both distances are preserved by γ ◦ f , γ ◦ f fixes every point z ∈ I+.

I+

w
`w

z

Fig. 1.3: Hyperbolic line passing through w and perpendicular to I+

Let w ∈ H\I+, and let `w be the hyperbolic line through w and perpendicular

to I+, Figure 1.3. Since

dH(z, w) = dH(γ ◦ f(z), γ ◦ f(w)) = dH(z, γ ◦ f(w)),

γ ◦ f fixed z, which implies γ ◦ f fixes w, (using the fact that γ ◦ f preserves

the two half-planes determined by I+). Hence γ ◦ f fixes every point of H,

which implies that γ ◦ f is the identity.
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Definition 1.5.5. Let z1, z2, z3, z4 be four distinct points in C. Then their

cross-ratio is defined as

[z1, z2; z3, z4] =
(z1 − z4)(z3 − z2)

(z1 − z2)(z3 − z4)
.

Theorem 1.14. Let z1, z2 be two distinct points in H and let z∗1 , z
∗
2 be the

endpoints of geodesic joining z1and z2 in R, chosen in such a way that z1 lies

between z∗1 and z2. Then

dH(z1, z2) = ln[z2, z
∗
1 ; z1, z

∗
2 ].

Proof. Using transitive action of Möb(H) on the set of hyperbolic lines, we

can find an element S ∈ Möb(H) which maps the geodesic joining z1 and

z2 to the imaginary axis. We may assume that S(z∗1) = 0, S(z∗2) = ∞ and

S(z1) = i. Then S(z2) = ik(k > 1). Let γ : [0, 1] → H is any piecewise

differentiable path joining i and ik, with γ(t) = (x(t), y(t)), then

lengthH(γ) =

∫ 1

0

√(
dx
dt

)2
+
(
dy
dt

)2
dt

y(t)
=

∫ 1

0

|dy|
|dt| dt

y(t)
≥
∫ 1

0

dy
dt
dt

y(t)
=

∫ k

1

dy

y
= ln k.

But k = [ki, 0; i,∞], and the assertion follows from the invariance of the

cross-ratio under linear fractional transformations (see [4]).

Theorem 1.15. The geodesics in H are semicircles and straight lines or-

thogonal to the real axis R.

Proof. Let z = ia and z = ib in H (b > a). Choose any piecewise C path

γ joining ia and ib, with γ(t) = (x(t), y(t)), then lengthH(γ) = ln b
a
. For arbi-

trary z and z in H, let L be the unique Euclidean line or circle orthogonal

to the real axis passing through those points. Using the transitive action of

Möb(H) we can map L to the imaginary axis. From the isometric behavior

of Möb(H), it follows that the geodesic joining z and z is the line segment

of L joining them.
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1.6 The Poincaré Disk Model

In this section, we explore a second model, the Poincaré disk model D, of

the hyperbolic plane. We construct this model using upper half-plane model.

The underlying space for the Poincaré disk model of the hyperbolic plane is

the open unit disk,

D = {z ∈ C | |z| < 1}

in the complex plane C. Now we construct an element m : D → H of Möb

to transport hyperbolic geometry from H to D. There are so many ways to

construct such an element, but we consider the unique Möbius transformation

m mapping the triple (i, 1,−i) to the triple (0, 1,∞), namely

m(z) =
iz + 1

z + i
.

A hyperbolic line in D is defined as the image of hyperbolic line in H under

m−1. For any piecewise differentiable path f : [a, b] → D, the composition

m ◦ f : [a, b]→ H will be a piecewise differentiable path in H. So, hyperbolic

length of f in D is defined as

lengthD(f) = lengthH(m ◦ f).

Theorem 1.16. The hyperbolic length of a piecewise differentiable path f :

[a, b]→ D is given by

lengthD(f) =

∫
f

2

1− |z|2
|dz|.

Proof. We prove this by taking m : D→ H which we have constructed above,

but this is independent of the choice of the element of Möb taking D to H.
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lengthD(f) = lengthH(m ◦ f) =

∫
m◦f

1

Im(z)
|dz|

=

∫ b

a

1

Im((m ◦ f)(t))
|(m ◦ f)′(t)| dt

=

∫ b

a

1

Im(m(f(t)))
|m′(f(t))| |f ′(t)| dt

=

∫
f

1

Im(m(z))
|m′(z)‖dz|.

We have

Im(m(z)) = Im

(
zi+ 1

z + i

)
=

1− |z|2

|z + i|2
,

and that

|m′(z)| = 2

|z + i|2
,

and so
1

Im(m(z))
|m′(z)| = 2

1− |z|2
.

Hence,

lengthD(f) =

∫
f

2

1− |z|2
|dz|.

To show this hyperbolic length is independent of the choice of m. Let n be

any other element of Möb taking D to H. As n ◦ m−1 takes H to H, we

have q = n ◦m−1 ∈ Möb(H). By the invariance of hyperbolic length under

Möb(H), we have

lengthH(m ◦ f) = lengthH(q ◦m ◦ f) = lengthH(n ◦ f)

Theorem 1.17. Let a and b be two distinct points inside Poincaré disk.

Then hyperbolic distance between a and b is,

dD(a, b) = cosh−1

(
1 +

2|a− b|2

(1− |a|2) (1− |b|2)

)
.

Proof. Let choose these points are 0 and r, where 0 < r < 1. Now parametrize
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1.6. The Poincaré Disk Model 1. HYPERBOLIC GEOMETRY

the hyperbolic line segment between 0 and r by the path f : [0, r]→ D given

by f(t) = t. As the image of f is the hyperbolic line segment in D joining 0

and r, we have that

dD(0, r) = lengthD(f),

lengthD(f) =

∫
f

2

1− |z|2
|dz|

=

∫ r

0

2

1− t2
dt

=

∫ r

0

[
1

1 + t
+

1

1− t

]
dt

= ln

[
1 + r

1− r

]
.

We can further solve for r, and we get

r = tanh

[
1

2
dD(0, r)

]
.

Now choose an element p(z) = αz+β

βz+α
∈Möb+(D) (where α, β ∈ C and |α|2 −

|β|2 = 1) such that p(a) = 0 and p(b) is real and positive. One way to do

this is to set β = −αa, so that

p(z) =
α(z − a)

α(−az + 1)
,

where |α|2 (1− |a|2) = 1. Now choose the argument of α so that p(b) = r is

real and positive. Now using the fact that for any pair a, b ∈ D, we can write

|a− b|2

(1− |a|2) (1− |b|2)
=

|p(a)− p(b)|2

(1− |p(a)|2) (1− |p(b)|2)
.

By substituting p(a) = 0 and p(b) = r, we get

|a− b|2

(1− |a|2) (1− |b|2)
=

r2

1− r2
.

We have r = tanh
(

1
2
dD(0, r)

)
, and so
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r2

1− r2
=

1

2
(cosh (dD(a, b))− 1) .

Therefore, we get

dD(a, b) = cosh−1

(
1 +

2r2

1− r2

)
= cosh−1

(
1 +

|a− b|2

(1− |a|2) (1− |b|2)

)
.

1.6.1 Convexity

Definition 1.6.1. A subset X of the hyperbolic plane is convex if for each

pair of distinct points x and y in X, the closed hyperbolic line segment `xy

joining x to y is contained in X.

Proposition 1.6.1. Hyperbolic lines, hyperbolic rays, and hyperbolic line

segments are convex.

Proof. Let ` be a hyperbolic line, and let x and y be two points of `. By

Proposition 1.2.1, x and y determine a unique hyperbolic line, namely, `,

and so the closed hyperbolic line segment `xy joining x to y is necessarily

contained in `. Hence, ` is convex.

This same argument also shows that hyperbolic rays and hyperbolic line

segments are convex.

For a given hyperbolic line ` in the hyperbolic plane, the complement of ` in

the hyperbolic plane has two components, which are the two open half-planes

determined by `. A closed half-plane determined by ` is the union of ` with

one of the two open half-planes determined by ` .

1.7 Hyperbolic Polygons

As in Euclidean geometry, the polygon is one of the basic objects in hyperbolic

geometry. In the Euclidean plane, a polygon is a closed convex set that is

bounded by Euclidean line segments. We would like to mimic this definition

as much as possible in the hyperbolic plane.
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Definition 1.7.1. Any collection of half-planes H is locally finite if for each

point z in the hyperbolic plane, there exists some ε > 0 so that only finitely

many bounding lines `α of the half-plane in H intersect the open hyperbolic

disc Uε(z) of hyperbolic radius ε and hyperbolic center z.

Definition 1.7.2. A hyperbolic polygon is a closed convex set in the hy-

perbolic plane that can be expressed as the intersection of a locally finite

collection of closed half-planes.

Fig. 1.4: A hyperbolic polygon in H.

Definition 1.7.3. A hyperbolic polygon is nondegenerate if it has non-empty

interior, and degenerate if has empty interior.

Definition 1.7.4. Let P be a hyperbolic polygon, and let v be a vertex of P

that is the intersection of two sides s1 and s2 of P. Let `k be the hyperbolic

line containing sk. The union `1 ∪ `2 divides the hyperbolic plane into four

components, one of which contains P. The interior angle of P at v is the

angle between `1 and `2, measured in the component of the complement of

`1 ∪ `2 containing P.

Definition 1.7.5. A hyperbolic polygon P in the hyperbolic plane has an

ideal vertex at v if there are two adjacent sides of P that are either closed

hyperbolic rays or hyperbolic lines and that share v as an endpoint at infinity.

1.7.1 Hyperbolic Area

In addition to those we have already mentioned, one of the nice properties of

hyperbolic convex sets in general, and hyperbolic polygons, in particular, is
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Fig. 1.5: A hyperbolic polygon with an ideal vertex at ∞.

that it is easy to calculate their hyperbolic area. But first, we need to define

the hyperbolic area. For now, we work in the upper half-plane model H.

Definition 1.7.6. The hyperbolic area areaH(X) of a set X in H is given by

the integral

areaH(X) =

∫
X



Im(z)
dxdy =

∫
X



y
dxdy,

where z = x+ iy.

Theorem 1.18. Hyperbolic area in H is invariant under the action of Möb(H).

Proof. Let z = x+ iy,

T (z) =
az + b

cz + d
, a, b, c, d ∈ R, ad− bc = 1

and w = T (z) = u + iv. Then using the Cauchy-Riemann equations we

calculate the Jacobian

∂(u, v)

∂(x, y)
=
∂u

∂x

∂v

∂y
− ∂u

∂y

∂v

∂x

=

(
∂u

∂x

)2

+

(
∂v

∂x

)2

=

∣∣∣∣dTdx
∣∣∣∣2 =

∣∣∣∣dTdz
∣∣∣∣2

=
1

|cz + d|4
.

Thus, for a hyperbolic polygon in E
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areaH(T (E)) =

∫∫
T (E)

dudv

v2
=

∫∫
E

∂(u, v)

∂(x, y)

dxdy

v2

=

∫∫
E

1

|cz + d|4
|cz + d|4

y2
dxdy = areaH(E).

1.7.2 Gauss-Bonnet formula

In this section, we see the hyperbolic area of any hyperbolic polygon can be

written in the form of interior angles. First, we start with the hyperbolic

triangle.

Proposition 1.7.1. Let P be a hyperbolic triangle with one ideal vertex, and

let α and α be the interior angles at the other two vertices, which might or

might not be ideal vertices. Then,

areaH(P ) = π − (α + α).

Proof. Let a hyperbolic triangle P with one vertex is ideal, say v, and two

other vertices(v,v) might or might not be ideal. Let `jk be the hyperbolic

line determined by vj and vk. Using the transitivity properties of Möb(H).

We can find a γ ∈Möb(H) which takes v to∞ and takes ` to the hyperbolic

line contained in the unit circle, so that v = eiφ and v = eiθ, where 0 ≤ θ <

φ ≤ π.

v

v
v

Fig. 1.6: Hyperbolic triangle with one ideal vertex (v1).

As the hyperbolic area is invariant under the action of Möb(H), we can

assume that the hyperbolic area of P with new vertices remain unchanged.
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So

areaH(P ) =

∫
P



y
dxdy =

∫ cos(θ)

cos(φ)

∫ ∞
√
−x



y
dydx =

∫ cos(θ)

cos(φ)

√
− x

dx.

substituting,

x = cos(w),⇒ dx = −sin(w)dw,we get

areaH(P ) =
∫ θ
φ
−dw = φ− θ. α = , α = θ, α = π − θ, and hence

areaH(P ) = φ− θ = π − (α − α).

Theorem 1.19 (Gauss-Bonnet). Let P be a hyperbolic triangle with interior

angles α, β, and γ. Then,

areaH(P ) = π − (α + β + γ).

Proof. Let P be hyperbolic triangle given by (v1, v2, v3), and let `i,j be the

hyperbolic line passing through (vi, vj). Now extend the hyperbolic line `1,3

up to R, and mark the point of intersection of `1,3 with R by v0 as in following

diagram. Now draw a hyperbolic line passing through v0, v2.

v

v
v

v

Fig. 1.7

As we can see in the Figure 1.1, we get two hyperbolic triangles (v0, v1, v2)

and (v0, v2, v3) with one ideal vertex as v0. Now by Proposition 1.7.1, we can

calculate the the hyperbolic area of triangles (v0, v1, v2) and (v0, v2, v3), and
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the hyperbolic area of the triangle P is equal to the hyperbolic area of the

triangle (v0, v2, v3) minus the hyperbolic area of the triangle (v0, v1, v2).

Theorem 1.20. Let P be a hyperbolic with vertices and ideal vertices v, ..., vn.

Let αk be the interior angle at vk. Then,

areaH(P ) = (n− )π −
n∑
k=

αk.

Proof. We prove this by decomposing P into hyperbolic triangles. Choose

any point in the interior of hyperbolic polygon P , call that point x. Now

draw hyperbolic line segment `i, joining x to each vertex vi, and as hyperbolic

polygons are convex, each hyperbolic lines `i is contained in P. The hyperbolic

line segments `1, `2, ..., `n break P into n-triangles T1, T2, ...Tn. Now we use

Gauss-Bonnet formula (Theorem 1.19) to get the hyperbolic area of each Ti,

and add them all to get hyperbolic area of P.
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2. FUCHSIAN GROUPS

2.1 Introduction

When considering the geometry of the hyperbolic plane, the most important

group that arises is the group of orientation-preserving isometries of the

plane, which we have shown to be PSL(2,R). Fuchsian groups, which are

the discrete subgroups of PSL(2,R) are particularly important to the areas of

hyperbolic geometry of Riemann surfaces and algebraic curves. This chapter

is based on [2] and [3].

2.2 The group PSL(2,R)

PSL(2,R), besides being a group, is also a topological space in that the

transformation z 7→ (az + b)/(cz + d) can be identified with the point

(a, b, c, d) ∈ R4. More precisely, as a topological space, SL(2,R) can be

identified with the subset of R4,

X =
{

(a, b, c, d) ∈ R4 : ad− bc = 1
}
,

and if we define δ(a, b, c, d) = (−a,−b,−c,−d) then δ : X → X is a home-

omorphism and δ together with the identity forms a cyclic group of order 2

acting on X. The group PSL(2,R) can be topologized as the quotient space.

Definition 2.2.1. A discrete subgroup of a topological group G is a subgroup

of G which, as a topological space, inherits the discrete topology from G.

Definition 2.2.2. A discrete subgroup of Isom(H) is called a Fuchsian group

if it consists of orientation-preserving transformations. In other words, a
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Fuchsian group is a discrete subgroup of PSL(2,R).

For any discrete group Γ of Isom(H), its subgroup Γ+ of index ≤ 2 consisting

of orientation-preserving transformations is a Fuchsian group. Thus, the

main ingredient in the study of discrete subgroups of isometries of H is the

study of Fuchsian groups.

Let X be a metric space and let G be the group of homeomorphisms of X.

Definition 2.2.3. A family {Mα|α ∈ A} of subsets of X indexed by elements

of a set A is called locally finite if for any compact subset K ∈ X, Mα∩K 6= Φ

for only finitely many α ∈ A

Definition 2.2.4. Let a group G acts on a set X. For x ∈ X, the set

Gx = {g(x)|g ∈ G} is called the G− orbit of the point x .

Definition 2.2.5. Given a metric space X, a group G which is a subgroup

of the isometries of X acts properly discontinuously on X if and only if any

of the following three conditions hold:

1) If the G-orbit of any point x ∈ X is locally finite.

2) The G-orbit of any point is discrete and the stabilizer of that point is

finite.

3) If each point x ∈ X has a neighborhood V such that

T (V ) ∩ V 6= ∅, for only finitely many T ∈ G.

Lemma 1. (i) A non-trivial discrete subgroup of R, the additive group of

real numbers is infinite cyclic.

(ii) A discrete subgroup of S1, the multiplicative group of complex numbers

of modulus 1, is finite cyclic.

Proof. (i). Let Γ be a discrete subgroup of R. There exist a smallest positive

x ∈ Γ, otherwise, we get a sequence which converges to 0, which violates

the discreteness. Then consider this {nx | n ∈ Z} discrete subgroup of Γ.

Suppose ∃ y ∈ Γ, such that y 6= nx. Then by the Archimedean Property

there exists an integer k ≥ 0 such that kx < y < (k + 1)x, and y − kx < x,

which contradicts our choice of x.
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(ii). Let Γ now be a discrete subgroup of S1 = {z ∈ C | z = eiφ}. By

discreteness, there exists z = eiφ ∈ Γ, with the smallest argument φ0, and for

some m ∈ Z, mφ0 = 2π, otherwise, we get a contradiction with the choice of

φ0.

Example 2.2.1. Consider

PSL(2,Z) =

{
z → az + b

cz + d
, a, b, c, d ∈ Z, ad− bc = 1

}
.

It is clearly a discrete subgroup of PSL(2,R), because Z is discrete in R. and

hence a Fuchsian group.

Lemma 2. Let z0 ∈ H be given and let K be a compact subset of H, then

the set

E = {T ∈ PSL(2,R) | T (z0) ∈ K}

is compact.

Proof. As PSL(2,R) is topologized as a quotient space of SL(2,R) . We have

continuous map

ψ : SL(2,R)→ PSL(2,R)

such that,

ψ

[
a b

c d

]
= T, T (z) =

az + b

cz + d
.

So we only need to show that

E1 = {

[
a b

c d

]
∈ SL(2,R) | az0 + b

cz0 + d
∈ K}

is compact, as it would then follow that E = ψ(E1) is compact. We prove

that E1 is compact by showing that it is closed and bounded when regarded

as a subset of R4. We have a continuous map β : SL(2,R) → H defined by

β(A) = ψ(A) (z0). Since E1 = β−1(K), it follows that E1 is closed as the

inverse image of the closed set K.

We now show that E1 is bounded. As K is bounded there exist M1 > 0 such
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that ∣∣∣∣az0 + b

cz0 + d

∣∣∣∣ < M1,

for all

[
a b

c d

]
∈ E1.

Also, as K is compact in H there exist M2 > 0 such that

Im

(
az0 + b

cz0 + d

)
≥M2.

As the left-hand side of the inequality is Im (z0) / |cz0 + d|2 so that

|cz0 + d| ≤

√(
Im (z0)

M2

)
,

and thus

|az0 + b| ≤M1

√(
Im (z0)

M2

)
,

and we deduce that a, b, c, d are bounded.

Lemma 3. Let Γ be a subgroup of PSL(2, R) acting properly discontinuously

on H, and p ∈ H be fixed by some element of Γ. Then there is a neighborhood

W of p such that no other point of W is fixed by an element of Γ other than

the identity.

Proof. Suppose T (p) ∈ p for some Id 6= T ∈ Γ, and in any neighborhood of p

there are fixed points of transformations in Γ. There is a sequence of points

in H, pn → p, such that for Tn ∈ Γ, Tn(Pn) = Pn. Let B3ε(p) be a closed

hyperbolic disc, centered at p. B3ε(p) is compact. Since Γ acts properly

discontinuously, the set {T ∈ Γ | T (p) ∈ B3ε(p)} is finite. For sufficiently

large N , n > N implies that ρ(Tn(p), p) > 3ε, while ρ(pn, p) < ε. By triangle

inequality and invariance of hyperbolic metric, we have

ρ(Tn(p), p) ≤ ρ(Tn(p), Tn(pn)) + ρ(Tn(pn), p),
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= ρ(p, pn) + ρ(pn, p) < 2ε,

which is a contradiction.

Theorem 2.1. Let Γ be a subgroup of PSL(2, R). Then Γ is a Fuchsian

group if and only if Γ acts properly discontinuously on H.

Proof. (⇒) Let z ∈ H and K be a compact subset of H. Then

{T ∈ Γ | T (z) ∈ K} = {T ∈ PSL(2, R) | T (z) ∈ K} ∩ Γ

is a finite set, and hence Γ acts properly discontinuously.

(⇐) Suppose Γ acts properly discontinuously, but it is not discrete subgroup

of PSL(2, R). Choose a point s ∈ H not fixed by any non-identity element

of Γ. As Γ is not discrete, there exists a sequence {Tk} of distinct elements

of Γ such that Tk → Id as k → ∞. Hence Tk(s) → s as k → ∞ and as s is

not fixed by any non-identity element of Γ, {Tk(s)} is a sequence of points

distinct from s. Hence every closed hyperbolic disc centered at s contains

infinitely many points of the Γ - orbit of s. Hence, Γ does not acts properly

discontinuously.

2.3 Algebraic properties of Fuchsian groups

If G is any group and g ∈ G, then the centralizer of g in G is defined by

CG(g) = {h ∈ G|hg = gh}.

Lemma 4. If ST = TS then S maps the fixed-point of T to itself.

Proof. Let p be a fix point of T . Then

S(p) = ST (p) = TS(p),

so that S(p) is also fixed by T .
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Theorem 2.2. Two non-identity elements of PSL(2, R) commute if and only

if they have the same fixed-point set.

Proof. Suppose the two elements, T and S, commute. Then T maps the

fixed point set of S to itself injectively. Similarly, S maps the fixed point

set of T to itself injectively. Hence, T and S must have the same number of

fixed points. If they only have one fixed point, then T sends the fixed point

of S to itself. This means T also fixes the fixed points of S, and vice-versa.

Therefore, if S and T only have one fixed point, they must have the same

fixed point.

The only remaining case is if S and T have two fixed points (i.e. are hyper-

bolic). Then we can choose a conjugator such that the conjugate of T,C−1TC

fixes 0 and ∞. We do not know what S fixes, but we do know its conjugate

has the following forms,(
a b

c d

)(
λ 0

0 λ−1

)
=

(
aλ bλ−1

cλ dλ−1

)
(
λ 0

0 λ−1

)(
a b

c d

)
=

(
aλ bλ

cλ−1 dλ−1

)
Since these two elements commute, both these lines must be equal. In par-

ticular, bλ−1 = bλ and cλ = cλ−1. Since T is hyperbolic, λ 6= 1, so the only

way to satisfy these conditions is if b = c = 0. But, this means C−1SC fixes

0 and∞. Since the conjugates of T and S fix the same points, T and S must

fix the same points.

(⇐) Suppose two elements have the same fixed point set. They are then of

the same type. They are also mapped by the same conjugator to one of the

following three forms:(
cos θ − sin θ

sin θ cos θ

)
,

(
λ 0

0 λ−1

)
,

(
1 x

0 1

)
Each of these forms commutes with the other forms of their type. Since

the conjugates of the elements commute, the elements themselves must also

commute.
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Theorem 2.3. Let Γ be a Fuchsian group all of whose non-identity elements

have the same fixed-point set. Then Γ is cyclic.

Proof. Types of elements of PSL(2, R) on the basis of fixed point set :

two points in R ∪ {∞}, one point in R ∪ {∞}, one point in H. Hence all

elements of Γ must be of the same type. Suppose all elements of Γ are

hyperbolic.

Then by choosing a conjugate group, we may assume that each S ∈ Γ fixes

0 and∞. Thus, Γ is a discrete subgroup of H ={z → λz | λ > 0}. Note that

H ∼= R∗, the multiplicative group of positive real numbers, and R∗ ∼= R via

isomorphism x→ ln(x). Hence, by Lemma 1, Γ is infinite cyclic.

Similarly, if Γ contains a parabolic element, then Γ is an infinite cyclic group

containing only parabolic elements. Suppose Γ contains an elliptic element.

In D, Poincaré disk model, Γ is a discrete subgroup of orientation-preserving

isometries of D. By choosing a conjugate group we may assume that all

elements of Γ have 0 as a fixed point, and therefore all elements of Γ are

of the form z → eiθz. Thus, Γ is isomorphic to a subgroup of S1, and it is

discrete if and only if the corresponding subgroup of S1 is discrete. Now by

Lemma 1 the assertion follows.

Corollary 1. Every abelian Fuchsian group is cyclic.

Proof. By Theorem 2.2, all non-identity elements in an abelian Fuchsian

group have the same fixed-point set. Now by Theorem 2.3, it is cyclic.

Corollary 2. No Fuchsian group is isomorphic to Z× Z.

Proof. Since Z× Z is abelian but not cyclic, the assertion follows from Corol-

lary 1.

2.4 Elementary groups

Definition 2.4.1. A subgroup Γ of PSL(2, R) is called elementary if there

exists a finite Γ-orbit in H.
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Theorem 2.4. Let Γ be a subgroup of PSL(2, R) containing besides the iden-

tity only elliptic elements. Then all elements of Γ have the same fixed point,

and hence Γ is a cyclic group, abelian and elementary.

Proof. We want to prove that all elliptic elements in Γ must have the same

fixed point. And we prove this for Poincaré disk model. Hence Γ used in

the proof is a subgroup of orientation-preserving isometries of Poincaré disk

model.

We can conjugate Γ in such a way that an element Id 6= g ∈ Γ fixes 0 :

g =

[
u 0

0 ū

]

and let

h =

[
a c̄

c ā

]
∈ Γ, h 6= g.

tr[g, h] = 2 + 4 | c |2 (Im(u))2. As Γ does not contain hyperbolic elements,

| tr[g, h] |≤ 2, which gives either Im(u) = 0 or c = 0. If Im(u) = 0 then

u = ū ∈ R and hence g = Id, a contradiction.

Hence c = 0, and so

h =

[
a 0

0 ā

]
also fixes 0. Hence, Γ is finite cyclic and abelian. Since 0 is a Γ-orbit, Γ is

elementary.

Theorem 2.5. A non-elementary subgroup Γ of PSL(2,R) must contain a

hyperbolic element.

Proof. Suppose Γ does not contain hyperbolic elements.

1. If Γ contains only elliptic elements, then by previous theorem it is

elementary.

2. Hence Γ contains a parabolic element fixing, say ∞ : f(z) = z + 1.
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Let g(z) = az+b
cz+d

be any element in Γ. Then

fn ◦ g(z) =
(a+ nc)z + (b+ nd)

cz + d

and

tr2(fn ◦ g) = (a+ d+ nc)2.

Since all elements in the group are either elliptic or parabolic, we have

0 ≤ (a + d + nc)2 ≤ 4, for all n, which implies c = 0, because n is

arbitrary. But then g also fixes ∞, so that ∞ is fixed by all elements

in Γ. Hence, Γ is elementary, which is a contradiction.

2.5 Fundamental region

Definition 2.5.1. A closed region F ⊂X is defined to be a fundamental region

for G if

1. ∪T∈G T (F ) = X, and

2. F̊
⋂
T (F̊ ) = φ for all T ∈ G− {Id}.

In Figure 2.1, the fundamental region for Γ = {T n | T (z) = 2z} is indicated.

The set {T (F ) | T ∈ G} is called the tessellation of X.
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Fig. 2.1: Fundamental region for Γ = {T n | T (z) = 2z}.

Theorem 2.6. Let F1 and F2 be two fundamental regions for a Fuchsian

group Γ, and µ(F1) < ∞. Suppose that the boundaries of F1 and F2 have

zero hyperbolic area. Then µ(F1) = µ(F2).

Proof. We have µ(F̊i) = µ(Fi), i = 1, 2. So,

F1 ⊇ F1 ∩ (∪T∈ΓT (F̊2)) = ∪T∈Γ(F1 ∩ T (F̊2)).

Since F̊2 is the interior of a fundamental region, the sets F1 ∩ T (F̊2) are

disjoint, and hence

µ(F1) ≥
∑
T∈Γ

µ(F1 ∩ T (F̊2)) =
∑
T∈Γ

µ(T−1(F1) ∩ F̊2) =
∑
T∈Γ

µ(T (F1) ∩ F̊2).

Since F1 is a fundamental region, we have

∪T∈ΓT (F1) = H.

Therefore,

∪T∈Γ(T (F1) ∩ F̊2) = F̊2.

Hence∑
T∈Γ

µ(T (F1) ∩ F̊2) ≥ µ(∪T∈ΓT (F1) ∩ F̊2) = µ(F̊2) = µ(F2).

Interchanging F1 and F2, we obtain µ(F2) ≥ µ(F1), and the result follows.
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2.5.1 The Dirichlet region

Definition 2.5.2. Let Γ be a Fuchsian group. A Dirichlet region for Γ

centered at p is the set

Dp(Γ) = {z ∈ H | ρ(z, p) ≤ ρ(z, T (p)) for all T ∈ Γ}.

By the invariance of the hyperbolic metric under PSL(2,R), this region can

also be defined as

Dp(Γ) = {z ∈ H | ρ(z, p) ≤ ρ(T (z), p) for all T ∈ Γ}.

Definition 2.5.3. A line given by the equation

ρ(z, z1) = ρ(z, z2)

is the perpendicular bisector of the geodesic segment [z1, z2].

We shall denote the perpendicular bisector of the geodesic segment [p, T1(p)]

by Lp(T1), and the hyperbolic half-plane containing p by Hp(T1).

Example 2.5.1. Consider Γ = PSL(2,Z). As for k > 1, point ki is not

fixed by any non-identity element of group Γ, choose p = ki, where k > 1.

We show that the region in following Figure 2.2 is the Dirichlet region for Γ

centered at p.

First, note that the isometries T (z) = z + 1, S(z) = −1
z

are in Γ, and,

three geodesic sides of F are Lp(T ), Lp(T
−1) and Lp(S). This shows that

Dp(Γ) ⊂ F . If Dp(Γ) 6= F , there exist z ∈ F̊ and h ∈ Γ such that h(z) ∈ F̊ .

We shall now show that this cannot happen. Suppose that

h(z) =
az + b

cz + d
, (a, b, c, d ∈ Z, ad− bc = 1).

Then

|cz + d|2 = c2|z|2 + 2Re(z)cd+ d2 > c2 + d2 − |cd| = (|c| − |d|)2 + |cd|,
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Fig. 2.2: F = {z ∈ H | |z| ≥ 1, |Re(z)| ≤ 1
2
}.

as |z| > 1 and Re(z) > −1
2

. This lower bound is an integer: (it is non-negative

and is not zero if and only if c = d = 0, which contradicts ad− bc = 1). We

deduce that |cz + d| > 1, and so

Imh(z) =
Im(z)

|cz + d|2
< Im(z).

Exactly the same argument holds with z, h replaced by h(z), h−1 and a

contradiction is reached. Thus we have Dp(Γ) = F.

Definition 2.5.4. Let

T (z) =
az + b

cz + d
∈ PSL(2, R) with c 6= 0.

The circle

I(T ) = {z ∈ C | |cz + d| = 1},

which is a complete locus of points where the transformation T acts as a

Euclidean isometry is called the isometric circle of the transformation T .

We shall denote the set of points inside of the isometric circle I(T ) by Ǐ(T),

and the set of points outside of I(T ) by Î(T).

Theorem 2.7. Isometric circles are geodesics in H.
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Proof. Let T be of the form

T (z) =
az + b

cz + d
∈ PSL(2,R).

Then the center of I(T ) is −d
c
∈ R. Therefore, I(T ) is orthogonal to the real

axis.

Definition 2.5.5. A fundamental region F for a Fuchsian group Γ is called

locally finite if the tessellation {T (F ) | T ∈ Γ} is locally finite.

Theorem 2.8. A Dirichlet region is locally finite.

Proof. Let F = Dp(Γ), where p is not fixed by any element of Γ − {Id}.
Let a ∈ F , and let K ⊂ H be a compact neighborhood of a. Suppose that

K ∩ Ti(F ) 6= 0 for some infinite sequence T1, T2, ... of distinct elements of Γ.

Let σ = supz∈Kρ(p, z). Since σ ≤ ρ(p, a)+ρ(a, z),∀z ∈ K and K is bounded,

σ is finite. Let wj ∈ K∩Tj(F ). Then wj = Tj(zj) for zj ∈ F, and by triangle

inequality, we have

ρ(p, Tj(p)) ≤ ρ(p, wj) + ρ(wj, Tj(p))

= ρ(p, wj) + ρ(zj, p)

≤ ρ(p, wj) + ρ(wj, p)(aszj ∈ Dp(Γ))

≤ 2σ.

Thus, the infinite set of points T1(p), T2(p), ... belongs to the compact hy-

perbolic ball with center p and radius 2σ. But this contradicts the properly

discontinuous action of Γ.
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