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ABSTRACT

Let Mod(Sg) be the mapping class group of the closed orientable surface Sg of genus

g ≥ 2. As the main result of this thesis, we derive necessary and sufficient conditions

under which two torsion elements in Mod(Sg) will have conjugates that generate a finite

metacyclic subgroup of Mod(Sg). This also yields a complete solution to the problem of

liftability of periodic mapping classes under finite cyclic covers. As applications of the main

result, we give a complete characterization of the finite dihedral and dicyclic subgroups

of Mod(Sg), up to a certain equivalence that we will call weak conjugacy. Moreover, we

provide a complete classification of the weak conjugacy classes of the non-abelian finite

metacyclic subgroups of Mod(S3) and Mod(S5), and non-split metacyclic subgroups of

Mod(S10) and Mod(S11). We also describe nontrivial geometric realizations of some of

these actions.

Furthermore, we provide necessary and sufficient conditions under which a non-split

metacyclic action on Sg lifts to a split metacyclic action under a regular cyclic cover.

As another consequence of our main theorem, we show that any finite-order mapping

class whose corresponding orbifold is a sphere has a conjugate that lifts under certain

finite-sheeted regular cyclic covers of Sg. We further establish that 4g is a realizable upper

bound on the order of a non-split metacyclic action on Sg and this bound is realized by the

action of a dicyclic group. By applying this result, we show that every periodic mapping

class in a non-split metacyclic subgroup of Mod(Sg) is reducible. Finally, for g ≥ 5, we

show the existence of an infinite dihedral subgroup of Mod(Sg) that is generated by an

involution and a root of a bounding pair map of degree 3.

Keywords: surface; mapping class; finite order maps; metacyclic subgroups
Subjclass[2020]: Primary 57K20; Secondary 57M60
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CHAPTER 1

INTRODUCTION

Let S := Sbg,d be the compact orientable surface of genus g ≥ 0 with b ≥ 0 boundary

components and d ≥ 0 punctures (or marked points). Let Homeo+(S) be the group

of orientation-preserving self homeomorphisms of S that restrict to identity on ∂S and

preserve the set of punctures. The mapping class group Mod(S) is defined to be the path

components of Homeo+(S), that is,

Mod(S) = π0(Homeo+(S)).

As we will only be concerned of surfaces S with ∂S = ∅ (i.e. b = 0), we shall refrain from

using the parameter b while referring to surfaces. Furthermore, when d = 0, we simply

denote Sg,0 by Sg.

A simple closed curve in Sg,d is called essential if it is not homotopic to a point or to

a puncture. A multicurve in Sg,d is the union of a finite collection of disjoint non-isotopic

essential simple closed curves in Sg,d.

Definition 1.0.1. A mapping class F ∈ Mod(Sg,d) is said to be:

(a) periodic, if F is of finite order,

(b) reducible, if F is represented by an F ∈ Homeo+(Sg,d) such that F preserves a

multicurve on Homeo+(Sg,d), and

(c) pseudo-Anosov, if F is neither periodic nor reducible.

The Nielsen-Thurston classification theorem [47] asserts that these are the only possible

kinds of mapping classes.
1



Chapter 1. INTRODUCTION

A mapping class that is not reducible is called an irreducible mapping class. From the

Nielsen-Thurston classification, it is apparent that any irreducible mapping class is either

periodic or pseudo-Anosov. We will be primarily dealing with periodic mapping classes in

this thesis.

1.1 Background

The study of automorphisms on Riemann surfaces [29] has a rich history. In 1893,

Hurwitz [24] showed that the order of the group of automorphisms of a compact Riemann

surface Sg is finite and bounded above by 84(g − 1). In 1895, Wiman [49] proved that

the order of the cyclic group acting on Sg is bounded above by 4g + 2. Harvey gave

a complete characterization of cyclic actions on Sg in 1966, and in the same work, he

also recovered Wiman’s result. Around the same time, Maclachlan [30] applied the

combinatorial techniques developed by Hurwitz and Wiman to show that the order of

a finite abelian group acting on Sg is bounded above by 4g + 4. Recently, a complete

classification of finite group actions on Sg for 2 ≤ g ≤ 4 has been given in [7, 9, 27].

Furthermore, the dihedral actions on Sg have been classified in [11]. A method for

enumerating the conjugacy classes of abelian subgroups of Mod(Sg) has been developed by

Broughton-Wootton in [10]. Moreover, it has been shown in [44] that for g ≥ 3, the bound

on the order of an arbitrary metacyclic subgroup of Mod(Sg) is 12(g − 1). In fact, this

bound is realized for infinitely many values of g by split metacyclic subgroups of Mod(Sg).

However, this bound does not apply for Mod(S2) as it contains a unique split metacyclic

subgroup of order 16 admitting the presentation 〈F ,G | F8 = G2 = 1,G−1FG = F3〉.

We will now briefly explore the developments in a parallel geometric viewpoint of

group actions on surfaces. Given an arbitrary finite subgroup H ≤ Mod(Sg), let Fix(H)

denote the set of fixed points induced by the natural action of H on the Teichmüller space

Teich(Sg). In 1932, Nielsen [35] asked whether Fix(H) 6= ∅. This is popularly known

as Nielsen realization problem. Nielsen [37] showed this assertion to be true for cyclic

groups, which was later generalized to solvable groups by Fenchel [16, 17] in 1948. In

1959, Kravetz [28] claimed to have solved the Nielsen realization problem, but his proof

was subsequently shown [33, 50] to be incorrect. In 1971, Harvey [21] showed that if

Fix(H) 6= ∅, then Fix(H) ≈ î(Teich(Sg/H)), where Teich(Sg/H) is defined in the sense

of Bers [1], and î is the natural embedding induced by the branched cover Sg → Sg/H.
2



1.2. Motivation

Finally, in 1983, Kerckhoff [26] answered the Nielsen realization problem in the affirmative.

Theorem 1.1.1 (Nielsen-Kerckhoff theorem). For g ≥ 2, suppose H < Mod(Sg) is

a finite group. Then there exists a finite group H̃ < Homeo+(Sg) so that the natural

projection Homeo+(Sg)→ Mod(Sg) restricts to an isomorphism H̃ → H. Further, H̃ can

be chosen to be a subgroup of isometries of some hyperbolic metric on Sg.

Hence, any finite subgroup H < Mod(Sg) can be viewed as an H-action on Sg. More

recently, Parsad-Rajeevsarathy-Sanki [38] described a procedure to construct the hyper-

bolic structures on Sg that realize a given finite cyclic subgroup of Mod(Sg) as a group of

isometries.

By applying ideas from the theory of group actions on surfaces [25, 29] and Thurston’s

orbifold theory [46, Chapter 13], Dhanwani-Rajeevsarathy [12] derived equivalent number-

theoretic conditions under which a pair of periodic mapping classes will have conjugates

that generate a (two-generator) abelian subgroup of Mod(Sg). Moreover, by applying

the theory developed in [38] they also provided an algorithm to obtain the hyperbolic

structures on Sg that realize two-generator abelian groups as groups of isometries. In this

thesis, we generalize the above work to finite metacyclic subgroups of Mod(Sg).

1.2 Motivation
Given periodic elements F,G ∈ Mod(Sg) such that 〈F,G〉 is finite, an arbitrary pair of

conjugates F ′, G′ (of F,G resp.) may (or may not) generate a subgroup isomorphic to

〈F,G〉. Even if they generate isomorphic groups, they might not yield analogous actions

on the surface. For example, consider the periodic mapping classes F1, G1 ∈ Mod(S7)

represented by the homeomorphisms F1,G1 as shown in first subfigure of Figure 1.1

below. For i = 2, 3, consider the conjugates Fi of F1 and Gi of G1 represented by the

homeomorphisms Fi,Gi ∈ Homeo+(S7) illustrated in the second and third subfigures of

Figure 1.1.

In the first subfigure, the surface S7 is imbedded in R3 such that when we consider

the aerial view the eight tubes connecting the spheres, they appear aligned along the

vertices of a regular octagon as shown in the first subfigure of Figure 1.2 below. The

homeomorphisms F1,G1 are the restriction of rotations on R3 to the (imbedded) surface

S7. Thus, it is apparent that 〈F1, G1〉 ∼= D8 (i.e. the dihedral group of order 8).
3
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Figure 1.1: Split metacyclic actions on S7 with conjugate generators.

In the second subfigure (of Figure 1.1), we have marked the fixed points of the

conjugate F2 of F1 (with the same local rotation angles as that of F1). Here, note that

F2 is not a restriction of a rotation on R3. Since the F2 and G2 commute, we have

〈F2, G2〉 ∼= Z4 × Z2. Therefore, distinct conjugates of two periodic maps can generate

non-isomorphic subgroups.

In the third subfigure, S7 is imbedded in R3 such that from a bird’s-eye view of the

eight tubes connecting the spheres, they appear aligned along the vertices of two concentric

squares as shown in second subfigure of Figure 1.2. The homeomorphisms F3,G3 (shown

in Figure 1.1) are the restrictions of rotations of R3 to the surface S7. Hence, it is apparent

that 〈F3, G3〉 ∼= D8. But the actions of 〈F1,G1〉 and 〈F2,G2〉 on S7 are indeed different

since F1G1 is not conjugate to F3G3. Thus, even when distinct conjugates of two periodic

maps generate isomorphic subgroups, the actions of these subgroups can be different on

the surface. We will revisit this example in more detail in Examples 4.2.1 and 4.2.9 of

Chapter 4.

F1
π
2 F3

π
2

G1
π

G3
π

Figure 1.2: Tubes attached viewed from top view.
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1.3. Layout of Thesis

This example motivates the following natural question:

Question. Given a two generator finite group H, can one derive equivalent conditions

under which two periodic elements F,G ∈ Mod(Sg) will have conjugates F ′, G′ (resp.)

such that 〈F ′, G′〉 ∼= H?

The main theorem of the thesis answers this question in the affirmative when H is

metacyclic by providing equivalent elementary number-theoretic conditions for the same.

From Birman-Hilden theory [3, 4, 5, 6], it follows that every finite metacyclic subgroup of

Mod(Sg) is realized as the lift of a cyclic subgroup of Mod(Sh,b) under a finite cyclic cover

p : Sg → Sh,d. Thus, in order to prove our main result, we derive equivalent conditions

under which a periodic element of Mod(Sh,b) would lift under p. Consequently, our

theory also provides a complete solution to the problem of liftability of periodic mapping

classes (up to conjugacy) under finite cyclic covers. This viewpoint also allows us to give

non-trivial geometric realizations of some metacyclic actions on Sg.

1.3 Layout of Thesis

In Chapter 2, we introduce some basic concepts that lie at the foundation of the theory

developed in this thesis. In particular, in Section 2.1, we provide key notions from the

theory of group actions on surfaces [25, 29, 8] and in Section 2.2, we describe the theory of

cyclic actions on surfaces [36, 34]. In Section 2.3, we briefly explain the theory developed

in [38].

In Chapter 3, we provide an elementary introduction to metacyclic groups and some

of their key properties. In Sections 3.1 and 3.5, we describe presentations for finite and

infinite metacyclic groups, respectively. In Section 3.3, we provide some examples of

metacyclic groups and in Sections 3.2 and 3.4, we establish some basic properties of

metacyclic groups that are relevant to the thesis.

In Chapter 4, we prove the main result of this thesis. For this, we first defined

metacyclic actions on surfaces. In Sections 4.1 and 4.2, we use the theory of group

actions on surfaces [25, 29] and Thurston’s orbifold theory [46, Chapter 13] to develop

the necessary combinatorial machinery required to prove our main result. In Section 4.3,

we establish our main theorem, and in Section 4.4, we characterize dihedral and dicyclic

subgroups of Mod(Sg). In Section 4.5, we classify the metacyclic subgroups of Mod(S3)

and Mod(S5), and non-split metacyclic subgroups of Mod(S10) and Mod(S11), up to a
5



Chapter 1. INTRODUCTION

certain equivalence that we call weak conjugacy that arises naturally in our setting. In

Section 4.6, we give geometric realizations of some metacyclic actions.

In Chapter 5, we provide liftability under regular cyclic covers. In Section 5.1, we

provide an equivalent formulation of our main theorem in the context of liftability, which

we had explained in the preceding section. In Section 5.2, we provide equivalent conditions

under which a non-split metacyclic action on Sg would lift to a split metacyclic action

under a regular cyclic cover. In Section 5.3, we give many applications concerning the

liftability of periodic mapping classes under regular finite cyclic covers.

In Chapter 6, we provide some applications to our main theorem. As our first

application, in Section 6.1, we derive the bound on the order of non-split metacyclic

subgroups of Mod(Sg) is 4g and is realized by dicyclic groups. As an application of this

result, we show that every periodic element in a non-split metacyclic subgroup of Mod(Sg)

is reducible. In Section 6.2, we show that no root of a Dehn twist [31, 34, 40] can generate

an infinite split metacyclic subgroup of Mod(Sg) that is isomorphic to Z o Z2m. We

also show that a pseudo-periodic and a periodic mapping class can form an infinite split

metacyclic subgroup of Mod(Sg) that is isomorphic to Z o Z2m. This thesis is essentially

an amalgamation of the work carried out in [13] and [42].

6



CHAPTER 2

PRELIMINARIES

In this chapter, we introduce some basic notions from Thurston’s orbifold theory [46,

Chapter 13], and the theory of group actions on surfaces [25, 29] which are crucial for the

theory we develop in this thesis.

2.1 Fuchsian groups
Let Homeo+(Sg) denote the group of orientation-preserving homeomorphisms of Sg, and

let H < Homeo+(Sg) be a finite group. A faithful and properly discontinuous H-action

on Sg induces a branched covering

Sg → OH := Sg/H

with ` cone points x1, x2, . . . , x` on the quotient orbifold OH ≈ Sg0 (which we will call the

corresponding orbifold) of orders n1, n2, . . . , n`, respectively. Then the orbifold fundamental

group πorb
1 (OH) of OH has a presentation given by

〈
α1, β1, . . . , αg0 , βg0 , ξ1, . . . , ξ` | ξn1

1 , . . . , ξn`` ,
∏̀
j=1

ξj

g0∏
i=1

[αi, βi]
〉
. (2.1.1)

In classical parlance, πorb
1 (OH) is also known as a Fuchsian group [25, 29] with signature

Γ(OH) := (g0;n1, . . . , n`),

the αi, βi are called the hyperbolic generators of πorb
1 (OH), the ξi are called the elliptic

generators of πorb
1 (OH), and the relation ∏`

j=1 ξj
∏g0
i=1[αi, βi] appearing in its presentation

is called the long relation. From Thurston’s orbifold theory [46, Chapter 13], we obtain a
7
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short exact sequence

1→ π1(Sg)→ πorb
1 (OH) φH−→ H → 1, (*)

where φH is known as the surface kernel epimorphism. In this context, we will require

the following result due to Harvey [20].

Lemma 2.1.2. A finite group H acts faithfully on Sg with Γ(OH) = (g0;n1, . . . , n`) if

and only if it satisfies the following two conditions:

(i) 2g − 2
|H|

= 2g0 − 2 +
∑̀
i=1

(
1− 1

ni

)
, and

(ii) there exists a surjective homomorphism φH : πorb
1 (OH) → H that preserves the

orders of all torsion elements of πorb
1 (OH).

2.2 Cyclic actions on surfaces
For g ≥ 1, let F ∈ Mod(Sg) be of order n. The Nielsen-Kerckhoff theorem [26, 37] asserts

that F is represented by a standard representative F ∈ Homeo+(Sg) of the same order.

We refer to both F and the group it generates, interchangeably, as a Zn-action on Sg.

Each cone point xi ∈ O〈F〉 lifts to an orbit of size n/ni on Sg, and the local rotation

induced by F around the points in each orbit is given by 2πc−1
i /ni, where gcd(ci, ni) = 1

and cic−1
i ≡ 1 (mod ni). Further, it is known (see [20] and the references therein) that

the exact sequence in (*) takes the following form

1→ π1(Sg)→ πorb
1 (O〈F〉)

φ〈F〉−−→ 〈F〉 → 1,

where φ〈F〉(ξi) = F (n/ni)ci , for 1 ≤ i ≤ `. We now introduce a tuple of integers that

encodes the conjugacy class of a Zn-action on Sg.

Definition 2.2.1. A data set of degree n is a tuple

D = (n, g0, d; (c1, n1), . . . , (c`, n`)),

where n ≥ 2, g0 ≥ 0, and 0 ≤ d ≤ n− 1 are integers, and each ci ∈ Z×ni such that:

(i) d > 0 if and only if ` = 0 and gcd(d, n) = 1, whenever d > 0,

(ii) each ni | n,
8
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(iii) lcm(n1, . . . , n̂i, . . . , n`) = N , for 1 ≤ i ≤ `, where N = n if g0 = 0, and

(iv)
∑̀
j=1

n

nj
cj ≡ 0 (mod n).

The number g determined by the Riemann-Hurwitz equation

2− 2g
n

= 2− 2g0 +
∑̀
j=1

(
1
nj
− 1

)
(2.2.2)

is called the genus of the data set, denoted by g(D).

Note that quantity d (in Definition 2.2.1) will be non-zero if and only if D represents a

free rotation of Sg by 2πd/n, in which case, D will take the form (n, g0, d; ). We will not

include d in the notation of a data set, whenever d = 0.

By the Nielsen-Kerckhoff theorem, the canonical projection Homeo+(Sg)→ Mod(Sg)

induces a bijective correspondence between the conjugacy classes of finite-order maps in

Homeo+(Sg) and the conjugacy classes of finite-order mapping classes in Mod(Sg). This

leads us to the following lemma primarily due to Nielsen [36] (see also [43, Theorem 3.9]),

which allows us to use data sets to describe the conjugacy classes of cyclic actions on Sg.

Lemma 2.2.3. For g ≥ 1 and n ≥ 2, data sets of degree n and genus g correspond to

conjugacy classes of Zn-actions on Sg.

We will denote the data set corresponding to the conjugacy class of a periodic mapping

class F by DF or D〈F 〉. For compactness of notation, we also write a data set D (as in

Definition 2.2.1) as

D = (n, g0, d; ((d1,m1), α1), . . . , ((d`′ ,m`′), α`′)),

where (di,mi) are the distinct pairs in the multiset S = {(c1, n1), . . . , (c`, n`)}, and the αi
denote the multiplicity of the pair (di,mi) in the multiset S. Further, we note that every

cone point [x] ∈ O〈F〉 corresponds to a unique pair in the multiset S appearing in DF ,

which we denote by Px := (cx, nx).

Given u′ ∈ Z×m and G ∈ H ≤ Homeo+(Sg) be of order m, let FG(u′,m) denote the set

of fixed points of G with induced rotation angle 2πu′/m. Let CH(G) be the centralizer

of G ∈ H, and ∼ denote the conjugation relation between any two elements in H. We
9
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conclude this subsection by stating the following result from the theory of Riemann

surfaces [8], which is crucial in proving our main theorem.

Lemma 2.2.4. Let H < Homeo+(Sg) of finite order with Γ(OH) = (g0;n1, . . . , n`), and

let G ∈ H be of order m. Then for u′ ∈ Z×m, we have

|FG(u′,m)| = |CH(G)| ·
∑

1≤i≤`
m|ni

G∼φH(ξi)niu
′/m

1
ni
.

2.3 Hyperbolic structures realizing cyclic actions
Given a finite subgroup H of Mod(Sg), let Fix(H) denote the subspace of fixed points in

the Teichm̈uller space Teich(Sg) under the action of H. When H is cyclic, a method for

constructing the hyperbolic metrics representing the points in Fix(H) is described in [2]

and [38], thereby yielding explicit solutions to the Nielsen realization problem [26, 37]. This

method involves the construction of an arbitrary periodic element in Mod(Sg) (that is not

realizable as a rotation of Sg) by the “compatibilities" of irreducible periodic components,

which are uniquely realized as rotations of certain special hyperbolic polygons with

side-pairings.

We recall that an F ∈ Mod(Sg,d) is reducible if it is represented by an F ∈ Homeo+(Sg,d)

such that F preserves a multicurve on Sg,d, and a mapping class that is not reducible

is called irreducible. Let F ∈ Mod(Sg) be of order n. Gilman [19] showed that F is

irreducible if and only if Γ(O〈F〉) has the form (0;n1, n2, n3) (i.e. the quotient orbifold

O〈F〉 is a sphere with three cone points.) Following the nomenclature in [2, 38], F is

rotational if F is either of order 2, or F has at most 2 fixed points. A non-rotational F is

said to be of Type 1 if Γ(O〈F〉) = (g0;n1, n2, n), otherwise, it is called a Type 2 action.

The following result describes a hyperbolic structure that realizes an irreducible Type 1

action.

Theorem 2.3.1 ([38, Theorem 2.7]). For g ≥ 2, consider an irreducible Type 1 action

F ∈ Mod(Sg) with

DF = (n, 0; (c1, n1), (c2, n2), (c3, n)).

Then F can be realized explicitly as the rotation θF = 2πc−1
3
n

of a hyperbolic polygon PF
10
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with a suitable side-pairing W (PF ), where PF is a hyperbolic k(F )-gon with

k(F ) :=


2n, if n1, n2 6= 2, and

n, otherwise,

and for 0 ≤ m ≤ n− 1,

W (PF ) =



n∏
i=1

a2i−1a2i with a−1
2m+1 ∼ a2z, if k(F ) = 2n, and

n∏
i=1

ai with a−1
m+1 ∼ az, otherwise,

where z ≡ m+ qj (mod n) with q = (n/n2)c−1
3 and j = n2 − c2.

Moreover, it follows from the irreducibility of F (see also [2, Proposition 4.1]) that the

structure in Theorem 2.3.1 is unique.

Further, it is shown [38] that the process of realizing an arbitrary non-rotational

action F of order n using these unique hyperbolic structures realizing irreducible Type 1

components involves two broad types of processes.

(a) k-compatibility. In this process, for i = 1, 2, we take a pair of irreducible Type

1 mapping classes Fi ∈ Mod(Sgi) such that the 〈Fi〉-action on Sgi induces a pair

of compatible orbits of size k (where the induced local rotation angles add upto 0

modulo 2π). We remove (cyclically permuted) 〈Fi〉-invariant disks around points in

the compatible orbits and then identify the resulting boundary components realizing

a periodic mapping class F ∈ Mod(Sg1+g2+k−1). An analogous construction can also

be performed using a pair of orbits induced by a single 〈F ′〉-action on Sg to realize

a periodic mapping class F ∈ Mod(Sg+k).

(b) Permutation additions and deletions. The addition of a permutation component

involves the removal of (cyclically permuted) invariant disks around points in an

orbit of size n induced by an 〈F〉-action on Sg and then pasting n copies of S1
g′ (i.e.

Sg′ with one boundary component) to the resultant boundary components. This

realizes an action on Sg+ng′ with the same fixed point and orbit data as F . The

reversal of this process is called a permutation deletion.

Thus, in summary, we have the following:
11
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Theorem 2.3.2. [38, Theorem 2.24] For g ≥ 2, a non-rotational periodic mapping class

in Mod(Sg) can be realized through finitely many k-compatibilities, permutation additions,

and permutation deletions on the unique structures of type PF realizing irreducible Type 1

mapping classes.

12



CHAPTER 3

METACYCLIC GROUPS

A metacyclic group H is a group extension of a cyclic group L by a cyclic group N .

Equivalently, H is a metacyclic group if there is a short exact sequence

1→ N
i−→ H

q−→ L→ 1, (3.0.1)

where N and L are cyclic groups. Thus, H is metacyclic if and only if there is an N CH

such that both N and H/N(∼= L) are cyclic. If a metacyclic group H fits into a short

exact sequence as in (3.0.1) that also splits, then we say that H is a split metacyclic

group and in this case, H ∼= N o L. Note that abelian groups are metacyclic if and only

if they are generated by one or two elements. As these groups are not of interest to us,

throughout this thesis we will use the term ‘metacyclic group’ to denote a non-abelian

finite metacyclic group. When we have occasion to discuss non-finite metacyclic groups

we will specifically identify them as ‘infinite metacyclic groups’.

3.1 Metacyclic groups
Given integers u, n ∈ N, r ∈ N such that r | n and k ∈ Z×n such that ku ≡ 1 (mod n)

and r(k − 1) ≡ 0 (mod n), we define a groupM(u, n, r, k) of order u · n that admits the

following presentation

〈F ,G | Fn = 1,F r = Gu,G−1FG = Fk〉. (3.1.1)

Here, note that the relation G−1FG = Fk implies that 〈F〉CM(u, n, r, k) andM(u, n, r, k)/〈F〉

is a cyclic group. Hence, the groupM(u, n, r, k) is a metacyclic group. We will call the

multiplicative class k the twist factor and r the amalgam of the groupM(u, n, r, k). Note
13
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that m := |G| = un
r

inM(u, n, r, k). The following theorem provides a characterization of

metacyclic groups.

Theorem 3.1.2. Every metacyclic group H is isomorphic to M(u, n, r, k) for some

integers u, n, r, k as described above. However, this representation is not unique.

Proof. As H be a metacyclic group, there exists a short exact sequence

1→ 〈y〉 i−→ H
q−→ H/〈y〉 → 1,

such that H/〈y〉 is cyclic. Since i is injective and ker(q) = im(i), we have 〈y〉CH. Now

as H/〈y〉 is cyclic, let x ∈ H such that 〈x〈y〉〉 = H/〈y〉. This implies that H is the

union of the cosets xa〈y〉, for 0 ≤ a < |H/〈y〉|. Thus, every element of H is of the form

xayb for some a, b ∈ N, and so we have H = 〈x, y〉. Moreover, the relation x−1yx = yk

holds because 〈y〉 C H. Setting |y| = n, |x| = m, and |H/〈y〉| = u, it can be seen that

H ∼=M(u, n, r, k), where r := mu/n.

The non-uniqueness of the representation for H can be seen from the following example.

For an odd positive integer n, consider the metacyclic groups

H1 = 〈F1,G1 | Fn1 = G4
1 = 1,G−1

1 F1G1 = F−1
1 〉 =M(4, n, n,−1) and

H2 = 〈F2,G2 | F2n
2 = 1,Fn2 = G2

2 ,G−1
2 F2G2 = F−1

2 〉 =M(2, 2n, n,−1).

We claim that the map ψ : H1 → H2 defined by ψ(F1) = F2
2 , ψ(G1) = G2, and ψ(1) = 1 is

an isomorphism. From the relations

ψ(Fn1 ) = 1 = F2n
2 = (ψ(F1))n,

ψ(G4
1) = 1 = G4

2 = (ψ(G1))4, and

ψ(G−1
1 F1G1F1) = 1 = G−1

2 F2
2G2F2

2 = ψ(G−1
1 )ψ(F1)ψ(G1)ψ(F1),

it follows that ψ is a homomorphism. To see that ψ is injective, for Gi11 F
j1
1 ,Gi21 F

j2
1 ∈ H1,

assume that ψ(Gi11 F
j1
1 ) = ψ(Gi21 F

j2
1 ). Then it follows that Gi1−i22 F2(j1−j2)

2 = 1, and so

we have i1 − i2 ≡ 2c (mod 4) and 2(j1 − j2) ≡ −cn (mod 2n), for some c ∈ N. Hence,

we have i1 ≡ i2 (mod 4) and j1 ≡ j2 (mod n). Thus, Gi11 F
j1
1 = Gi21 F

j2
1 , from which the

14
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injectivity of ψ follows. The surjectivity of ψ is a consequence of the fact that |H1| = |H2|.

Therefore, ψ is an isomorphism.

Metacyclic groups have been completely classified by Hempel in [22, 23]. However,

as this classification is highly technical, we will give a more elementary and accessible

introduction to metacyclic groups in next sections, which will be sufficient for the theory

we will develop in this thesis.

3.2 Basic Properties of metacyclic groups
In this section, we derive several basic properties of metacyclic groups that will be

extensively used in this thesis. We begin by deriving some properties that follow from the

presentations described in (3.1.1).

Lemma 3.2.1. For a metacyclic group H = 〈F ,G〉, where G−1FG = Fk, we have

F bGa = GaF bka for a, b ∈ N.

Proof. As G−1FG = Fk, it will imply that

G−aF bGa = (G−aFGa)b

= (G−a+1G−1FGGa−1)b

= (G−a+1FkGa−1)b

= (G−a+1FGa−1)bk

= F bka (inductively).

Hence, F bGa = GaF bka .

Lemma 3.2.2. For a metacyclic group H = 〈F ,G〉, where G−1FG = Fk, we have

Ga1F b1Ga2F b2 · · · GalF bl = GAFB,

where A =
l∑

i=1
ai, B =

l∑
i=1

bi
l∏

j=i+1
kaj , and ai, bi ∈ N for 1 ≤ i, j ≤ l. In particular,

(GaF b)l = GalF
(
b
∑l

i=1 k
a(l−i)

)

for a, b ∈ N.
15



Chapter 3. METACYCLIC GROUPS

Proof. By Lemma 3.2.1, we have that F bGa = GaF bka for a, b ∈ N. Hence, by repeated

application of the F bGa = GaF bka , we see that:

Ga1F b1Ga2F b2 · · · GalF bl = Ga1+a2F b1ka2+b2Ga3F b3 · · · GalF bl

= Ga1+a2+a3F b1ka2ka3+b2ka3+b3Ga4F b4 · · · GalF bl

= GAFB,

and our assertion follows.

Lemma 3.2.3. Given a metacyclic group H = 〈F ,G | Fn = 1,F r = Gu,G−1FG = Fk〉,

we have ku ≡ 1 (mod n) and r(k − 1) ≡ 0 (mod n).

Proof. By substituting a = u, b = 1 in Lemma 3.2.1, we get

Fku = G−uFGu = F (as F r = Gu).

Therefore, we have ku ≡ 1 (mod n). Again, by plugging in a = 1, b = r in Lemma 3.2.1,

we see that

Fkr = G−1F rG = F r (as F r = Gu),

from which it follows that r(k − 1) ≡ 0 (mod n).

As an immediate consequence of the Lemma 3.2.2, we have the following lemma that

describes the order of an arbitrary element in a metacyclic group H.

Lemma 3.2.4. Given a metacyclic group H = 〈F ,G | Fn = 1,F r = Gu,G−1FG = Fk〉,

an element GaF b ∈ H is of order s if and only if s is the least positive integer such that

the following conditions hold for some t ∈ N:

(i) as ≡ tu (mod un

r
) and

(ii) b
s∑
i=1

ka(s−i) ≡ −tr (mod n).

3.3 Examples of metacyclic groups
Given integers u, n ∈ N, a metacyclic groupM(u, n, n, k) of order u·n admits the following

presentation

H = 〈F ,G | Fn = Gu = 1,G−1FG = Fk〉,
16
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where k ∈ Z×n such that ku ≡ 1 (mod n). Note thatM(u, n, n, k) is a split metacyclic

group, and we will writeM(u, n, n, k) ∼= Znok Zu. We will now give some basic examples

of split metacyclic groups.

Example 3.3.1. The abelian group Zn × Zm is isomorphic to the split metacyclic group

M(m,n, n, 1) that admits the presentation

〈F ,G | Fn = Gm = 1,G−1FG = F〉.

Example 3.3.2. The dihedral group D2n of order 2n is isomorphic to the split metacyclic

groupM(2, n, n,−1) that admits the presentation

〈F ,G | Fn = G2 = 1,G−1FG = F−1〉.

Example 3.3.3. The dicyclic group Dicn of order 4n is isomorphic to the metacyclic

groupM(2, 2n, n,−1) that admits a presentation given by

〈F ,G | F2n = 1,G2 = Fn,G−1FG = F−1〉.

When n is odd, Dicn is isomorphic to the split metacyclic groupM(4, n, n,−1) ∼= Zno−1Z4

(as seen in Theorem 3.1.2).

Remark 3.3.4. From the presentation in (3.1.1), it is apparent that a finite metacyclic

group is abelian if and only if k = 1. Note that any two-generator finite abelian group is

a split metacyclic group.

A finite metacyclic group that is not split is called a non-split metacyclic group. Given

a non-split metacyclic groupM(u, n, r, k) with a presentation as in (3.1.1), it follows that

u, n ≥ 2, r ≥ 2, r 6= n, and k 6= 1. However, the converse does not hold true in general as

we saw in Example 3.3.3. We will now give two fundamental examples of finite non-split

metacyclic groups.

Example 3.3.5. The quaternion group Q8 of order 8 is isomorphic to the non-split

metacyclic groupM(2, 4, 2,−1) that admits the presentation

〈F ,G | F4 = 1,G2 = F2,G−1FG = F−1〉.
17
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The group Q8 generalizes to a group of order 2n+1 for n ≥ 2 known as a generalized

quaternion group, which is isomorphic to the non-split metacyclic groupM(2, 2n, 2n−1,−1)

with the presentation

〈F ,G | F2n = 1,G2 = F2n−1
,G−1FG = F−1〉.

The generalized quaternions belong to the much broader family {Dicn : n is even} of

non-split dicyclic groups. When n is even, Dicn ∼=M(2, 2n, n,−1) with the presentation

〈F ,G | F2n = 1,G2 = Fn,G−1FG = F−1〉.

For example, the group Dic6 is a non-quaternionic and non-split metacyclic group of order

24.

Example 3.3.6. The group Z3×Q8 of order 24 is isomorphic to the non-split metacyclic

groupM(2, 12, 6, 7) that admits the presentation

〈F ,G | F12 = 1,G2 = F6,G−1FG = F7〉.

The group Z3×Q8 belongs to a broader family {Zp×Dicn : n is even and gcd(p, n) = 1} of

non-split metacyclic groups. Note that Zp×Dicn ∼=M(2, 2np, np, k) with the presentation

〈F ,G | F2np = 1,G2 = Fnp,G−1FG = Fk〉,

where k ∈ Z×2n such that k − 1 ≡ 0 (mod p) and k + 1 ≡ 0 (mod 2n).

3.4 Subgroups and quotients of metacyclic groups
In this section, we derive some properties pertaining to certain subgroups and quotients

of metacyclic groups.

Lemma 3.4.1. The subgroups and quotients of metacyclic groups are metacyclic.

Proof. Let H be a metacyclic group with N CH such that both N and H/N are cyclic.

For a subgroup K < H, the Second Isomorphism Theorem implies that

KN/N ∼= K/K ∩N.
18
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Moreover, we have K ∩ N is cyclic as K ∩ N < N , which is cyclic. Also, K/K ∩ N is

cyclic as KN/N < H/N , which is cyclic. Thus, it follows that K is a metacyclic group.

Now we consider the quotient group H/K, where KCH. We claim that KN/KCH/K

such that both KN/K and (H/K)/(KN/K) are cyclic. The group KN/K is cyclic as

it is the image of the cyclic group N under the canonical projection H → H/K. By the

Third Isomorphism Theorem, we have that KN/K CH/K and

(H/K)/(KN/K) ∼= H/KN ∼= (H/N)/(NK/N).

Furthermore, (H/K)/(KN/K) is cyclic as it is isomorphic to the quotient of the cyclic

group H/N . Therefore, it follows that H/K is a metacyclic group.

Lemma 3.4.2. The center Z(H) of a finite metacyclic group H = 〈F ,G | Fn = 1,F r =

Gu,G−1FG = Fk〉 is given by

Z(H) = 〈Gα,Fβ〉,

where α ∈ N such that |k| = α and β is least positive integer satisfying β(k − 1) ≡ 0

(mod n).

Proof. First, we will show that Gα,Fβ ∈ Z(H). It suffices to show that GαF = FGα and

FβG = GFβ. Since |k| = α, it follows from Lemma 3.2.1 that FGα = GαFkα = GαF . By

a similar argument, we get FβG = GFβ. Hence, it follows that 〈Gα,Fβ〉 ⊆ Z(H).

Conversely, let GaF b ∈ Z(H). By Lemma 3.2.1, we have that

Ga+1F bk = GaF bG = GGaF b = Ga+1F b and

GaF b+1 = GaF bF = FGaF b = GaFka+b.

This implies that ka ≡ 1 (mod n) and b(k − 1) ≡ 0 (mod n). Therefore, we have

GaF b ∈ 〈Gα,Fβ〉, which completes our argument.

Lemma 3.4.3. Every non-split metacyclic group is isomorphic to a quotient of a split

metacyclic group.

Proof. Let H be a non-split metacyclic group admitting the presentation

H = 〈F ,G | Fn = 1,F r = Gu,G−1FG = Fk〉.
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Then, we see that H ∼= H̃/N, where

H̃ = 〈F̃ , G̃ | F̃n = G̃un/r = 1, G̃−1F̃ G̃ = F̃k〉

and N = 〈G̃uF̃−r〉. The fact that N C H̃ can be seen from Lemma 3.4.2 and Lemma 3.2.3.

The following result describes the commutator subgroup of an arbitrary metacyclic group.

Lemma 3.4.4. The commutator subgroup of an arbitrary metacyclic group H = 〈F ,G〉

with 〈F〉CH is cyclic and is generated by 〈Fk−1〉, where k satisfies G−1FG = Fk.

Proof. To show that the commutator subgroup [H,H] = 〈Fk−1〉, it suffices to show that

[x, y] ∈ 〈Fk−1〉 for any x, y ∈ H and that there exists x′, y′ ∈ H such that [x′, y′] = Fk−1.

Let x = Gi1F j1 , y = Gi2F j2 ∈ H. By Lemma 3.2.2, we have

x−1y−1xy = F−j1G−i1F−j2G−i2Gi1F j1Gi2F j2

= F (−j1−j2ki1+j1ki2+j2)

= F (−j2(ki1−1)+j1(ki2−1)) ∈ 〈Fk−1〉.

Since [G,F−1] = G−1FGF−1 = Fk−1, we follows that [H,H] = 〈Fk−1〉.

We conclude this section with the following technical proposition which will be helpful in

Chapter 6.

Proposition 3.4.5. Let H = 〈F ,G | Gu = F r,Fn = 1,G−1FG = Fk〉. Suppose that

there exists x, y ∈ H such that H = 〈x, y〉 and at least one of x or y is of prime order.

Then H is a split metacyclic group.

Proof. Let us assume without loss of generality that x is of prime order p. Since H is a

metacyclic group, there is a short exact sequence

1→ 〈F〉 i−→ H
q−→ H/〈F〉 → 1,

such that |H/〈F〉| = u. As x is of prime order, q(x) is either trivial or an element of order

p. Therefore, either x = Fα, for some α, or x = (G ′)β, for some β, where G ′ is a premiage

of Ḡ under q with 〈Ḡ〉 = H/〈F〉 and H = 〈F ,G ′〉.
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When x = Fα, we claim that H must be a split metacyclic group. To see this, first

note that Fα is of prime order and 〈Fα〉CH. Suppose that (Fα)a = yb for some a, b ∈ N.

Then p | a implies that H is a split metacyclic group. However, if gcd(a, p) = 1, then

〈Fα〉 ⊆ 〈y〉, and hence H = 〈y〉. This establishes our claim.

When x = (G ′)β, we first claim that gcd(p, |G
′|
u

) = 1. To show this, suppose we assume

on the contrary that gcd(p, |G
′|
u

) 6= 1. Then x = G ′β = G ′
|G′|
up

uc = G ′duc, where gcd(c, p) = 1,

β = |G ′|c/p, and d = |G′|
up
∈ N. This would imply that q(x) is trivial (as q((G ′)u) = 1),

which is a contradiction. Thus, our claim follows.

It follows from the preceding claim that H = 〈x, y〉 = 〈G ′β, y〉 = 〈F , (G ′)pγ , (G ′)
|G′|
pγ 〉,

where γ ∈ N such that pγ | |G ′| but pγ+1 - |G ′|. Thus, either 〈y〉 = 〈F , (G ′)pγ , (G ′)
|G′|
pγ 〉 = H

(when γ 6= 1) or 〈F , (G ′)pγ〉 ⊆ 〈y〉 (when γ = 1). When γ 6= 1, H is cyclic, and hence,

is a split metacyclic group. When γ = 1, since 〈F , (G ′)pγ〉 ⊆ 〈y〉, 〈F , (G ′)pγ〉 is a split

metacyclic group. By arguments similar to the ones used for the case when x = Fα,

we see that 〈F , (G ′)
|G′|
pγ 〉 is a split metacyclic group. Therefore, as both 〈F , (G ′)pγ〉 and

〈F , (G ′)
|G′|
pγ 〉 are split metacyclic groups and gcd(|(G ′)pγ |, |(G ′)

|G′|
pγ |) = 1, H is also a split

metacyclic group.

3.5 Infinite metacyclic group
Even though this thesis mostly concerns finite metacyclic groups, we have included this

section for completion. However, the results in this section will be pertinent in Section 6.2,

where we describe a family of infinite metacyclic subgroups of Mod(Sg). An infinite

metacyclic group is a metacyclic group of infinite order. It is known [22, Chapter 7] that

such a group admits exactly one of the following presentations:

〈F ,G | G−1FG = Fk〉 ∼= Z ok Z, for k = ±1,

〈F ,G | G2m = 1,G−1FG = Fk〉 ∼= Z ok Z2m, for k = −1,m ∈ N, and

〈F ,G | Fn = 1,G−1FG = Fk〉 ∼= Zn ok Z, for k ∈ Z×n , n ∈ N.

(3.5.1)

Thus, any infinite metacyclic group is a split metacyclic group. Note that Lemma 3.2.1

and 3.2.2 are also true for infinite metacyclic group admitting the presentations described

in (3.5.1).

We conclude this chapter by giving two elementary examples of infinite metacyclic

groups.
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Chapter 3. METACYCLIC GROUPS

Example 3.5.2. The two generator infinite abelian groups Zn×Z and Z×Z are infinite

metacylic groups admitting the presentations

〈F ,G | Fn = 1,G−1FG = F〉 and 〈F ,G | G−1FG = F〉,

respectively.

Example 3.5.3. The infinite dihedral group Z o−1 Z2 admits the presentation

〈F ,G | G2 = 1,G−1FG = F−1〉.
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CHAPTER 4

METACYCLIC ACTIONS ON SURFACES

In this chapter, we will establish the main result of this thesis. Given integers u, n ∈ N,

r | n, k ∈ Z×n such that ku ≡ 1 (mod n), and r(k − 1) ≡ (mod n), a finite metacyclic

action of order un (written as u · n) on Sg is a tuple (H, (G,F)), where H < Homeo+(Sg),

and

H = 〈F ,G | F r = Gu,Fn = 1,G−1FG = Fk〉 ∼=M(u, n, r, k).

The main focus of this thesis is to analyze the finite metacyclic actions on Sg. Since

the two generator finite abelian group actions on surfaces have been analyzed in [12], we

will focus our attention on the finite non-abelian metacyclic subgroups of Mod(Sg). By

Lemma 3.2.3, these are groups of the form M(u, n, r, k), where u, n, r ≥ 2, r | n, and

k ∈ Z×n such that k 6= 1, ku ≡ 1 (mod n), and r(k − 1) ≡ 0 (mod n).

It is well known that Mod(S0) is trivial and Mod(S1) ∼= SL(2,Z), which is isomorphic

to the amalgamated product Z4 ∗Z2 Z6 (see [45]). Therefore, Mod(S1) does not have any

metacyclic subgroups as any finite subgroup would inject into either Z4 or Z6. Thus, we

will assume from here on that g ≥ 2.

4.1 Induced automorphisms
Since 〈F〉 C H, G would induce a Ḡ ∈ Homeo+(O〈F〉) (see [48]) that restricts to an

order-preserving bijection on the set of cone points in O〈F〉. We will call Ḡ, the induced

automorphism on O〈F〉 by G, and we formalize this notion in the following definition.

Definition 4.1.1. Let H < Homeo+(Sg) be a finite cyclic group with |H| = n with data

set DH . We say a Ḡ ∈ Homeo+(OH) is a data set automorphism of OH of multiplicity k

if there exists an integer k ∈ Z×n such that for any [x], [y] ∈ OH satisfying Ḡ([x]) = [y], we
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Chapter 4. METACYCLIC ACTIONS ON SURFACES

have:

(i) nx = ny, and

(ii) cx = kcy.

We denote the group of data set automorphisms of OH of multiplicity k by Homeok(DH).

We note that the concept of a data set automorphism in Definition 4.1.1 is more general

than the one that was used in the abelian case ([12]), which required a more rigid condition

that cx = cy. The following lemma, which provides some basic properties of the induced

map Ḡ, is a metacyclic analog of [12, Lemma 3.1].

Lemma 4.1.2. Let G,F ∈ Homeo+(Sg) be maps of orders m,n, respectively, such that

G−1FG = Fk, and let H = 〈F〉. Then:

(i) G induces a Ḡ ∈ Homeok(DH) such that

OH/〈Ḡ〉 = Sg/〈F ,G〉,

(ii) |Ḡ| divides |G|, and

(iii) |Ḡ| < m if and only if F r = Gu, for some 0 < r < n and 0 < u < m.

Proof. Given [x] ∈ Sg/〈F〉, we define Ḡ([x]) := [G(x)]. Then the assertion (i) follows

immediately. As |G| = m, (ii) follows from the fact that Ḡm([x]) = [Gm(x)] = [x], for

[x] ∈ Sg/〈F〉. To prove (iii), we first assume that t := |Ḡ| < m. Then

[Gt(x)] = Ḡt([x]) = [x],

for all [x] ∈ OH . Thus, for each [x] ∈ OH , there exists 1 ≤ lx ≤ n such that GtF lx(y) = y,

for all y ∈ Sg in the preimage of [x] under the branched cover Sg → OH . Suppose we

assume on the contrary that F r 6= Gu, for any 1 ≤ r < n and 1 ≤ u < m. Then, since

u < m, for each lx, GtF lx is a non-trivial homeomorphism. This would imply that every

point of Sg is fixed by some element of the metacyclic group 〈F ,G〉 of order mn, which is

impossible (as the action of 〈F ,G〉 on Sg is properly discontinuous). The converse follows

directly from the definition of Ḡ.
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4.2. Encoding metacyclic actions

4.2 Encoding metacyclic actions

We now recall the example described in Chapter 1, where we described different metacyclic

actions on S7.

Example 4.2.1. In Figure 4.1 below, note thatDF1 = DF2 = DF3 = (4, 1; ((1, 4), 2), ((3, 4), 2))

and DG1 = DG2 = DG3 = (2, 3, 1; ).

F1
G2

π

2π
4

F3
2π
4

2π
4

6π
4

2π
4

6π
4

G1
π

2π
4

6π
4

2π
4

6π
4

G3
π

F2

2π
4

6π
4

6π
4

2π
4

Figure 4.1: Split metacyclic actions on S7 with conjugate generators.

Now, from Section 4.1, we know that G induces a data set automorphism Ḡ ∈ Homeok(DF )

that maps the cone point corresponding to (i, 4) to the cone point corresponding to (k · i, 4)

for k, i ∈ {1, 3}, and the automorphism Ḡ on S1,4 is either the hyperelliptic involution, or

a free rotation. Moreover, both of these automorphisms will induce two orbits of size two

among the four cone points of S1,4. Thus, the orbifold S1,4/〈Ḡ〉 is either homeomorphic

to S0,6 with signature (0; 2, 2, 2, 2, 4, 4), or homeomorphic to S1,2 with signature (1; 4, 4).

In our example, the group 〈F1,G1〉 ∼= D8 acts on S7 with orbifold signature (1; 4, 4),

while the groups 〈F2,G2〉 ∼= Z4 × Z2, and 〈F3,G3〉 ∼= D8 act on S7 with the same orbifold

signature (0; 2, 2, 2, 2, 4, 4). Following the nomenclature as in Section 2.1, the surface

kernel epimorphisms corresponding to these actions are as follows:

φ〈F1,G1〉(α1) = G1, φ〈F1,G1〉(β1) = G1, φ〈F1,G1〉(ξ1) = F1, φ〈F1,G1〉(ξ2) = F−1
1 ,
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Chapter 4. METACYCLIC ACTIONS ON SURFACES

for 1 ≤ i ≤ 4, we have

φ〈F2,G2〉(ξi) = G2F2
2 , φ〈F2,G2〉(ξ5) = F2, φ〈F2,G2〉(ξ6) = F−1

2 , and

φ〈F3,G3〉(ξi) = G3F3, φ〈F3,G3〉(ξ5) = F3, φ〈F3,G3〉(ξ6) = F−1
3 .

This example illustrates that distinct conjugates of two periodic maps, in addition

to generating non-isomorphic subgroups, may also generate isomorphic subgroups that

can act differently on the surface. Thus, we need to derive conditions under which

distinct conjugates of two periodic maps will generate isomorphic subgroups that will

have analogous actions on the surface. This motivates the following definition.

Definition 4.2.2. Two finite metacyclic actions (H1, (G1,F1)) and (H2, (G2,F2)) of order

u · n, amalgam r and twist factor k are said to be weakly conjugate if there exists an

isomorphism ψ : πorb
1 (OH1) ∼= πorb

1 (OH2), and an isomorphism χ : H1 → H2 such that the

following conditions hold.

(i) χ((G1,F1)) = (G2,F2).

(ii) For i = 1, 2, let φHi : πorb
1 (OHi) → Hi be the surface kernel epimorphisms. Then

(χ ◦ φH1)(g) is conjugate to (φH2 ◦ ψ)(g) in H2, whenever g ∈ πorb
1 (OH1) is of finite

order. In other words, the following diagram commutes up to conjugacy:

πorb1 (OH1)
∼=
ψ

//

φH1

��

πorb1 (OH2)

φH2

��
H1 χ

// H2

The notion of weak conjugacy defines an equivalence relation on metacyclic actions on Sg
and the equivalence classes thus obtained will be called weak conjugacy classes.

We note that, from the Definition 4.2.2, the pair (G1,F1) will be conjugate (component-

wise) to the pair (G2,F2) (may not necessarily be conjugate with the same conjugating

homeomorphism in Homeo+(Sg)).

Remark 4.2.3. We will see later in Proposition 4.3.1 that conditions (i)-(ii) of Def-

inition 4.2.2 are indeed required to ensure that the actions of the 〈Fi,Gi〉 on Sg are
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equivalent as topological actions in sense that the induced data set automorphisms Ḡi on

the homeomorphic orbifolds O〈Fi〉 are conjugate.

Remark 4.2.4. By virtue of the Nielsen-Kerckhoff theorem, the notion of weak conjugacy

in Definition 4.2.2 naturally extends to an analogous notion in Mod(Sg) via the natural

association

(〈F ,G〉, (G,F))↔ (〈F,G〉, (G,F )).

For simplicity, we will now introduce the following notation.

Definition 4.2.5. Let F,G ∈ Mod(Sg) be of finite order with |F | = n. Then (F,G)

is metacyclically realized if there exists conjugates F ′, G′ (of F,G resp.) such that

〈F ′, G′〉 ∼=M(u, n, r, k).

We will see later (in Corollary 6.1.5) that when F ∈ Mod(Sg) is irreducible such that

Sg/〈F〉 ≈ S0,3 has three cone points of distinct orders, then no conjugate of F can form a

metacyclic group with any nontrivial G ∈ Mod(Sg). Hence (F,G) is not metacyclically

realized for any nontrivial G ∈ Mod(Sg).

Remark 4.2.6. Let H < Mod(Sg) be a finite metacyclic subgroup, and let I(H) denote

the isomorphism class of H (in Mod(Sg)). By Remark 4.2.4, we have

I(H) = {H ′ : H ′ ∼= H and (H ′, (G′, F ′)) represents a weak conjugacy class

for some F ′, G′ ∈ H ′ such that H ′ = 〈F ′, G′〉}.

Consequently, periodic mapping classes F,G ∈ Mod(Sg) such that (F,G) is metacyclically

realized if and only if there exists conjugates F ′, G′ (of F,G resp.) such that the triple

(〈F ′, G′〉, (G′, F ′)) represents a weak conjugacy class associated with a finite metacyclic

subgroup (of order u · n, twist factor k and amalgam r) of Mod(Sg).

Let H ∼= M(u, n, r, k) be a finite metacyclic group. By Lemma 2.1.2, if H acts

faithfully on Sg with Γ(OH) = (g0;n1, . . . , n`), then there exists a surjective homomorphism

φH : πorb
1 (OH)→ H that preserves the orders of all torsion elements of πorb

1 (OH). Fixing

the presentation in (2.1.1) for πorb
1 (OH) and presentation in (3.1.1) for H, φH : πorb1 (OH)→

H = 〈F ,G〉 would map

ξi
φH7−→ Gci1

m
ni1F ci2

n
ni2 , for 1 ≤ i ≤ `,
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where ni1 | m := |G|, ni2 | n, and for j = 1, 2, gcd(cij, nij) = 1. Thus, in order to

combinatorially encode the action of H on Sg, we need to encode the map φH , which

is determined by the integer parameters associated with the metacyclic group H, the

orbifold signature Γ(OH), the nij, and the cij. Thus, we will now introduce an abstract

tuple of integers satisfying certain number-theoretic conditions which will help to encode

the weak conjugacy class of a metacyclic action (H, (G,F)).

Definition 4.2.7. A metacyclic data set of degree u · n, twist factor k, amalgam r and

genus g ≥ 2 is a tuple

D = ((u · n, r, k), g0; [(c11, n11), (c12, n12), n1], . . . , [(c`1, n`1), (c`2, n`2), n`]),

where u, n ≥ 2, the nij are positive integers for 1 ≤ i ≤ `, 1 ≤ j ≤ 2, the cij ∈ Znij , r | n

and k ∈ Z×n such that ku ≡ 1 (mod n) and there exists a w ∈ Z, satisfying the following

conditions.

(i) 2g − 2
un

= 2g0 − 2 +
∑̀
i=1

(
1− 1

ni

)
.

(ii) (a) For each i, j, ni1 |
un

r
:= m, ni2 | n, either gcd(cij, nij) = 1 or cij = 0, and

cij = 0 if and only if nij = 1.

(b) For each i, ni = si, where si is the least positive integer satisfying the following

conditions for some ti ∈ N:

i. ci1 m
ni1
si ≡ tiu (mod m).

ii. ci2 n
ni2

(kci1
m
ni1

(si−1) + · · ·+ k
ci1

m
ni1 + 1) ≡ −tir (mod n).

(iii)
∑̀
i=1

ci1
m

ni1
≡ wu (mod m).

(iv) Defining A :=
∑̀
i=1

ci2
n

ni2

∏̀
s=i+1

k
cs1

m
ns1 and d := gcd(n, k − 1), we have

A ≡


−wr (mod n), if g0 = 0, and

dθ − wr (mod n), for θ ∈ Zn, if g0 ≥ 1.

(v) If g0 = 0, there exists (p1, p2, . . . , p`v), (q1, q2 . . . , q`v) ∈ (N ∪ {0})`v, v ∈ N, and

a, b ∈ Z such that the following conditions hold.
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(a)
`v∑
i′=1

pi′ci1
m

ni1
≡ 1 + au (mod m) and

`v∑
i′=1

ci2
n

ni2

( pi′∑
s=1

k
ci1

m
ni1

(pi′−s)
) `v∏

t′=i′+1
k
pt′ct1

m
nt1

 ≡ −ar (mod n).

(b)
`v∑
i′=1

qi′ci1
m

ni1
≡ bu (mod m) and

`v∑
i′=1

ci2
n

ni2

( qi′∑
s=1

k
ci1

m
ni1

(qi′−s)
) `v∏

t′=i′+1
k
qt′ct1

m
nt1

 ≡ 1− br (mod n), where

i ≡


i′ (mod `), if i′ 6≡ 0 (mod `),

` otherwise,
t ≡


t′ (mod `), if t′ 6≡ 0 (mod `), and

`, otherwise.

(vi) If g0 = 1, there exists (p1, p2, . . . , p`v), (q1, q2, . . . , q`v) ∈ (N ∪ {0})`v, m′, n′, a, b ∈ Z,

and v ∈ N such that m′ | m and n′ | n, satisfying the following conditions.

(a)
`v∑
i′=1

pi′ci1
m

ni1
≡ m′ + au (mod m) and

`v∑
i′=1

ci2
n

ni2

( pi′∑
s=1

k
ci1

m
ni1

(pi′−s)
) `v∏

t′=i′+1
k
pt′ct1

m
nt1

 ≡ −ar (mod n).

(b)
`v∑
i′=1

qi′ci1
m

ni1
≡ bu (mod m) and

`v∑
i′=1

ci2
n

ni2

( qi′∑
s=1

k
ci1

m
ni1

(qi′−s)
) `v∏

t′=i′+1
k
qt′ct1

m
nt1

 ≡ n′ − br (mod n), where

i ≡


i′ (mod `), if i′ 6≡ 0 (mod `),

`, otherwise,
t ≡


t′ (mod `) if t′ 6≡ 0 (mod `), and

` otherwise.

(c) A ≡ −βkα + β − wr (mod n) for some non-negative integers α, β, where

lcm
(
m

m′
,

m

gcd(m,α)

)
= m and lcm

(
n

n′
,

n

gcd(n, β)

)
= n.

Furthermore, we set α = 1, when m′ = 0, and β = 1, when n′ = 0.

A metacyclic data set D is said to be split when r = n.

As a notational convention, we will refrain from including the parameter r in a split

metacyclic data set D.
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Remark 4.2.8. Note that a metacyclic data set D as in Definition 4.2.7 determines an

orbifold OD with Γ(OD) = (g0;n1, n2, . . . n`).

We will now revisit the actions in Example 4.2.1 and describe their data sets.

Example 4.2.9. In Example 4.2.1, the data sets corresponding to the actions (〈F1,G1〉,G1,F1),

(〈F2,G2〉,G2,F2), and (〈F3,G3〉,G3,F3) are given by

D = ((2 · 4,−1), 1; [(0, 1), (1, 4), 4], [(0, 1), (3, 4), 4]),

D′ = ((2 · 4, 1), 0; [(1, 2), (1, 2), 2], [(1, 2), (1, 2), 2], [(1, 2), (1, 2), 2], [(1, 2), (1, 2), 2],

[(0, 1), (1, 4), 4], [(0, 1), (3, 4), 4]), and

D̃ = ((2 · 4,−1), 0; [(1, 2), (1, 4), 2], [(1, 2), (1, 4), 2], [(1, 2), (1, 4), 2], [(1, 2), (1, 4), 2],

[(0, 1), (1, 4), 4], [(0, 1), (3, 4), 4]),

respectively. For the data sets above, it is straightforward to verify conditions (i) - (iv)

of Definition 4.2.7. For D, condition (vi) can be verified by taking (p1, p2), (q1, q2) =

(0, 0), (1, 0), m′ = 0, n′ = 1, a = b = 0, v = 1. For D′, condition (v) follows by taking

(p1, p2, p3, p4, p5, p6), (q1, q2, q3, q4, q5, q6) = (1, 0, 0, 0, 2, 0), (0, 0, 0, 0, 1, 0), a = b = 0, v = 1.

For D̃, condition (v) is satisfied by taking (p1, p2, p3, p4, p5, p6), (q1, q2, q3, q4, q5, q6) =

(1, 0, 0, 0, 0, 1), (0, 0, 0, 0, 1, 0), a = b = 0, v = 1.

The following definition provides number-theoretic conditions for an equivalence of two

metacyclic data sets. We will show later in Proposition 4.3.1 that the equivalence classes

of metacyclic data sets correspond to the weak conjugacy classes of metacyclic actions.

Definition 4.2.10. Two metacyclic data sets

D = ((u · n, r, k), g0; [(c11, n11), (c12, n12), n1], . . . , [(c`1, n`1), (c`2, n`2), n`])

and

D′ = ((u · n, r, k), g0; [(c′11, n
′
11), (c′12, n

′
12), n′1], . . . , [(c′`1, n′`1), (c′`2, n′`2), n′`])

are said to be equivalent (D ∼ D′) if for each tuple [(c′i1, n′i1), (c′i2, n′i2), n′i], there exists

a tuple [(cji1, nji1), (cji2, nji2), nji ] such that ji1 6= ji2 whenever i1 6= i2 satisfying the

following conditions:

(i) n′i = nji ,
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4.3. Main theorem

(ii) c′i1 m
n′i1
≡ cji1

m
nji1

+ au (mod m), where m = un
r
, and

(iii) c′i2 n
n′i2
≡ cji2

n
nji2

kai + bi(k
cji1

m
nji1 − 1)− ar (mod n) for some ai, bi, a ∈ Z.

4.3 Main theorem
Our main result provides equivalent conditions under which torsion elements F,G ∈

Mod(Sg) be such that (F,G) is metacyclically realized. A key ingredient in the proof of

the main result is the following proposition.

Proposition 4.3.1. For integers n, u, g, r ≥ 2 such that r | n and k ∈ Z×n , the equivalence

classes of metacyclic data sets of degree u · n with twist factor k, amalgam r, and genus g

correspond to the weak conjugacy classes ofM(u, n, r, k)-actions on Sg.

Proof. Let D be a representative of an equivalence class of metacyclic data set of degree

u · n with twist factor k, amalgam r and genus g (as in Definition 4.2.7). We need to

show that D corresponds to the weak conjugacy class of a M(u, n, r, k)-action on Sg

represented by (H, (G,F)), where H = 〈F ,G〉. To see this, we first show the existence

of an epimorphism φH : πorb1 (OD)→ H that preserves the orders of the torsion elements.

Let H and πorb1 (OD) have presentations given by

〈F ,G | Fn = 1,Gu = F r,G−1FG = Fk〉 ∼=M(u, n, r, k) and

〈α1, β1, . . . , αg0 , βg0 , ξ1, . . . , ξ` | ξn1
1 = . . . = ξn`` =

∏̀
j=1

ξj

g0∏
i=1

[αi, βi] = 1〉,

respectively.

We consider the map

ξi
φH7−→ Gci1

m
ni1F ci2

n
ni2 , for 1 ≤ i ≤ `,

where m := un

r
. Then condition (ii) of Definition 4.2.7 and Lemma 3.2.4 would imply

that φH is a map which is order-preserving on torsion elements. For clarity, we break the

argument for the surjectivity of φH into the following three cases.

Case 1: g0 = 0. Then it follows from conditions (iii)-(iv) and Lemma 3.2.2 that

φH satisfies the long relation ∏`
i=1 ξi = 1. Moreover, the surjectivity of φH follows from

condition (v) and Lemma 3.2.2.
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Case 2: g0 ≥ 2. In this case, πorb1 (OD) has additional hyperbolic generators (viewing

them as isometries of the hyperbolic plane), namely the αi and the βi. Extending φH by

mapping α1
φH7−→ G, β1

φH7−→ F yields an epimorphism. Moreover, by carefully choosing the

images of the αi and the βi, for i ≥ 2, conditions (iii)-(iv), Lemma 3.2.2 and Lemma 3.4.4

would ensure that the long relation ∏`
j=1 ξj

∏g0
i=1[αi, βi] = 1 is satisfied.

Case 3: g0 = 1. In this case, πorb1 (OD) would have two additional hyperbolic generators,

namely the α1 and the β1. We extend φH by defining α1
φH7−→ Gα and β1

φH7−→ F−β. We

then apply conditions (iii), (iv), (vi), Lemma 3.2.2 and Lemma 3.4.4 to obtain the desired

epimorphism.

Now we show that D determines F ,G ∈ Homeo+(Sg), up to conjugacy. By carefully

applying Lemma 2.2.4, we see that

DF = (n, g1; ((v−1
ij , ti),

ti|fF n
ti

(vij, ti)|
n

) : vij ∈ Z×ti , ti | n),

where

|f
F
n
ti

(vij, ti)| = |FF n
ti

(vij, ti)| −
∑
ti′∈N
ti′ 6=ti
ti|ti′ |n

∑
(vi′j′ ,ti′ )=1

vij≡vi′j′ (mod ti)

|f
F

n
ti′

(vi′j′ , ti′)|

and g1 is determined by Riemann-Hurwitz equation, and

DG = (m, g2; ((u−1
ij ,mi),

mi|fG m
mi

(uij,mi)|
m

) : uij ∈ Z×mi , mi | m),

where

|f
G
m
mi

(uij,mi)| = |FG m
mi

(uij,mi)| −
∑
mi′∈N
mi′ 6=mi
mi|mi′ |m

∑
(ui′j′ ,mi′ )=1

uij≡ui′j′ (modmi)

|f
G
m
mi′

(ui′j′ ,mi′)|

and g2 is determined by Riemann-Hurwitz equation.

It remains to be shown that if D ∼ D′, then they corresponds to same weak conjugacy

class. To see this, let D (resp. D′) corresponds to the weak conjugacy class of a

M(u, n, r, k)-action on Sg represented by (H1, (G1,F1)) (resp. (H2, (G2,F2))), where

Hi = 〈Fi,Gi〉 for i = 1, 2. We need to show that (H1, (G1,F1)) is weakly conjugate to
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(H2, (G2,F2)). Clearly H1 ∼= H2. Also, as D ∼ D′, there exist ψ : πorb1 (OD)→ πorb1 (OD′)

such that ψ(ξi) ∼ ξ′ji and hence (χ ◦ φH1)(ξi) ∼H2 (φH2 ◦ ψ)(ξi), where ξi (resp. ξ′i) are

elliptic generators of πorb1 (OD) (resp. πorb1 (OD′)). Thus, from Lemma 2.2.4, it can be seen

that DF1 = DF2 and DG1 = DG2 .

Conversely, consider the weak conjugacy class of M(u, n, r, k)-actions on Sg repre-

sented by (H, (G,F)), where H = 〈F ,G〉. By Theorem 2.1.2, there exists a surjective

homomorphism

φH : πorb1 (OH)→ H : ξi
φH7−→ Gci1

m
ni1F ci2

n
ni2 , for 1 ≤ i ≤ `,

which is order-preserving on the torsion elements. This corresponds to a metacyclic data

set D of degree u ·n with twist factor k, amalgam r and genus g as in Definition 4.2.7. By

Theorem 2.1.2, D satisfies condition (i) of Definition 4.2.7. Moreover, condition (ii) follows

from the fact that φH is order-preserving on torsion elements and using Lemma 3.2.2.

Furthermore, conditions (iii)-(iv) follow from the long relation satisfied by πorb1 (OH) and

using Lemma 3.2.2, and condition (v)-(vi) are implied by the surjectivity of φH and by

using Lemma 3.2.2 and Lemma 3.4.4. Thus, we obtain the metacyclic data set D of degree

u · n with twist factor k, amalgam r and genus g.

Now it remains to be seen that if (H1, (G1,F1)) is weakly conjugate to (H2, (G2,F2))

and they corresponds to metacyclic data sets D and D′ of degree u · n with twist factor

k, amalgam r and genus g, then D ∼ D′. As (H1, (G1,F1)) is weakly conjugate to

(H2, (G2,F2)), there exists ψ : πorb1 (OH1) → πorb1 (OH2) such that ψ(ξi) ∼ ξ′ji and (χ ◦

φH1)(ξi) ∼H2 (φH2 ◦ ψ)(ξi), where ξi (resp. ξ′i) are elliptic generators of πorb1 (OH1) (resp.

πorb1 (OH2)). This implies that D ∼ D′, and our assertion follows.

From here on, we will use metacyclic data sets (up to equivalence) to encode the weak

conjugacy classes of metacyclic actions.

Notation 4.3.2. We denote the data sets DF and DG (representing the cyclic factors of

H) derived from the metacyclic data set D appearing in the proof of Proposition 4.3.1 by

D1 and D2, respectively.

We will now state our main theorem, which follows from Proposition 4.3.1.
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Chapter 4. METACYCLIC ACTIONS ON SURFACES

Theorem 4.3.3 (Main theorem). Let F,G ∈ Mod(Sg) be of orders n,m, respectively.

Then (F,G) is metacyclically realized if and only if there exists a metacyclic data set D of

degree u · n, twist factor k, amalgam r, and genus g such that D1 = DF and D2 = DG.

We conclude this section with an example of a split metacyclic action of order 16 on S5.

Example 4.3.4. The split metacyclic data set D = ((4 ·4,−1), 1; [(0, 1), (1, 2), 2]) encodes

the weak conjugacy class of a Z4 o−1 Z4-action on S5 represented by (〈F ,G〉, (G,F)),

where

DF = (4, 1; (1, 2), (1, 2), (1, 2), (1, 2)) and DG = (4, 2, 1; ).

The geometric realization of this action is illustrated in Figure 4.2 below.

(1, 2)

(1, 2)

(1, 2)

(1, 2)

G
π
2

(1, 2)(1, 2) (1, 2) (1, 2)

(1, 4)(1, 4)

(1, 4)(1, 4)

(3, 4) (3, 4)

(3, 4) (3, 4)

Figure 4.2: Realization of a Z4 o−1 Z4-action on S5.

Note that the pairs of integers appearing in Figure 4.2 represent the compatible orbits

involved in the realization of F . Here, the action F is realized via two 1-compatibilities

between the action F ′ on two copies of S2 with DF ′ = (4, 0; ((1, 2), 2), (1, 4), (3, 4)). Fur-

thermore, the action F ′ is realized by a 1-compatibility between the actions F ′′ and F ′′′ on

two copies of S1 with DF ′′ = (4, 0; (1, 2), (1, 4), (1, 4)) and DF ′′′ = (4, 0; (1, 2), (3, 4), (3, 4)).

4.4 Dihedral and Dicyclic subgroups of Mod(Sg)
In this section, as applications of our main result, we characterize the dihedral and dicyclic

subgroups of Mod(Sg).
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4.4.1 Dihedral subgroups of Mod(Sg)

Let D2n = Zn o−1 Z2 be the dihedral group of order 2n. We will call a split metacyclic

data set of degree 2 · n and twist factor −1, a dihedral data set. A simple computation

reveals that a dihedral data set

((2 · n,−1), g0; [(c11, n11), (c12, n12), n1], · · · , [(c`1, n`1), (c`2, n`2), n`])

have the property that (cj1, nj1) ∈ {(0, 1), (1, 2)}, for 1 ≤ j ≤ `. The following is an

immediate consequence of Proposition 4.3.1.

Corollary 4.4.1. For g ≥ 2 and n ≥ 3, dihedral data sets of degree 2 · n and genus g

correspond to the weak conjugacy classes of D2n-actions on Sg.

The following proposition provides an alternative characterization of a D2n-action in terms

of the generator of its factor subgroup of order n.

Proposition 4.4.2. Let F ∈ Mod(Sg) be of order n. Then there exists an involution

G ∈ Mod(Sg) such that 〈F,G〉 ∼= D2n if and only if DF has the form

(n, g0, r; ((c1, n1), (−c1, n1), . . . , (cs, ns), (−cs, ns)). (**)

Proof. Suppose that DF has the form (∗∗). Then O〈F〉 is an orbifold of genus g0 with

2s cone points [x1], [y1], . . . , [xs], [ys], where Pxi = (ci, ni) and Pyi = (−ci, ni), for 1 ≤

i ≤ s. Up to conjugacy, let Ḡ ∈ Homeok(D〈F〉) be the hyperelliptic involution so that

Ḡ([xi]) = [yi], for 1 ≤ i ≤ s. To prove our assertion, it would suffice to show the existence

of an involution G ∈ Homeo+(Sg) that induces Ḡ. This amounts to showing that there

exists a split metacyclic data set D of degree 2 · n with twist factor −1 encoding the weak

conjugacy class (H, (G,F)) so that DG has degree 2. Consider the tuple

D = ((2 · n,−1), 0; [(1, 2), (0, 1), 2], . . . , [(1, 2), (0, 1), 2]︸ ︷︷ ︸
t−2 times

, [(1, 2), (c(t−1)2, n(t−1)2), 2]

[(1, 2), (ct2, nt2), 2], [(0, 1), (c1, n1), n1], . . . , [(0, 1), (cs, ns), ns]),
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where t = 2g0 + 2,

(c(t−1)2n/n(t−1)2, ct2n/nt2) =


(0,−

∑s
i=1 ci

n
ni

(modn)), if g0 = 0, and

(1, 1−
∑s
i=1 ci

n
ni

(modn)), if g0 > 0.

It follows immediately that D satisfies conditions (i)-(iv) of Definition 4.2.7. As t ≥ 2,

by taking v = 1, we may choose (p1, p2, . . . , pt+s) = (1, 0, . . . , 0) to conclude that D

also satisfies condition (v)(a). Since t = 2 ⇐⇒ g0 = 0, and when g0 = 0, we have

that lcm(n1, . . . , ns) = n, from which condition (v)(b) follows. Finally, for the case

when g0 6= 0, (v)(b) follows by choosing (q1, . . . , qt−2, qt−1, . . . , qt+s) = (0, . . . , 1, 1, . . . , 0).

Thus, it follows that D is a split metacyclic data set. Further, a direct application of

Theorem 4.3.3 would show that D indeed encodes the weak conjugacy represented by

(H, (G,F)), as desired.

The converse follows immediately from Remark 4.2.4 and Proposition 4.3.1.

We now provide a couple of examples of dihedral actions along with their realizations.

Example 4.4.3. Consider the Z3 o−1 Z2-action 〈F ,G〉 on S3 illustrated in Figure 4.3

below, where

DF = (3, 1; (1, 3), (2, 3)) and DG = (2, 1; (1, 2), (1, 2), (1, 2), (1, 2)).

F

G

2π
3

π

Figure 4.3: Realization of a D6-action on S3.
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The weak conjugacy class of the action (〈F ,G〉, (G,F)) is encoded by

D = ((2 · 3,−1), 0; [(1, 2), (0, 1), 2], [(1, 2), (0, 1), 2], [(1, 2), (0, 1), 2],

[(1, 2), (1, 3), 2], [(0, 1), (2, 3), 3]).

Example 4.4.4. Consider the Z4o−1Z2-actions 〈F ,G〉 and 〈F ,G ′〉 on S3 illustrated in Fig-

ure 4.4 below, whereDF = (4, 0; (1, 4), (3, 4), (1, 4), (3, 4)),DG = (2, 1; (1, 2), (1, 2), (1, 2), (1, 2)),

and DG′ = (2, 2, 1; ).

F

G

π
2

π

G′
π

Figure 4.4: Realization of a D8-action on S3.

The weak conjugacy classes (〈F ,G〉, (G,F)) and (〈F ,G ′〉, (G ′,F)) are encoded by

((2 · 4,−1), 0; [(1, 2), (0, 1), 2], [(1, 2), (0, 1), 2], [(0, 1), (1, 4), 4], [(0, 1), (3, 4), 4])

and

((2 · 4,−1), 0; [(1, 2), (1, 4), 2], [(1, 2), (1, 4), 2], [(0, 1), (1, 4), 4], [(0, 1), (3, 4), 4]),

respectively.
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4.4.2 Dicyclic subgroups of Mod(Sg)

In this subsection, we will characterize non-split dicyclic actions on Sg. We recall that a

dicyclic group of order 4n is given by Dicn :=M(2, 2n, n,−1). We will call a metacyclic

data set of degree 2 · 2n, amalgam n and twist factor −1, a dicyclic data set. Note that a

dicyclic group is a non-split metacyclic group if and only if n is even. Thus, throughout

this subsection, n is assumed to be even. The following is an immediate consequence of

Proposition 4.3.1.

Corollary 4.4.5. For g ≥ 2 and n ≥ 3, dicyclic data sets of degree 2 · 2n and genus g

correspond to the weak conjugacy classes of Dicn-actions on Sg.

Remark 4.4.6. Let H = Dicn = 〈F,G〉 < Mod(Sg). Then Ḡ cannot fix a regular point

in the orbifold Sg/〈F〉. In fact, Ḡ fixes only an order 2 cone point in Sg/〈F〉. To see this,

suppose we assume on the contrary that Ḡ([x]) = [x], where [x] is a regular point (or

any other cone point of order p 6= 2) in O〈F〉. Then, Stab〈G,F 〉(x) = 〈G2〉 = 〈F n〉, which

implies that [x] is an order 2 cone point in O〈F〉, thereby yielding a contradiction.

The following proposition provides a number-theoretic characterization of a Dicn-action

on Sg .

Proposition 4.4.7. Let F ∈ Mod(Sg) be of order 2n. Then there exists a G ∈ Mod(Sg)

of order 4 such that 〈F,G〉 ∼= Dicn if and only if DF has the form

(2n, g0, d; ((c1, n1), (−c1, n1), . . . , (cs, ns), (−cs, ns)) (*)

satisfying the following conditions.

(i) When g0 is even, there exists an i such that (ci, ni) = (−ci, ni) = (1, 2).

(ii) When g0 is odd, at least one of the following statements hold true.

(a) There exists i, j with i 6= j such that (±ci, ni) = (±cj, nj) = (1, 2).

(b) g0 ≥ 3 and
s∑
i=1

ci
2n
ni
≡ 2a (mod 2n) for some a ∈ Z.

(c) g0 = 1 and
s∑
i=1

ci
2n
ni
≡ 2a (mod 2n) for some a such that gcd(a, n) = 1.

(d) g0 = 1,
s∑
i=1

ci
2n
ni
≡ 2a (mod 2n) for some a ∈ Z, and lcm(n1, . . . , ns) = 2n.
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Proof. Suppose that DF has the form (*). Then O〈F〉 is an orbifold of genus g0 with 2s

cone points [x1], [y1], . . . , [xs], [ys], where Pxi = (ci, ni) and Pyi = (−ci, ni), for 1 ≤ i ≤ s.

If DF satisfies condition (i), then we may assume without loss of generality that (c1, n1) =

(−c1, n1) = (1, 2). Then up to conjugacy, let Ḡ ∈ Homeok(D〈F〉) be an involution such

that Ḡ([xi]) = [yi], for 2 ≤ i ≤ s, Ḡ([x1]) = [x1], and Ḡ([y1]) = [y1]. To prove our assertion,

it would suffice to show the existence of an involution G ∈ Homeo+(Sg) that induces Ḡ.

This amounts to showing that there exists a metacyclic data set D of degree 2 · 2n with

amalgam n and twist factor −1 encoding the weak conjugacy class (H, (G,F)) so that

DG has degree 4.

Consider the tuple

D = ((2 · 2n, n,−1), g0/2; [(1, 4), (0, 1), 4], [(3, 4), (c′, n′), 4],

[(0, 1), (c2, n2), n2], . . . , [(0, 1), (cs, ns), ns]),

where c′ 2n
n′
≡ −∑s

i=2 ci
2n
ni

(mod 2n). It follows immediately that D satisfies conditions

(i)-(iv) of Definition 4.2.7. By taking v = 1, we may choose (p1, . . . , ps+1) = (1, 0, . . . , 0) to

conclude that D also satisfies either condition (v)(a) or (vi)(a), based on the choice of g0.

If g0 = 0, we have that lcm(n1, n2, . . . , ns) = 2n, from which condition (v)(b) follows. If

g0 6= 0, then by carefully defining φH (as in Proposition 4.3.1) on the hyperbolic elements

of πorb1 (OH), our claim is true. Thus, it follows that D is a metacyclic data set.

If DF satisfies condition (ii)(a), then by a similar argument as above, we obtain the

metacyclic data set

D = ((2 · 2n, n,−1), (g0 + 1)/2; [(1, 4), (0, 1), 4], [(1, 4), (0, 1), 4], [(1, 4), (1, 2n), 4],

[(1, 4), (c′′, n′′), 4], [(0, 1), (c3, n3), n3], . . . , [(0, 1), (cs, ns), ns]),

where c′′ 2n
n′′
≡ 1−∑s

i=3 ci
2n
ni

(mod 2n). Suppose that DF satisfies conditions (ii)(b)-(d).

Then again by an analogous argument as above, we obtain the metacyclic data set

D = ((2 · 2n, n,−1), (g0 + 1)/2; [(0, 1), (c1, n1), n1], . . . , [(0, 1), (cs, ns), ns]).

Further, a direct application of Theorem 4.3.3 would show that D indeed encodes the

weak conjugacy represented by (H, (G,F)), as desired.
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The converse follows immediately from Remark 4.2.4, Remark 4.4.6 and Proposi-

tion 4.3.1.

4.5 Classification of the weak conjugacy classes in

Mod(Sg) for g = 3, 5, 10, 11
A complete classification of finite group actions on Sg for 2 ≤ g ≤ 4 up to conjugacy is

given in [7, 9, 27]. The metacyclic subgroups of Mod(S2) ([9, Table 4]) are:

(a) the dihedral groups D3, D4, and D6,

(b) the split metacyclic groupsM(2, 8, 8, 3) andM(4, 3, 3, 2), and

(c) the quaternion groupM(2, 4, 2, 3).

The surface S3 admits some interesting split metacyclic actions whose geometric realizations

are relatively easy to illustrate. Also, the fact that the finite group actions on Sg for

2 ≤ g ≤ 4 have been classified [7, 9, 27], it makes sense to verify our theory for surfaces

with genera greater than four. Furthermore, our computations indicate that most non-split

metacyclic actions on Sg for g < 10 are quaternionic. Thus, we will use Theorem 4.3.3

to classify the weak conjugacy classes of the metacyclic subgroups of Mod(S3) and

Mod(S5) and weak conjugacy classes of the non-split metacyclic subgroups of Mod(S10)

and Mod(S11).

For achieving our classification for g = 3, 5, 10, 11, we will need to first analyze the

metacyclic groups that can act on Sg. In this regard, we use the signatures Γ(OH) for all

finite group actions on Sg for 2 ≤ g ≤ 48 available at [39] and the list of metacyclic groups

of order up to 500 available at [14]. These lists provide the GAP ids [18] of the groups

acting on the surfaces along with the signatures Γ(OH). Using this data and the basic

properties of metacyclic groups (detailed in Section 3.2), we either construct all possible

surface kernel maps φH : πorb1 (OH)→ H or compute all possible metacyclic data sets of

genus g with the chosen signature, depending upon the relative ease of computation.

For example, in g = 3, when H = Z4 o−1 Z2, we have three possible signatures:

(1; 2), (0; 2, 2, 4, 4), (0; 2, 2, 2, 2, 2). For signature (1; 2), condition (iii) of Definition 2.2.1

ensures (c11, n11) = (0, 1) and condition (ii) (b) ensures (c12, n12) = (1, 2). Hence, the
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metacyclic data set corresponding to signature (1; 2) is

((2 · 4,−1), 1; [(0, 1), (1, 2), 2]).

However, for signature (0; 2, 2, 4, 4), it is easier to compute the possible maps φH :

πorb1 (OH)→ H, which are:

ξ1 7→ G, ξ2 7→ G, ξ3 7→ F, ξ4 7→ F 3,

ξ1 7→ G, ξ2 7→ G, ξ3 7→ F 3, ξ4 7→ F,

ξ1 7→ GF, ξ2 7→ GF, ξ3 7→ F, ξ4 7→ F 3, and

ξ1 7→ GF, ξ2 7→ GF, ξ3 7→ F 3, ξ4 7→ F.

By Definition 4.2.10, permutations of images of finite order generators lead to equivalent

data sets, and so we have the following 2 equivalence classes of data sets:

((2 · 4,−1), 0; [(1, 2), (0, 1), 2]2, [(0, 1), (1, 4), 4], [(0, 1), (3, 4), 4]) and

((2 · 4,−1), 0; [(1, 2), (1, 4), 2]2, [(0, 1), (1, 4), 4], [(0, 1), (3, 4), 4]),

where the suffix refers to the multiplicity of the tuple in the metacyclic data set. For

signature (0; 2, 2, 2, 2, 2), by a similar argument, we can deduce that the only possible

data set upto equivalence is

((2 · 4,−1), 0; [(1, 2), (0, 1), 2]2, [(1, 2), (1, 4), 2], [(1, 2), (3, 4), 2], [(0, 1), (1, 2), 2]).

Using similar computations, we will now provide a classification of the weak conjugacy

classes of finite metacyclic subgroups of Mod(S3) and Mod(S5) (up to this equivalence) in

Tables 4.1 and 4.2, respectively and classification of the weak conjugacy classes of finite

non-split metacyclic subgroups of Mod(S10) and Mod(S11) (up to this equivalence) in

Tables 4.3 and 4.4, respectively.
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4.5. Classification of the weak conjugacy classes in Mod(Sg) for g = 3, 5, 10, 11
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Chapter 4. METACYCLIC ACTIONS ON SURFACES
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4.5. Classification of the weak conjugacy classes in Mod(Sg) for g = 3, 5, 10, 11
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4.6 Geometric realizations of metacyclic actions
We begin this section with the following elementary lemma, which is crucial in the

realization of metacyclic actions. This lemma is a direct generalization of [12, Lemma 6.1].

Here, note that the lemma can also be generalized to any finitely generated subgroup of

Mod(Sg).

Lemma 4.6.1. Let H = 〈F,G〉 be a finite metacyclic subgroup of Mod(Sg). Then

Fix(H) = Fix(〈F 〉) ∩ Fix(〈G〉).

Proof. Suppose that x ∈ Fix(H). Then x ∈ Fix(〈F 〉) and x ∈ Fix(〈G〉), and so x ∈

Fix(〈F 〉)∩Fix(〈G〉). Conversely, given x ∈ Fix(〈F 〉)∩Fix(〈G〉), we have F (x) = G(x) = x.

Hence F iGj(x) = x for all i, j, that is, every element in H fixes x. Hence x ∈ Fix(H).

Now, we give an algorithm for obtaining the hyperbolic structures that realize finite

metacyclic subgroups of Mod(Sg) (up to weak conjugacy) as groups of isometries.

Step 1. Consider a weak conjugacy class represented by (H, (G,F)).

Step 2. Use Theorem 4.3.3 to determine the conjugacy classes DF (resp. DG) of the

generators F (resp. G).

Step 3. We apply Lemma 4.6.1, and Theorems 2.3.1-2.3.2, to obtain the hyperbolic structures

that realize H as a group of isometries.

We will now describe the geometric realizations of some metacyclic actions on S3, S5, S10

and S11 represented by the split and non-split metacyclic data sets listed in Tables 4.1,

4.2, 4.3 and 4.4 in Section 4.5. In particular, we will describe some realizations of split

metacyclic actions on S3 and S5, which were not discussed in earlier sections.

It may be noted that the realizations of non-split metacyclic group actions on Sg

are far more challenging as these groups are not realizable as isometry groups of R3.

However, we will see later that the Proposition 5.2.6 enables us to realize the lifts of

certain metacyclic actions under suitably chosen regular cyclic covers. Hence, by using

Proposition 5.2.6 and Corollary 5.2.7, we describe nontrivial geometric realizations of

some finite split metacyclic actions that are realized as lifts of non-split metacyclic actions

on S10 and S11 under regular cyclic covers.
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G

π

(1, 3)

(1, 3)

(1, 3)

(2, 3)

(2, 3)

(2, 3)

Figure 4.5: A realization of a D6-action 〈F ,G〉 on S3, where DG = (2, 2, 1; ) and DF =
(3, 1; (1, 3), (2, 3)). The action F is realized through two 1-compatibilities between two actions
F ′ and F ′′ on S1 with DF ′ = (3, 0; ((1, 3), 3)) and DF ′′ = (3, 0; ((2, 3), 3))). The weak conjugacy
class of (〈F ,G〉, (G,F)) is encoded by the first split metacyclic data set in Table 4.1.

G1

π

(1, 2)

(1, 2)

(1, 4)

(1, 4)

(1, 2)

(1, 2)

(3, 4)

(3, 4)

G2

π

Figure 4.6: The realizations of two distinct D8-actions 〈F ,G1〉 and 〈F ,G2〉 on S3, where
DF = (4, 1; ((1, 2), 2)), DG1 = (2, 2, 1; ), and DG2 = (2, 1; ((1, 2), 4). The action F is realized via
two 1-compatibilities between two actions F ′ and F ′′ on S1, where DF ′ = (4, 0; ((1, 4), 2), (1, 2))
and DF ′′ = (4, 0; ((3, 4), 2), (1, 2)). The weak conjugacy classes of (〈F ,G1〉, (G1,F)) and
(〈F ,G2〉, (G2,F)) are encoded by split metacyclic data sets nos. 3 and 6, respectively, in
Table 4.1.
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(1, 3)

(1, 3)

G
π
2

(2, 3) (2, 3)

(1, 3)(1, 3)

(1, 3)(1, 3)

(2, 3) (2, 3)

(2, 3) (2, 3)

Figure 4.7: A realization of a Z3 o−1 Z4-action 〈F ,G〉 on S5, where DG = (4, 2, 1; ) and
DF = (3, 1; ((1, 3), 2), ((2, 3), 2)). The action F is realized via two 1-compatibilities between the
action F ′ on two copies of S2 withDF ′ = (3, 0; ((1, 3), 2), ((2, 3), 2)). Furthermore, the action F ′ is
realized by a 1-compatibility between the actions F ′′ and F ′′′ on S1, where DF ′′ = (3, 0; ((1, 3), 3))
and DF ′′′ = (3, 0; ((2, 3), 3)). The weak conjugacy class of (〈F ,G〉, (G,F)) is encoded by the split
metacyclic data set no. 14 in Table 4.2.

G1

π

G2

π

G3

π

(1, 2)(1, 2)

(1, 2)(1, 2)

(1, 2)(1, 2)

(1, 2)(1, 2)

(3, 8)(1, 8)

(5, 8)(7, 8)

Figure 4.8: Realization of Z8o−1Z2-action 〈F ,G1〉, Z8o3Z2-action 〈F ,G2〉 and Z8o5Z2-
action 〈F ,G3〉 on S5, where DG1 = DG2 = (2, 2; ((1, 2), 4)), DG3 = (2, 3, 1; ) and DF =
(8, 1; ((1, 2), 2)). The action F is realized via two 1-compatibilities between two actions F ′
and F ′′ on S2 where DF ′ = (8, 0; (1, 2), (1, 8), (3, 8)) and DF ′′ = (8, 0; (1, 2), (5, 8), (7, 8)).
The weak conjugacy class of (〈F ,Gi〉, (Gi,F)) 1 ≤ i ≤ 3 is encoded by the split metacyclic
data set nos. 26, 25, and 22, respectively, in Table 4.2.
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G
π
2

(1, 6)

(1, 6)

(1, 6)

(1, 6)

(5, 6) (5, 6)(5, 6) (5, 6)

Figure 4.9: The realization of an H = Z12 o−1 Z4-action on S21 which is the lift
of a H̄ = Dic6-action on S11 under the regular cyclic cover p2. Here, H = 〈F ,G〉,
where DG = (4, 6, 1; ) and DF = (12, 1; ((1, 6), 2), ((5, 6), 2)), and H̄ = 〈F̄ , Ḡ〉, where
(〈F̄ , Ḡ〉, Ḡ, F̄) is encoded by the first metacyclic data set in Table 4.4. Note that the G
maps each orbit of the 〈F〉-action of size 2 with local rotation angle 2π/6 to an orbit with
local rotation angle 10π/6 (and vice versa).

(19, 20)

(19, 20)

(1, 20)

(1, 20)
(1, 4) (1, 4)

(1, 2)

(1, 2)

Figure 4.10: The realization of a H = Z20 o−1 Z4-action on S19 which is the lift
of a H̄ = Dic10-action on S10 under the regular cyclic cover p2. Here, H = 〈F ,G〉,
where DG = (4, 0; ((1, 4), 2), ((1, 2), 19)) and DF = (20, 0; ((1, 20), 2), ((19, 20), 2)), and
H̄ = 〈F̄ , Ḡ〉, where (〈F̄ , Ḡ〉, Ḡ, F̄) is encoded by metacyclic data set no. 10 in Table 4.3.
Note that the four fixed points of F (marked in red) form an orbit of size 4 under the
〈G〉-action where each fixed point with local rotation 2π/20 is mapped to fixed point with
local rotation 38π/20 (and vice versa). The point marked in blue are distinct size 2 orbits
of the 〈G〉-action, while the points marked in black are the fixed points of G.
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(3, 4)

(3, 4)

(1, 4)

(1, 4)
(1, 4) (1, 4)

(1, 2)

(1, 2)(1, 2)

(1, 2)

(1, 2)

(1, 2)

Figure 4.11: The realization of a H = Z4 o−1 Z4-action on S19 which is the lift of
a H̄ = Q8-action on S10 under the regular cyclic cover p2. Here, H = 〈F ,G〉, where
DF = (4, 4; ((1, 4), 2), ((3, 4), 2)) and DG = (4, 4; ((1, 4), 2), ((1, 2), 3)), and H̄ = 〈F̄ , Ḡ〉,
where (〈F̄ , Ḡ〉, Ḡ, F̄) is encoded by metacyclic data set no. 5 in Table 4.3. Note that
the H-action on S19 cyclically permutes the genera in the petals of the subfigure on the
left. This H-action is induced by an analogous action of an H ′ = 〈F ′,G ′〉 ∼= Z4 o−1 Z4
on S3 (shown in the subfigure on the right) with DF ′ = (4, 0; ((1, 4), 2), ((3, 4), 2)) and
DG′ = (4, 0; ((1, 4), 2), ((1, 2), 3)). Note that the four fixed points of F ′ (marked in red)
form an orbit of size 4 under the 〈G ′〉-action where each fixed point with local rotation
2π/4 is mapped to fixed point with local rotation 6π/4 (and vice versa). The remaining
fixed (and orbit) points of the 〈G ′〉-action are marked in blue.
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CHAPTER 5

LIFTABILITY UNDER REGULAR CYCLIC

BRANCHED COVERS

In this chapter, we will derive several applications to our main theorem concerning the

liftability viewpoint.

5.1 Liftability of torsion under finite cyclic covers
From the viewpoint of liftability, a metacyclic group 〈F ,G〉 acts on Sg if and only if there

exists Ḡ ∈ Homeok(D〈F〉) that lifts under the branched cover Sg → O〈F〉 to G. This is

equivalent to requiring the existence of a short exact sequence:

1→ 〈F〉 → 〈F ,G〉 → 〈Ḡ〉 → 1.

Let Sh,b be the closed oriented surface of genus h with bmarked points. Let p : Sg → Sh,b

be a branched cover with finite deck-transformation group. Let LModp(Sh,b) be the

subgroup of Mod(Sh,b) comprising all elements that have representatives that lift to

homeomorphisms under p, and let SModp(Sg) be the subgroup of Mod(Sg) consisting of

all elements represented by homeomorphisms that preserve the fibers under p (see [32]).

The groups LModp(Sh,b) (resp. SModp(Sg)) are called the liftable (resp. symmetric)

mapping class groups of p. Our main theorem can now be equivalently stated as follows.

Theorem 5.1.1 (Main theorem-Alternative version). Let p : Sg → Sh,b be an n-sheeted

cover with deck transformation group 〈F〉 ∼= Zn. Then Ḡ ∈ LModp(Sh,b) lifts to a

G ∈ SModp(Sg) if and only if there exists a metacyclic data set D of degree u · n, twist

factor k, amalgam r, and genus g such that D1 = DF and D2 = DG.
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Thus, the main theorem also provides necessary and sufficient conditions under which

periodic elements of mapping class groups lift under finite cyclic covers.

Remark 5.1.2. Given a metacyclic data set

D = ((u · n, r, k), g0; [(c11, n11), (c12, n12), n1], . . . , [(c`1, n`1), (c`2, n`2), n`]),

encoding the weak conjugacy class represented by (〈F ,G〉, (G,F)), it follows from the

Proposition 4.3.1 and the exact sequence

1→ 〈F〉 → 〈F ,G〉 → 〈Ḡ〉 → 1.

that

DḠ = (u, g0; (c′11, n
′
11), . . . , (c′`1, n′`1)),

where n′i1 = u

gcd(ci1 m
ni1
, u) , and c

′
i1
u

n′i1
≡ ci1

m

ni1
(mod u). In fact, we can also recoverDF

(that encodes the 〈F〉-action on Sg) using DḠ in the following manner. From D and DḠ,

we have

Γ(O〈F〉) = (g1; n1

n′11
, . . . ,

n1

n′11︸ ︷︷ ︸
u
n′11

times

, . . . ,
n`
n′`1

, . . . ,
n`
n′`1︸ ︷︷ ︸

u
n′
`1

times

)

where if ni/n′i1 = 1, for some 1 ≤ i ≤ `, then we exclude it from the signature, and

g1 = g(DḠ) is determined by Equation (2.2.2) of Definition 2.2.1. Thus, we get

DF =
(
n, g1;

(
d11,

n1

n′11

)
, . . . ,

(
d1 u

n′11
,
n1

n′11

)
, . . . ,

(
d`1,

n`
n′`1

)
, . . . ,

(
d` u

n′11
,
n`
n′`1

))
,

where
di1nn

′
i1

ni
≡ bir + ci2

n

ni2

n′i1∑
j′=1

k
ci1

m
ni1

(j′−1) (mod n),

bi ∈ N such that biu ≡ ci1
m
ni1
n′i1 (mod m), and

diji ≡ di1k
(ji−1) (mod ni

n′i1
) 1 ≤ i ≤ l, 1 ≤ ji ≤

u

n′i1
.

This leads us to the following corollary, which is an application of Theorem 5.1.1.

Corollary 5.1.3. Let p : Sn(g−1)+1 → Sg be an n-sheeted regular cover with deck transfor-
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mation group 〈F〉 ∼= Zn. Suppose that there exists a Ḡ ∈ LModp(Sg) of finite order with

O〈Ḡ〉 ≈ S0 that lifts to a G ∈ SModp(Sn(g−1)+1). Then H = 〈F,G〉 is a split metacyclic

group.

Proof. From Theorem 5.1.1, we have a metacyclic data set

D = ((u · n, r, k), 0; [(c11, n11), (c12, n12), n1], . . . , [(c`1, n`1), (c`2, n`2), n`])

of degree u · n with twist factor k, amalgam r, and genus n(g − 1) + 1. Following the

notation in the proof of Proposition 4.3.1, let φH(ξi) = GγiF δi , where γi = ci1m/ni1,

δi = ci2n/ni2, and ξi ∈ πorb1 (OH) is the generator enclosing the cone point of order ni.

Now, as F generates a free action on Sn(g−1)+1, we have that 〈GγiF δi〉 ∩ 〈F〉 = {id}.

Hence, it follows that 〈GγiF δi , F 〉 is a split metacyclic group for all i, and consequently,

〈Gγi , F 〉 is a split metacyclic group for all i.

Now, we claim that 〈Gγ1 , . . . , Gγ` , F 〉 is a split metacyclic group. We establish this

claim by induction on `. From the preceding argument, the statement holds for ` = 1.

For ` = 2, we have to show that 〈Gγ1 , Gγ2 , F 〉 is a split metacyclic group. We can write

〈Gγ1 , Gγ2 , F 〉 = 〈G′, F 〉, where 〈G′〉 = 〈Ggcd(γ1,γ2)〉 = 〈Gγ1 , Gγ2〉. Suppose we assume

on the contrary that (G′)a = F b, for some a ∈ Z and b ∈ Zn with b 6= 0. Then

〈(G′)a〉 ⊆ 〈Gγ1 , Gγ2〉, and so we have that 〈(G′)at〉 ⊆ 〈Gγ1〉 or 〈Gγ2〉, for some t such that

(G′)at 6= 1. Hence, it follows that Gγ1t1 = (G′)at = F bt or Gγ2t2 = (G′)at = F bt, for some

t1, t2 ∈ Z, which contradicts the fact that 〈Gγi , F 〉 is a split metacyclic group. Therefore,

our claim holds true for ` = 2.

Suppose we assume that our claim holds for `− 1. By similar arguments (as above),

we have that 〈Gγ1 , . . . , Gγ` , F 〉 = 〈G′′, Gγ` , F 〉, where 〈G′′, F 〉 is split metacyclic group.

So, it immediately follows from the case ` = 2 that our claim holds for `. Since φH
is surjective, we have 〈Gγ1F δ1 , . . . , Gγ`F δ`〉 = H, and hence it follows that H is a split

metacyclic group.

It is known that the bound on the order of a periodic mapping class G ∈ Mod(Sg) is

4g + 2 (see [49]) which is realized by the action DG = (4g + 2, 0; (1, 2), (1, 2g + 1), (2g −

1, 4g + 2)). This inspires the following corollary.

Corollary 5.1.4. Let p : Sn(g−1)+1 → Sg be a finite n-sheeted regular cover with deck
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transformation group 〈F〉 ∼= Zn. If n is prime and (4g + 2) | (n− 1), then there exists a

Ḡ ∈ LModp(Sg) with |Ḡ| = 4g + 2.

Proof. Since (4g + 2) | (n − 1), there exists a k ∈ Z×n such that |k| = 4g + 2. Let

G ∈ SModp(Sn(g−1)+1) be a lift of Ḡ. Now from Proposition 4.3.1, it can be easily seen that

the metacyclic data set D = ((n ·4g+2, n, k), 0; [(1, 2), (1, n), 2], [(1, 2g+1), (n−k2, n), 2g+

1], [(2g − 1, 4g + 2), (0, 1), 4g + 2]) represents the weak conjugacy class of (〈F ,G〉,G,F)

with D1 = DF = (n, g, 1; ), D2 = DG = (4g+2, (n−1)(g−1)
4g+2 ; (1, 2), (1, 2g+1), (2g−1, 4g+2))

and DḠ = (4g + 2, 0; (1, 2), (1, 2g + 1), (2g − 1, 4g + 2)). Hence, our assertion follows.

5.2 Liftability of non-split metacylic actions under

regular cyclic covers
Considering the fact that every non-split metacyclic group is a quotient of a split metacyclic

group (Lemma 3.4.3), a natural question that arises is whether one can determine when a

metacyclic action on Sg factor via a split metacyclic action. Equivalently, when does a

metacyclic action on Sg lift under a regular cover to a split metacyclic action? In this

section, we provide equivalent conditions for such a liftability to occur. In the following

subsection, we begin by examining this problem for quaternionic actions.

5.2.1 Lifting generalized quaternionic actions

For n ≥ 2, the generalized quaternion group Q2n+1 is a metacyclic group of order 2n+1

that admits the presentation

〈x, y |x2n = y4 = 1, x2n−1 = y2, y−1xy = x−1〉.

Remark 5.2.1. LetD be a split metacyclic data set of genus g, degree 4·2n and twist factor

−1 (as in Definition 4.2.7) encoding a weak conjugacy class represented by (H, (G,F)).

Suppose that D has the property that [(cj1, nj1), (cj2, nj2), nj] = [(1, 2), (1, 2), 2], for some

1 ≤ j ≤ `. Then it follows from the proof of Proposition 4.3.1 that under the epimorphism

φH : πorb1 (OH)→ H which preserves the order of torsion elements, the tuple [(1, 2), (1, 2), 2]

would correspond to an involution G2F2n−1 ∈ H which defines a non-free action on Sg.

Remark 5.2.1 motivates the following definition.
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Definition 5.2.2. A quaternionic data set is a split metacyclic data set of degree 4 · 2n

that has the form

D = ((4 · 2n,−1), g0; [(c11, n11), (c12, n12), n1], . . . , [(c`1, n`1), (c`2, n`2), n`]),

such that [(cj1, nj1), (cj2, nj2), nj] 6= [(1, 2), (1, 2), 2], for 1 ≤ j ≤ `.

Proposition 5.2.3. For g, n ≥ 2, quaternionic data sets of genus 2g− 1 and degree 4 · 2n

correspond to Q2n+1-actions on Sg.

Proof. Suppose that there exists an action of H = Q2n+1 on Sg. By Lemma 2.1.2, there

exists an epimorphism φH : πorb1 (OH)→ H

ξi
φH7−→ y

ci1
m
ni1 x

ci2
n
ni2 , for 1 ≤ i ≤ `,

which is order-preserving on torsion elements. Let H ′ = Z2n o−1 Z4. Since the canonical

projection q : H ′ → H(∼= H ′/Z2) preserves the order of torsion elements on H ′ \ ker q,

the map φH naturally factors via q. Thus, as there are exactly two possible choices for

φH |{ξi:1≤i≤`} that preserves the order, at least one of which yields an action H ′ on Sg′ (for

some g′ > g). A weak conjugacy class associated with this action is encoded by a split

metacyclic data set of genus g′ and degree 2n+2 = 4 · 2n, which has one of the following

forms

((4 · 2n,−1), g0; [(c11, n11), (c12, n12), n1], . . . , [(c`1, n`1), (c`2, n`2), n`])

or

(4 · 2n,−1), g0; [(c11, n11), (c12, n12), n1], . . . , [(c′`1, n′`1), (c′`2, n′`2), n`]),

where c′`1 4
n′
`1
≡ c`1

4
n`1

+ 2 (mod 4) and c′`2 2n
n′
`2
≡ c`2

2n
n`2

+ 2n−1 (mod 2n). Further, since

ker q ∼= Z2 and q preserves the orders of all x ∈ H ′ \ ker q, it follows that ker q acts freely

on Sg′ . Hence, it follows that g′ = 2g − 1 and further by Remark 5.2.1, both (possible)

tuples cannot contain a triple of the type [(1, 2), (1, 2), 2].

Conversely, if there exists a quaternionic data set D of genus g′ = 2g − 1 as in

Definition 5.2.2. Then we obtain an epimorphism φH′ : πorb1 (OH′)→ H ′ which preserves

the order of torsion elements, when composed with canonical projection q : H ′ → H, yields

an epimorphism φH : πorb1 (OH)→ H which preserves the order of torsion elements, where
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πorb1 (OH′) = πorb1 (OH). Further, as D does not contain a triple of type [(1, 2), (1, 2), 2],

ker q acts freely on Sg′ , thereby yielding an action of Q2n+1 on Sg, where g′ = 2g − 1.

Remark 5.2.4. A crucial step in the proof (of Proposition 5.2.3) is the establishment

of the fact that the canonical projection q : Z2n o−1 Z4 → Q2n+1 is order-preserving on

(Z2n o−1 Z4) \ ker q. However, it is interesting to note that this fact does not generalize

to arbitrary metacyclic groups [23] arising as quotients of split metacyclic groups. This

motivates the study of finite non-split metacyclic actions on surfaces, which we plan to

undertake in future works.

Example 5.2.5. The split metacyclic data set in Example 4.3.4 is quaternionic. Hence,

this represents the weak conjugacy class of an induced Q8-action on S3.

5.2.2 Lifting arbitrary non-split metacyclic groups

In the following proposition (which follows directly from Theorem 4.3.3), we provide

necessary and sufficient conditions for lifting non-split metacyclic groups to split metacyclic

groups under regular cyclic covers.

Proposition 5.2.6. Let pν : Sν(g−1)+1 → Sg be a regular cyclic cover, and let H =

〈F,G〉 < Mod(Sg) be a finite non-split metacyclic group such that H ∼=M(u, n, r, k) and

the weak conjugacy class (H, (G,F )) encoded by the data set

D = ((u · n, r, k), g0; [(c11, n11), (c12, n12), n1], . . . , [(c`1, n`1), (c`2, n`2), n`]).

Then H lifts under pν to a split metacyclic group H̃ = 〈F̃ , G̃〉 < Mod(Sv(g−1)+1) such that

H̃ ∼=M(νu, n, n, k) ∼= Zn ok Zνu if and only if

(i) ν = n/r and

(ii) the weak conjugacy class (H̃, (G̃, F̃ )) is encoded by the data set

D̃ = ((m · n, n, k), g0; [(c′11, n
′
11), (c′12, n

′
12), n1], . . . , [(c′`1, n′`1), (c′`2, n′`2), n`]),

where m = un
r
, c′i1 m

n′i1
≡ ci1

m
ni1

+ aiu (mod m) and c′i2 n
n′i2
≡ ci2

n
ni2
− air (mod n), for

some ai ∈ Z.

An immediate consequence of Proposition 5.2.6 is the following.
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Corollary 5.2.7. The actions on Sg of the metacyclic groups Dicn, Dicn × Zm, and

Dicn × Zm × Zp, where n is even and m, p are odd with gcd(p, n) = 1, factor via split

metacyclic actions.

Proposition 5.2.6 and Corollary 5.2.7 motivate the following conjecture.

Conjecture 5.2.8. Every non-split metacyclic action on Sg lifts under a suitably chosen

finite regular cyclic cover to a split metacyclic action.

5.3 Lifting cyclic subgroups of mapping classes to

metacyclic groups
For n, g ≥ 2, let p : Sg̃ → Sg be a covering map (that is possibly branched) with deck

transformation group 〈F〉 ∼= Zn.

Remark 5.3.1. From the Birman-Hilden theory [6], we have the exact sequence

1→ 〈F 〉 → SModp(Sg̃)→ LModp(Sg)→ 1. (B)

Let G ∈ Mod(Sg) be of finite order. Then G ∈ LModp(Sg) if and only if G has a lift

G̃ ∈ SModp(Sg̃) of finite order so that the sequence (B) yields a sequence of the form

1→ 〈F 〉 → 〈F, G̃〉 → 〈G〉 → 1.

Thus, G ∈ LModp(Sg) if and only if for any lift G̃ of G, 〈G〉 lifts under p to a metacyclic

group 〈F, G̃〉.

Proposition 5.3.2. For g, n ≥ 2, let p : Sn(g−1)+1 → Sg be a regular cover with deck

transformation group 〈F〉 ∼= Zn. Then any involution G′ ∈ Mod(Sg) has a conjugate

G ∈ LModp(Sg) with a lift G̃ ∈ SModp(Sn(g−1)+1) such that 〈F, G̃〉 ∼= D2n.

Proof. Let G′ ∈ Mod(Sg) be an involution. When G ′ generates a free action on Sg, it

is easy to see that (〈F, G̃〉, (G̃, F )) represents a weak conjugacy class in Mod(Sn(g−1)+1)

with 〈F, G̃〉 ∼= D2n. Now, we assume that G ′ generates a non-free action with DG′ =

(2, g0; ((1, 2), t)). By Theorem 4.3.3 and Remark 5.3.1, it suffices to show that there exists

a dihedral data set D of degree 2 ·n and genus n(g−1)+1 representing the weak conjugacy
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class of (〈F, G̃〉, (G̃, F )). When g0 ≥ 1, we take D to be the tuple

((2 · n,−1), g0; [(1, 2), (0, 1), 2], . . . , [(1, 2), (0, 1), 2])︸ ︷︷ ︸
t times

,

and when g0 = 0, t ≥ 4, and so we take D to be the tuple

((2 · n,−1), 0; [(1, 2), (0, 1), 2], . . . , [(1, 2), (0, 1), 2]︸ ︷︷ ︸
t−2 times

,

[(1, 2), (1, n), 2], [(1, 2), (1, n), 2]).

It is an easy computation to check that D satisfies conditions (i)-(iv) of Definition 4.2.7

in both cases. When g0 = 0, taking v = 1,

(p1, . . . , pt) = (1, 0, . . . , 0), and (q1, . . . , qt) = (0, . . . , 0, 1, 1, 0)

we obtain condition (v). Moreover, when g0 = 1, we take v = 1,

(p1, . . . , pt) = (1, 0, . . . , 0), and (q1, . . . , qt) = (0, . . . , 0),

thereby verifying condition (vi). Thus, we have shown that D is a dihedral data set as

desired. Finally, it follows from Theorem 4.3.3 that D encodes the weak conjugacy class

of (〈F, G̃〉, (G̃, F )).

Note that the same Z2-action can lift to multiple non-isomorphic groups under a regular

cyclic cover. We illustrate this phenomenon in the following example.

Example 5.3.3. Let p : S5 → S2 be a regular 4-sheeted cover with deck transformation

group 〈F〉 ∼= Z4 as illustrated in Figure 5.1 below. The involution G ∈ Mod(S2) with

DG = (2, 1; (1, 2), (1, 2)) has two distinct lifts G̃1, G̃2 ∈ SModp(S5) (as indicated) such

that 〈F, G̃1〉 ∼= D8 and 〈F, G̃2〉 ∼= Z2 × Z4. Note that the weak conjugacy class of

(〈F , G̃1〉, (G̃1,F)) is represented by

((2 · 4,−1), 1; [(1, 2), (0, 1), 2], [(1, 2), (0, 1), 2]).
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F

G̃2

π
2

π

G̃1

π

FG̃1 π

Figure 5.1: Two distinct lifts G̃1, G̃2 ∈ SMod(S5) of an involution G ∈ Mod(S2). Note
that G̃1 has four fixed points, while G̃2 has eight fixed points.

The following proposition provides a sufficient condition for the liftability of Zm-actions

whose corresponding orbifolds are spheres with a cone point of order m.

Proposition 5.3.4. For g, n ≥ 2, let p : Sn(g−1)+1 → Sg be a regular n-sheeted cover

with deck transformation group 〈F〉 ∼= Zn. Let G′ ∈ Mod(Sg) be of order m such

that DG′ = (m, 0; (c1,m1), . . . , (c`,m`)) with m` = m (say). Then G′ has a conjugate

G ∈ LModp(Sg) with a lift G̃ ∈ SModp(Sn(g−1)+1) such that 〈F, G̃〉 ∼= Zn ok Zm if the

following conditions hold.

(a) There exists a1, . . . , a`−1 ∈ Z, and k ∈ Z×n , km ≡ 1 (mod n) such that

`−1∑
i=1

ai(kci
m
mi − 1)

`−1∏
s=i+1

kcs
m
ms ≡ 0 (mod n).

(b) For 1 ≤ i ≤ ` − 1, there exists di, ni ∈ Z such that gcd(di, ni) = 1, ni | n,

di
n
ni
≡ ai(kci

m
mi − 1) (mod n), and

lcm(n1, n2, . . . , n`−1) = n.

Proof. By Theorem 4.3.3 and Remark 5.3.1, it suffices to show that the tuple

D = ((m · n, k), 0; [(c1,m1), (d1, n1),m1], . . . ,

[(c`−1,m`−1), (d`−1, n`−1),m`−1], [(c`,m`), (0, 1),m`])
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forms a split metacyclic data set of genus n(g− 1) + 1 that represents the weak conjugacy

class of (〈F, G̃〉, (G̃, F )) for some lift G̃ of G under p. It can be verified easily that D

satisfies conditions (i)-(iii) of Definition 4.2.7, and further, condition (iv) follows from

condition (a) in our hypothesis. By taking v = 1, (p1, . . . , p`) = (0, . . . , 0, w) such that

wc` ≡ 1 (mod m), we see that condition (v)(a) holds. Finally, condition (v)(b) follows

from condition (b) in our hypothesis, and our assertion follows.

Using similar arguments, we can show the following.

Proposition 5.3.5. For g, n ≥ 2, let p : Sn(g−1)+1 → Sg be a regular n-sheeted cover

with deck transformation group 〈F〉 ∼= Zn. Let G′ ∈ Mod(Sg) be of order m such that

DG′ = (m, 0; (c1,m1), . . . , (c`,m`)) with mi 6= m, for 1 ≤ i ≤ `. Then G′ has a conjugate

G ∈ LModp(Sg) with a lift G̃ ∈ SModp(Sn(g−1)+1) such that 〈F, G̃〉 ∼= Zn ok Zm if the

following conditions hold.

(i) There exists a1, . . . , a` ∈ Z, and k ∈ Z×n , km ≡ 1 (mod n) such that

∑̀
i=1

ai(kci
m
mi − 1)

∏̀
s=i+1

kcs
m
ms ≡ 0 (mod n).

(ii) There exists (p1, . . . , p`v), (q1, . . . , q`v) ∈ Z`v and v ∈ N such that condition (v)(b) of

Definition 4.2.7 holds, where for 1 ≤ i ≤ `, we have

ci1
m

ni1
≡ ci

m

mi

(mod m) and ci2
n

ni2
≡ ai(kci

m
mi − 1) (mod n).

A consequence of Propositions 5.3.4-5.3.5 is the following.

Corollary 5.3.6. For g ≥ 2 and prime n, let p : Sn(g−1)+1 → Sg be a regular n-sheeted

cover with deck transformation group 〈F〉 ∼= Zn. Let G′ ∈ Mod(Sg) be of order m such

that the genus of O〈G′〉 is zero. Then G′ has a conjugate G ∈ LModp(Sg) with a lift

G̃ ∈ SModp(Sn(g−1)+1) such that 〈F, G̃〉 ∼= Zn ok Zm if there exists k ∈ Z×n such that

|k| = m.

Proof. Let DG′ = (m, 0; (c1,m1), . . . , (c`,m`)). First, let us assume (without loss of

generality) that m` = m. By choosing

(a1, . . . , a`−1) = (0, . . . , 0, 1,−(kc`−2
m

m`−2 − 1) · kc`−1
m

m`−1 · (kc`−1
m

m`−1 − 1)−1),
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we see that condition (i) of Proposition 5.3.4 holds true. Moreover, since |k| = m, we have

gcd((kc`−2
m

m`−2 − 1), n) = 1, and so condition (ii) also holds, and our assertion follows.

Similarly, for the case when each mi < m for 1 ≤ i ≤ `, the result follows by taking

(a1, . . . , a`) = (0, . . . , 0, 1,−(kc`−1
m

m`−1 − 1) · kc`
m
m` · (kc`

m
m` − 1)−1),

and applying Proposition 5.3.5.
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CHAPTER 6

APPLICATIONS

In this chapter, we will derive several applications to our main theorem.

6.1 Bound on the order of a non-split metacyclic ac-

tion
In this section, we derive a realizable bound for the order of a non-split metacyclic

subgroup of Mod(Sg).

We recall Dicn :=M(2, 2n, n,−1) the dicyclic group of order 4n. We will now derive

a realizable bound on the order of a finite non-split metacyclic subgroup of Mod(Sg).

Proposition 6.1.1. Suppose that H < Mod(Sg) is a finite non-split metacyclic group.

Then |H| ≤ 4g and this bound is realized when g is even and H ∼= Dicg.

Proof. We will show that ifH < Mod(Sg) such that |H| > 4g, thenH cannot be a non-split

metacyclic group. If Γ(OH) = (g0;n1, n2, . . . , n`), then H satisfies the Riemann-Hurwitz

equation:
2g − 2
|H|

= 2g0 − 2 +
∑̀
i=1

(
1− 1

ni

)
.

When |H| > 4g, we have

2g0 − 2 +
∑̀
i=1

(
1− 1

ni

)
= 2g − 2
|H|

<
2g − 2

4g = g − 1
2g <

1
2 , (6.1.2)

from which it follows that g0 = 0 and ` = 3 or 4.

From Proposition 3.4.5, if g0 = 0, ` = 3, and there is a cone point of prime order,

then H cannot be a non-split metacyclic group. So, by Equation (6.1.2), when H is

a non-split metacyclic group with |H| > 4g, the possible signatures for πorb1 (OH) are
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(0; 2, 2, 3, 3), (0; 2, 2, 3, 4), (0; 2, 2, 3, 5), (0; 2, 2, 2, n), (0; 4, 4, n), (0; 4, 6, 6), (0; 4, 6, 8), (0; 4, 6, 9),

and (0; 4, 6, 10), where n < 2g. We will now show that none of these signatures will arise

from a non-split metacyclic action.

Assume that H is a metacyclic group. Then H = 〈F,G〉, where F ∈ Homeo+(Sg)

with O〈F〉 ≈ Sh,b and Ḡ ∈ Homeok(D〈F〉). From Remark 5.1.2, we have that Γ(O〈Ḡ〉) =

(0;m1,m2, . . . ,m`), where mi | ni. First, we will consider the case when ` = 4. If h 6= 0,

from Proposition 2.2.3, it follows that Γ(O〈Ḡ〉) equals either (0; 2, 2, 3, 3) or (0; 2, 2, 2, 2).

Thus, F either generates a free action or Γ(O〈F〉) = (1; n2 ). But, by Proposition 2.2.3 and

Corollary 5.1.3, we can see that neither of these possibilities occur when H is a non-split

metacyclic group. If h = 0, then Γ(O〈Ḡ〉) = (0;u, u), where u ∈ {2, 3}. Again, from

Remark 5.1.2, we see that Γ(O〈F〉) equals one of (0; 2, 2, 2, 2, 2, 2), (0; 3, 3, 3, 3), (0; 3, 3, 4, 4),

(0; 2, 2, 2, 3, 3), (0; 3, 3, 5, 5), (0; 2, 2, n, n), or (0; 2, 2, 2, 2, n/2). Hence, either H is a split

metacyclic group or |H| ≤ 4g. This completes our argument for ` = 4.

Now, for ` = 3, if h 6= 0, from Proposition 2.2.3, we get Γ(O〈Ḡ〉) equals either (0; 2, 4, 4)

or (0; 2, 3, 6). This implies that Γ(O〈F〉) equals one of (1; n2 ,
n
2 ), (1; 2, 2, 2, 2, 2), (1; 2, 3, 3), or

(1; 2, 2, 2, 3, 3). Then Proposition 2.2.3 would imply that the final three signatures are not

possible for cyclic actions. Moreover, by following the argument used in the proof of Corol-

lary 5.1.3, we can conclude that the first signature corresponds to a split metacyclic action.

If h = 0, then Γ(O〈Ḡ〉) = (0;u, u), where u ∈ {2, 3, 4, 6} and Γ(O〈F〉) equals one of signa-

tures (0; 2, 2, n, n), (0; 2, 4, 4, n2 ), (0;n, n, n, n), (0; 4, 4, 4, 4, n4 ), (0; 2, 3, 6, 6), (0; 3, 3, 4, 4),

(0; 2, 2, 4, 4, 4), (0; 4, 4, 4, 4, 4, 4), (0; 2, 3, 8, 8), (0; 3, 4, 4, 4), (0; 2, 4, 6, 6), (0; 2, 6, 6, 6, 6),

(0; 2, 3, 9, 9), (0; 2, 3, 4, 4, 4), (0; 2, 3, 10, 10), (0; 3, 4, 4, 5), or (0; 2, 5, 6, 6). By similar argu-

ments as before, we can conclude that Γ(O〈F〉) equals either (0;n, n, n, n) or (0; 2, 2, n, n)

(as other signatures either do not correspond to a cyclic action or to a metacyclic action

such that |H| > 4g on Sg). Furthermore, from the arguments in the proof of Corol-

lary 5.1.3, it follows that the signature (0;n, n, n, n) corresponds to a split metacyclic

action. For the signature (0; 2, 2, n, n), the fact that |H| > 4g implies n is odd. Thus,

we have |H| = 4n, where n is odd with |Ḡ| = 2, which would imply that H is a split

metacyclic group. This concludes the argument for this case.

For the realization of the bound, when H ∼= Dicg and g is even, we can see that data
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set

D = ((2 · 2g, g,−1), 0; [(1, 4), (0, 1), 4], [(1, 4), (1, 2g), 4], [(0, 1), (2g − 1, 2g), 2g])

represents the weak conjugacy class of (H, (G,F)).

An immediate consequence of Proposition 6.1.1 is the following.

Corollary 6.1.3. Suppose that H < Mod(Sg) is a finite non-split metacyclic group. Then

there exists no irreducible periodic mapping class in H.

Proof. Since |H| ≤ 4g and H is non-split, we have |F | ≤ 2g for any F ∈ H. Our assertion

now follows from the fact that the order of any irreducible periodic mapping class is at

least 2g + 1.

Corollary 6.1.3 further yields the following.

Corollary 6.1.4. Suppose that H = 〈F,G〉 < Mod(Sg) is a finite non-split metacyclic

group.

(i) If g = 2, then |F | ≤ 2g, |G| ≤ 2g, and |Ḡ| ≤ g. Moreover, these bounds are realized

when H ∼= Q8.

(ii) If g > 2, then |F | ≤ 2g, |G| ≤ 2g − 2, and |Ḡ| ≤ g − 1. Moreover, the bound on |F |

is realized when H ∼= Dicg, where g is even, while the bounds on |G| and |Ḡ| are

realized when H ∼= Q8 × Z g−1
2
, where g ≡ 3 (mod 4).

Proof. From Corollary 6.1.3, we have that |F |, |G| ≤ 2g. Also, as |Ḡ| < |G|, from

Lemma 4.1.2, we have |Ḡ| ≤ g. Hence, the assertion in (i) follows immediately from

Proposition 6.1.1.

Furthermore, by Proposition 6.1.1, the bound 4g on |H| is realized when H ∼= Dicg
and g is even. It is apparent that |F | = 2g in H, which realizes the required bound in

the first part of (ii). Moreover, from the proof of Proposition 6.1.1 it is apparent that

Dicg does not realize the bounds for |G| and |Ḡ|. However, it can be easily seen that the

bounds on |G| and |Ḡ| are realized when H ∼= Q8 × Z g−1
2

with the weak conjugacy class

(H, (G,F )) represented by the metacyclic data set

(((g − 1) · 4, 2,−1), 1; [(0, 1), (1, 2), 2]).
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We conclude this section with the following application of Corollary 6.1.3.

Corollary 6.1.5. Let p : Sg → S0,3 be a finite n-sheeted cover with deck transformation

group 〈F〉 ∼= Zn, where DF = (n, 0; (c1, n1), (c2, n2), (c3, n3)). If Ḡ ∈ LModp(S0,3) lifts

to a G ∈ SModp(Sg), then H = 〈F,G〉 is a split metacyclic group such that either

H ∼= Zn ok Z2 or H ∼= Zn ok Z3. Furthermore, a G′ ∈ Mod(S0,3) of order m has a

conjugate G ∈ LModp(S0,3) that lifts under p if and only if one of the following conditions

hold.

(a) DF = (n, 0; (c1, n1), (c2, n), (c2k, n)) for some k ∈ Z×n such that k2 ≡ 1 (mod n).

(b) DF = (n, 0; (c1, n), (c1k, n), (c1k
2, n)) for some k ∈ Z×n such that k3 ≡ 1 (mod n).

Proof. Since F is an irreducible mapping class, from Corollary 6.1.3, it follows that H

is a split metacyclic group. For proving the second part of the corollary, suppose that

G′ ∈ Mod(S0,3) has a conjugate G ∈ LModp(S0,3) with a lift G̃ ∈ SModp(Sg) such that

H = 〈F, G̃〉 ∼= Zn ok Zm.

First, we claim that the ni, for 1 ≤ i ≤ 3, are not distinct. We assume on the contrary

that the ni, for 1 ≤ i ≤ 3, are indeed distinct. Since G ′ ∈ Homeok(D〈F〉) and |G ′| > 1, it

has to fix all three cone points of O〈F〉, which contradicts the fact that any nontrivial

automorphism of the sphere has exactly two fixed points. Thus, the following two cases

arise.

Case 1: n2 = n3 = n 6= n1. In this case, G ′ fixes the cone point, say of order n1,

and should permute the remaining 2 cone points of orders n2 and n3. This implies that

DF takes the form in condition (a) in our hypothesis (by Definition 4.1.1), and hence

H = 〈F, G̃〉 ∼= Zn ok Z2.

Case 2: ni = n, 1 ≤ i ≤ 3. In this case, if G ′ permutes all the three cone points cyclically,

then DF takes the form in condition (b) in our hypothesis, and hence H ∼= Zn ok Z3.

Alternatively, G ′ could also fix a cone point of order n and permute the remaining 2 cone

points, in which case, DF will take the form in condition (a). Here, note that H ∼= Z2n.

Conversely, let DF = (n, 0; (c1, n1), (c2, n), (c2k, n)) for some k ∈ Z×n such that k2 ≡ 1

(mod n). Up to conjugacy, let G ′ ∈ Homeok(D〈F〉) be an involution so that G ′ maps the

cone point represented by (c2, n) to the cone point represented by (c2k, n). To prove our
68



6.1. Bound on the order of a non-split metacyclic action

assertion, it would suffice to show the existence of an involution G ∈ Homeo+(Sg) that

induces G ′. This amounts to showing that there exists a split metacyclic data setD of degree

2·n with twist factor k encoding the weak conjugacy class (H, (G,F)) so thatDG has degree

2. Consider the tuple ((2 ·n, k), 0; [(1, 2), (0, 1), 2], [(1, 2), (n− c2, n), 2n1], [(0, 1), (c2, n), n]).

A simple computation would reveal that conditions (i) - (iv) of Definition 4.2.7 hold true.

Condition (v) is true by taking v = 1, (p1, p2, p3) = (1, 0, 0) and (q1, q2, q3) = (0, 0, w) such

that wc2 ≡ 1 (mod n), which proves our claim.

For the case when DF = (n, 0; (c1, n), (c1k, n), (c1k
2, n)) for some k ∈ Z×n such that

k3 ≡ 1 (mod n), let G ′ ∈ Homeok(D〈F〉) be of order 3 so that for 1 ≤ i ≤ 2, G ′i maps the

cone point represented by (c1, n) to the cone point represented by (c1k
3−i, n). By similar

argument as above, we can show that the tuple ((3 · n, k), 0; [(1, 3), (0, 1), 3], [(2, 3), (n−

c1, n), 3], [(0, 1), (c1, n), n]) forms a split metacyclic data set of degree 3 ·n with twist factor

k.

Example 6.1.6. For i = 1, 2, consider the branched cover p : S3 → O〈Fi〉(≈ S0,3),

where DF1 = (8, 0; (1, 4), (1, 8), (5, 8)) and DF2 = (8, 0; (3, 4), (3, 8), (7, 8)). Then (up to

conjugacy) the order 2 mapping class G ∈ LModp(S0,3) represented by an automorphism

G ∈ Homeo5(D〈Fi〉), that permutes two cone points of order 8 and fixes order 4 cone

point, lifts to a G̃ ∈ SModp(S3) with DG̃ = (2, 1; ((1, 2), 4)) such that 〈Fi, G̃〉 ∼= Z8 o5 Z2.

Moreover, the weak conjugacy class of (〈Fi, G̃〉, (G̃,Fi)), for i = 1, 2, is encoded by

((2 · 8, 5), 0; [(1, 2), (0, 1), 2], [(1, 2), (7, 8), 8], [(0, 1), (1, 8), 8]) and

((2 · 8, 5), 0; [(1, 2), (0, 1), 2], [(1, 2), (1, 8), 8], [(0, 1), (7, 8), 8]),

respectively.
G
π

(1, 8)
(1, 4)

(1, 4)

(5, 8)

G
π

(3, 8)
(3, 4)

(3, 4)

(7, 8)

Figure 6.1: The realizations of two distinct Z8 o5 Z2-actions on S3.
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The geometric realization of these actions is illustrated in Figure 6.1 above, where

for each i, the action Fi is realized by the rotation of a polygon of type PFi described in

Theorem 2.3.1.

6.2 Infinite metacyclic subgroups of Mod(Sg)
An infinite metacyclic group that is isomorphic to Zo−1 Z2m admits a presentation of the

form

〈x, y | y2m = 1, y−1xy = x−1〉. (6.2.1)

In this section, we give an explicit construction of an infinite metacyclic subgroup iso-

morphic to Z o−1 Z2m of Mod(Sg). Let Tc ∈ Mod(Sg) denote the left-handed Dehn twist

about a simple closed curve c in Sg. A root of Tc of degree s is an F ∈ Mod(Sg) such

that F s = Tc. In the following lemma, by using some basic properties of Dehn twists [15,

Chapter 3], we show that a root of Dehn twist cannot generate an infinite split metacyclic

group that admits a presentation as in (6.2.1).

Lemma 6.2.2. For g ≥ 2, no root of Tc is a generator of any infinite split metacyclic

subgroup of Mod(Sg) that is isomorphic to Z o−1 Z2m.

Proof. Let F be a root of Tc of degree s. Suppose we assume on the contrary that for

some g ≥ 2, there exists an infinite split metacyclic subgroup H ∼= Zo−1 Z2m of Mod(Sg)

that admits the presentation

H = 〈F,G |G2m = 1, G−1FG = F−1〉.

First, we consider the case when s = 1, that is, F = Tc. Then we have that

G−1TcG = T−1
c =⇒ TG−1(c) = T−1

c ,

which is impossible. Thus, we have that H 6= 〈G, Tc〉, which contradicts our assumption.

For s > 1, suppose that H = 〈F,G〉. Then the subgroup 〈F s, G〉 of H would also be

an infinite metacyclic group. Since F s = Tc, this would contradict our conclusion in the

previous case, and so our assertion follows.

By a multitwist in Mod(Sg), we mean a finite product of powers of commuting Dehn

twists. In view of Lemma 6.2.2, a natural question that arises is whether a multitwist in
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Mod(Sg) can generate an infinite metacyclic group. In the following examples, we answer

this question in the affirmative.

Example 6.2.3. Let F ′ ∈ Mod(S2) be of order 3 with

DF ′ = (3, 0; ((1, 3), 2), ((2, 3), 2)).

First, we note that F ′ has four fixed points on S2. Further, it induces a local rotation

angle of 2π/3 around two of these points (corresponding to the two (1, 3) pairs in DF ′)

and rotation angle of 4π/3 around the remaining two points (corresponding to the two

(2, 3) pairs in DF ′), as indicated in Figure 6.2. Considering this action on two distinct

copies of S2, we remove invariant disks around a distinguished (1, 3)-type fixed point and

a distinguished (2, 3)-type fixed point in each of the two copies. We now attach two annuli

connecting the resulting boundary components across the two surfaces so that:

(a) each annulus connects a pair of boundary components where the induced rotation

angle is the same, as shown in Figure 6.2 below, and further,

(b) the annulus connecting the boundary components with rotation 4π/3 (with the

nonseparating curve c) has a 1/3rd twist, while the other (with the nonseparating

curve d) has a −1/3rd twist.

(1, 3)
c

d
(2, 3)

(1, 3)

(2, 3)

(1, 3) (1, 3)

(2, 3) (2, 3)

π G

Figure 6.2: Realization of an infinite dihedral subgroup of Mod(S5).

Thus, by applying the theory developed in [43], we obtain an F ∈ Mod(S5), which is a

root of the bounding pair map TcT
−1
d of degree 3. Now, we consider the hyperelliptic

involution G ∈ Mod(S5) with DG = (2, 0; ((1, 2), 12)) (also indicated in Figure 6.2). By

our construction, it follows that G−1FG = F−1, and so we have 〈F,G〉 ∼= Z o−1 Z2.
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Example 6.2.4. Let F ′ ∈ Mod(S5) be of order 3 with

DF ′ = (3, 1; ((1, 3), 2), ((2, 3), 2)).

First, we note that F ′ has four fixed points on S5. Furthermore, it induces a local rotation

angle of 2π/3 around two of these points (corresponding to the two (1, 3) pairs in DF ′)

and rotation angle of 4π/3 around the remaining two points (corresponding to the two

(2, 3) pairs in DF ′), as indicated in Figure 6.3. Considering this action on two distinct

copies of S5, we remove invariant disks around all fixed point in each of the two copies.
G

π
2

(1, 3)
(1, 3)(1, 3)

(2, 3)
(2, 3) (2, 3)

(1, 3)
(1, 3)

(1, 3)(2, 3)

(2, 3)

(2, 3)

c1c2

c3 c4
(1, 3)

(1, 3)

(1, 3)
(2, 3)

(2, 3)

(2, 3)

(1, 3)
(1, 3) (1, 3)(2, 3) (2, 3)

(2, 3)

Figure 6.3: Realization of an infinite metacyclic subgroup of Mod(S13).

We now attach four annuli connecting the resulting boundary components across the

two surfaces so that:

(a) each annulus connects a pair of boundary components where the induced rotation

angle is the same, as shown in Figure 6.3 below, and further,
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(b) the annulus connecting the boundary components with rotation 4π/3 (with the non-

separating curve c1 and c3) has a 1/3rd twist, while the other (with the nonseparating

curve c2 and c4) has a −1/3rd twist.

Thus, by applying the theory developed in [43], we obtain an F ∈ Mod(S13), which is

a root of the multitwist Tc1T
−1
c2 Tc3T

−1
c4 of degree 3. Now, we consider a G ∈ Mod(S13)

with DG = (4, 4, 1; ) (also indicated in Figure 6.3). By our construction, as Z3 o−1 Z4 ∼=

〈F ′, G′〉 ≤ Mod(S5), where DG′ = (4, 2, 1; ), it follows that G−1FG = F−1, and so we have

〈F,G〉 ∼= Z o−1 Z4.

Generalizing the above all constructions in Example 6.2.3 and Example 6.2.4, we have the

following.

Proposition 6.2.5. For i = 1, 2, let Hi = 〈Fi, Gi〉 ≤ Mod(Sgi) with Hi
∼= Zn o−1 Z2m,

such that the weak conjugacy class (Hi, (Gi, Fi)) is represented by a split metacyclic data

set DHi containing a tuple [(0, 1), (ai, n), n]. Then there exists an infinite metacyclic

subgroup of Mod(Sg1+g2+2m−1) isomorphic to Z o−1 Z2m that is generated by a periodic

mapping class of order 2m and a root of a multitwist of degree n.

Proof. As DHi contains a tuple [(0, 1), (ai, n), n], by Proposition 4.3.1, we have

DF1 = (n, g0; (c1, n1), . . . , (cs, ns), (a1, n), (n− a1, n), . . . , (a1, n), (n− a1, n)︸ ︷︷ ︸
m times

)

and

DF2 = (n, g′0; (c′1, n′1), . . . , (c′t, n′t), (a2, n), (n− a2, n), . . . , (a2, n), (n− a2, n)︸ ︷︷ ︸
m times

).

Taking inspiration from the theory developed in [41, 43] and Examples 6.2.3-6.2.4, we

glue 2m annuli connecting the boundary components resulting from removing invariant

disks around the orbit points corresponding to the pairs (a1, n) and


(a2, n), if a2 6= n− a1, or

(n− a2, n), if a2 = n− a1.
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This yields a degree-n root F of a multitwist of the form


∏2m
i=1 T

(−1)i+1(a−1
1 +a−1

2 )
ci , if a2 6= n− a1, or∏2m

i=1 T
(−1)i+1(a−1

1 +(n−a2)−1)
ci , if a2 = n− a1,

where aia−1
i ≡ 1 (mod n) and a−1

1 + a−1
2 ∈ Zn. By considering the action G obtained

by performing a 2m-compatibility on G1 and G2 (see Section 2.3), we see that 〈F,G〉 ∼=

Z o−1 Z2m, as desired.

The group for m = 1 in the presentation of the infinite split metacyclic group of the

type in the Equation (6.2.1) is known as the infinite dihedral group. Here is the corollary,

which directly follows from Proposition 6.2.5.

Corollary 6.2.6. For g ≥ 5, there exists an infinite dihedral subgroup of Mod(Sg) that is

generated by an involution and a root of a bounding pair map of degree 3.
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