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ABSTRACT

It was known that the mapping class group of a surface is finitely generated,

but a presentation for this group was not known for many surfaces. To find

the presentation of the mapping class group of the genus 2 surface, Birman and

Hilden [6] used the covering map from the genus 2 surface to the 6-punctured

sphere to construct a homomorphism from the mapping class group of the genus

2 surface to the 6-punctured sphere. They realized that this theory could be

generalized in various ways, and they wrote a series of papers on the subject,

culminating in the paper On Isotopies of Homeomorphisms of Riemann Surfaces,

published in the Annals of Mathematics in 1973 [6].

In this thesis, we study the theory developed by Birman and Hilden. In

particular, we study the two main theorems from their paper. We also study the

construction of injective homomorphisms between the mapping class groups of

closed surfaces induced by the covering maps from the paper of Javier Aramayona,

Christopher J. Leininger, and Juan Souto [1].
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Chapter 1

Preliminaries

The universal cover of hyperbolic surfaces is the upper half-plane. We can use

properties of the isometry group of the upper half-plane to get important results

about hyperbolic surfaces. In this chapter, we state some results about the

hyperbolic surfaces, which will be used extensively throughout this thesis. These

results can be found in [15].

1.1 Surfaces

Definition 1.1. A surface 𝑆 is a second countable Hausdorff space such that

every point in 𝑆 has a neighborhood that is homeomorphic to an open set in ℝ2.

From here on, we will only consider connected and orientable surfaces. We say

a surface is closed if it is compact and does not have a boundary. The following

result classifies all the orientable surfaces topologically.

Theorem 1.2 (Classification of surfaces). Any closed, connected, and orientable

surface is homeomorphic to either the sphere or the connected sum of 𝑔 tori for

4



Figure 1.1: Surfaces of genus 1 and 3.

some positive integer 𝑔 > 0.

Suppose that 𝑆𝑔 denotes the closed surface of genus 𝑔 ≥ 1 and 𝑆0 denotes

the 2-sphere. The punctured surface obtained by removing 𝑛 points from the

interior of the surface 𝑆𝑔 will be denoted by 𝑆𝑔,𝑛. Similarly, the surface obtained

by removing 𝑏 open disks from the interior of the surface with pairwise disjoint

boundaries will be denoted by 𝑆𝑏
𝑔.

Definition 1.3. The Euler characteristic of a finite-dimensional CW-complex 𝐾

is

𝜒(𝐾) =
𝑛
∑
𝑖=0

(−1)𝑖#(𝑖 − 𝑐𝑒𝑙𝑙),

where 𝑛 is the dimension of 𝐾.

The Euler characteristic is a homotopy invariant (homotopic spaces have the same

Euler characteristic). The closed surface 𝑆𝑔 as a CW-complex can be constructed

from a 0-cell, 2𝑔-many 1-cells, and a 2-cell. Note that removing a disc introduces

one more 1-cell in CW-complex. Since removing a disk and removing a point

from a surface yields homotopically equivalent surfaces, we must have,

𝜒(𝑆𝑏
𝑔,𝑛) = 2 − 2𝑔 − 𝑛 − 𝑏.

If 𝑝 ∶ ̃𝑆 → 𝑆 is a 𝑘-sheeted cover, then a 𝑛-cell in 𝑆 lifts to 𝑘 𝑛-cells in ̃𝑆. Thus,

5



we have the following relation.

𝜒( ̃𝑆) = 𝑘𝜒(𝑆).

For a covering map, a continuous function 𝑓 ∶ 𝑌 → 𝐵 can be lifted to a

continuous function ̃𝑓 ∶ 𝑌 → 𝐸 if it satisfies the lifting criterion.

Proposition 1.4. Let 𝑝 ∶ 𝐸 → 𝐵 be a covering map with a base point 𝑝(𝑒0) = 𝑏0.

Let 𝑓 ∶ 𝑌 → 𝐵 be a continuous map, with 𝑓(𝑦0) = 𝑏0. Suppose 𝑌 is path connected

and locally path connected. The map 𝑓 can be lifted to an unique map ̃𝑓 ∶ 𝑌 → 𝐸

such that ̃𝑓(𝑦0) = 𝑒0 if and only if

𝑓∗(𝜋1(𝑌 , 𝑦0)) ⊂ 𝑝∗(𝜋1(𝐸, 𝑒0)).

We recall the following result from covering space theory [13] which will be used

extensively in the following chapters.

Proposition 1.5. Let ℎ, 𝑘 ∶ 𝑋 → 𝑌 be 2 homotopic maps such that ℎ(𝑥0) = 𝑦1

and 𝑘(𝑥0) = 𝑦2. Suppose ℎ∗ and 𝑘∗ are the homomorphisms of fundamental

groups induced by ℎ and 𝑘. Then we have 𝑘∗ = ̂𝛼 ∘ ℎ∗, where 𝛼 is the path from

𝑦1 to 𝑦2 induced by the homotopy between ℎ and 𝑘.

We also need the following fact in the exposition.

Theorem 1.6 (Isotopy extension property [9]). Let 𝑆 be any surface. If 𝐹 ∶

𝑆1 × [0, 1] → 𝑆 is a smooth isotopy of simple closed curves, then there is an

isotopy 𝐻 ∶ 𝑆 × [0, 1] → 𝑆 so that 𝐻|𝑆×0 is the identity and 𝐻|𝐹(𝑆1×0)×𝐼 = 𝐹.
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1.2 Isometries of upper-half plane

Let ℍ be the space of all complex numbers with the positive imaginary part. We

define a Riemannian metric 𝑑𝑠2 = 𝑑𝑥2+𝑑𝑦2

𝑦2 on ℍ. The upper half-plane model is

the space ℍ endowed with this metric. The orientation preserving isometries of

ℍ are given by

Isom+(ℍ) = {𝑎𝑧 + 𝑏
𝑐𝑧 + 𝑑

∶ 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℝ, 𝑎𝑑 − 𝑏𝑐 = 1} .

The group Isom+(ℍ) is isomorphic to PSL(2, ℝ). The one-point compactification

ℝ̂ = ℝ ∪∞ is known as the boundary at infinity of ℍ and is denoted by 𝜕ℍ. The

union ℍ ∪ 𝜕ℍ is denoted by ℍ. Also, any isometry 𝑓 ∶ ℍ → ℍ extends uniquely

to an homeomorphism ̄𝑓 ∶ ℍ → ℍ.

If 𝑓 ∈ Isom+(ℍ) is not the identity map, then ̄𝑓 has at most 2 fixed points.

The isometries of ℍ can be classified in the following way based on the number

of fixed points and their location on ℍ.

(i) Elliptic: If ̄𝑓 has exactly one fixed point in ℍ, then 𝑓 is said to be elliptic.

It can be seen as a rotation of ℍ about the fixed point.

(ii) Parabolic: If ̄𝑓 has only one fixed point and the point belongs to 𝜕ℍ, then

𝑓 is called parabolic. We can conjugate 𝑓 with an element of Isom+(ℍ) to

obtain a translation of ℍ of the form 𝑧 → 𝑧 ± 1.

(iii) Hyperbolic: If ̄𝑓 has 2 fixed points, both in 𝜕ℍ, then 𝑓 is called hyperbolic.

The map 𝑓 translates the unique geodesic joining the 2 fixed points. The

geodesic is called the axis of 𝑓.
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Hyperbolic isometry Parabolic isometry Elliptic isometry

Figure 1.2: Dirichlet domain, for hyperbolic, parabolic, and elliptic isometries.

1.3 Hyperbolic surfaces

Definition 1.7. A Fuchsian group is a discrete subgroup of PSL(2, ℝ).

Definition 1.8. If 𝐺 is a Fuchsian group, then an open subset 𝑅 ⊂ ℍ is called a

fundamental domain for 𝐺 if the following hold.

(i) 𝑔𝑅 ∩ 𝑅 = 𝜙, for all 𝑔 ∈ 𝐺 − {𝑖𝑑} and

(ii) for every 𝑧 ∈ ℍ, there exists 𝑔 ∈ 𝐺 such that 𝑔𝑧 ∈ �̄�.

We note that a fundamental domain is not unique. The Dirichlet domain gives

us a method of constructing a fundamental domain for a given Fuchsian group.

Definition 1.9. Let 𝐺 be a Fuchsian group and 𝑧0 ∈ ℍ such that ̃𝑧0 is not fixed

by any non-identity element of 𝐺. The Dirichlet domain with center 𝑧0 is defined

as

𝑅𝑧0 = ⋃
𝑔∈𝐺−{𝑖𝑑}

{𝑧 ∈ ℍ ∶ 𝑑ℍ(𝑧, 𝑧0) < 𝑑ℍ(𝑧, 𝑔𝑧0)} .

Example 1.10. Let 𝐺 = ⟨𝑇 ⟩ be a cyclic Fuchsian group. The Dirichlet domain

for 𝐺, depending on the type of 𝑇 up to conjugacy, is described in Figure 1.2.
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Definition 1.11. A surface endowed with a complete, finite-area Riemannian

metric of constant curvature −1 is called a hyperbolic surface. If the surface has

a non-empty boundary, then the geodesics in 𝜕𝑆 must be geodesics in 𝑆.

If a Fuchsian group 𝐺 acts freely on ℍ, then we have an induced hyperbolic

structure on the orbit space ℍ/𝐺.

Theorem 1.12. Let 𝑆 be a complete hyperbolic surface. Then 𝑆 is isometric to

ℍ/Γ, where Γ is a Fuchsian group acting freely on ℍ.

Since ℍ is simply connected and Γ is the deck group of the quotient map ℍ → ℍ/Γ,

we have the following corollary.

Corollary 1.12.1. The fundamental group of a hyperbolic surface is isomorphic

to a discrete subgroup of isometries of ℍ.

Remark 1.13. Since the deck group of cover ℍ → 𝑆, where 𝑆 is a hyperbolic

surface, acts freely on ℍ, 𝜋1(𝑆) can only have parabolic or hyperbolic isometries,

and hence 𝜋1(𝑆) is torsion-free.

Proposition 1.14. The center of the fundamental group of a hyperbolic surface

is trivial.

Proof. We identify the fundamental group as a discrete subgroup of isometries of

ℍ. The center of any group is abelian, and since it is a subgroup of a discrete

group, it is also discrete. Therefore, it is generated by a parabolic or hyperbolic

isometry. The center’s generator is either parabolic or hyperbolic because the

fundamental group is torsion-free. The Dirichlet domain corresponding to these

isometries has infinite area. Hence, the center must be trivial.
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Proposition 1.15. Let 𝑆 be a hyperbolic surface and 𝑔 ∈ 𝜋1(𝑆). If ℎ𝑛 = 𝑘𝑛 for

some ℎ, 𝑘 ∈ 𝜋1(𝑆) and positive integer 𝑛, then ℎ = 𝑘.

Proof. We identify 𝜋1(𝑆) with a Fuchsian group. Let ⟨ℎ, 𝑘⟩ be the discrete

subgroup of 𝜋1(𝑆). We observe that ℎ and 𝑘 have the same fixed points as that

of 𝑔. Thus, the subgroup ⟨ℎ, 𝑘⟩ is abelian and hence cyclic. Thus, ℎ = 𝑘.
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Chapter 2

Mapping Class Groups

In this chapter, we study mapping class groups of surfaces. After defining the

mapping class group of a surface, we explicitly compute it for some surfaces.

We also state a classical theorem relating the mapping class group to the auto-

morphisms of the fundamental group of a surface. This chapter is based on [9,

Chapter 2].

2.1 Definition of mapping class groups

Let 𝑆 = 𝑆𝑏
𝑔,𝑛 be an orientable surface of genus 𝑔 with 𝑛 punctures and 𝑏 boundary

components. Let Homeo+(𝑆, 𝜕𝑆) be the group of orientation-preserving self-

homeomorphisms of 𝑆 that restricts to identity on 𝜕𝑆. The group Homeo+(𝑆, 𝜕𝑆)

can be endowed with compact-open topology. Let Homeo+0 (𝑆, 𝜕𝑆) denote the

path component of Homeo+(𝑆, 𝜕𝑆) containing the identity element.

Since for any topological group, the path component of identity is a normal

subgroup, we have Homeo+0 (𝑆, 𝜕𝑆)CHomeo+(𝑆, 𝜕𝑆).

Definition 2.1. The mapping class group of surface 𝑆, denoted by Mod(𝑆), is

11



defined as

Mod(𝑆) ∶= Homeo+(𝑆, 𝜕𝑆)/Homeo+0 (𝑆, 𝜕𝑆). (2.1)

Definition 2.2. We say that 2 homeomorphisms 𝑓, 𝑔 ∶ 𝑋 → 𝑌 are isotopic if there

exists a continuous map 𝐻 ∶ 𝑋 × [0, 1] → 𝑌 such that the following conditions

hold.

(i) 𝐻(𝑥, 0) = 𝑓(𝑥) for all 𝑥 ∈ 𝑋,

(ii) 𝐻(𝑥, 1) = 𝑔(𝑥) for all 𝑥 ∈ 𝑋, and

(iii) the function 𝐻𝑡 ∶ 𝑋 → 𝑌 defined as 𝐻𝑡(𝑥) = 𝐻(𝑥, 𝑡) is a homeomorphism

for all values of 𝑡.

If 𝑓 and 𝑔 are isotopic, we will write 𝑓 ≃ 𝑔.

2.1.1 Mapping class groups and isotopy classes

For ℎ ∈ Homeo+0 (𝑆, 𝜕𝑆), there is a path in Homeo+(𝑆, 𝜕𝑆) from the identity to

ℎ, that is an isotopy between ℎ and identity fixing 𝜕𝑆 pointwise. Conversely,

if there exists an isotopy fixing 𝜕𝑆 pointwise exists between ℎ and the identity,

then it defines a path between ℎ and identity. Thus, the set Homeo+0 (𝑆, 𝜕𝑆)

can also be seen as the set of all homeomorphisms isotopic to the identity map

via an isotopy that fixes 𝜕𝑆 pointwise. Therefore, the mapping class group of a

surface can also be defined as the group of isotopy classes of orientation-preserving

homeomorphisms of 𝑆 that fixes 𝜕𝑆 pointwise.
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2.1.2 Equivalent definitions of mapping class groups

There are other possible ways of defining the mapping class group, for which we

will need the following facts.

Theorem 2.3 (Baer). If 2 orientation-preserving diffeomorphisms of a compact

surface 𝑆 are homotopic relative to 𝜕𝑆, then they are smoothly isotopic relative

to 𝜕𝑆.

Baer first proved the theorem in [3, 4] for closed surfaces, and for general surfaces

(not necessarily compact, and also possibly with boundary), it was proved by

Epstein in [8].

Theorem 2.4 (Munkres [12]). Every homeomorphism of a compact surface 𝑆

(relative to 𝜕𝑆) is isotopic to a diffeomorphism of 𝑆 (relative to 𝜕𝑆).

Let Diff+(𝑆, 𝜕𝑆) be the group of orientation-preserving diffeomorphisms of

𝑆 that are identity on the boundary, equipped with the compact-open topol-

ogy. Let Diff0(𝑆, 𝜕𝑆) be the path-component containing the identity and let

Homeo+(𝑆, 𝜕𝑆)/homotopy be the group of homotopy classes of orientation-

preserving homeomorphisms. From Theorems 2.3-2.4, we have the following

corollary.

Corollary 2.4.1. The following groups are isomorphic.

(i) Mod(𝑆),

(ii) Diff+(𝑆, 𝜕𝑆)/Diff0(𝑆, 𝜕𝑆), and

(iii) Homeo+(𝑆, 𝜕𝑆)/homotopy.
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The equivalent definitions allow us to freely switch between homeomorphisms

and diffeomorphisms or between isotopy and homotopy. In general, to exploit

the geometrical properties of surfaces, we will use diffeomorphisms, and to use

topological properties, we will use homeomorphisms.

Definition 2.5. LetHomeo(𝑆𝑔,𝑛) be the topological group of all self-homeomorphisms

of 𝑆𝑔,𝑛 and Homeo0(𝑆𝑔,𝑛) be the component of the identity element in topological

group Homeo(𝑆𝑔,𝑛). Then we can define the extended mapping class group of

𝑆𝑔,𝑛 as,

Mod(𝑆𝑔,𝑛) = Homeo(𝑆𝑔,𝑛)/Homeo0(𝑆𝑔,𝑛).

2.1.3 Punctures vs. marked points

If 𝑆 = 𝑆𝑔,𝑛 is a punctured surface, then it is more convenient to think of the

punctures as marked points on the surface 𝑆𝑔. A surface 𝑆 with 𝑛 marked points

will be denoted by (𝑆𝑔, ℬ), where ℬ is the set of 𝑛 marked points.

Let Homeo(𝑆,ℬ) be the group of homeomorphisms of 𝑆, which preserves

ℬ. Since 𝑆 is Hausdorff and 𝑆0 ∶= 𝑆 − ℬ is dense in 𝑆, any homeomorphism

in Homeo(𝑆0) extends uniquely to a homeomorphism in Homeo(𝑆,ℬ). Con-

versely, any homeomorphism in Homeo(𝑆,ℬ) restricts to a homeomorphism of

𝑆0. Thus, the group Homeo(𝑆,ℬ) is isomorphic to Homeo(𝑆0). Now, it follows

that Mod(𝑆,ℬ) ≅ Mod(𝑆0). Note that the isotopies in Mod(𝑆,ℬ) preserve ℬ.

2.2 Computation of mapping class groups

In this section, we will compute the mapping class group of some basic surfaces

like disk, annulus, and sphere with at most 3 punctures.

14



2.2.1 Mapping class group of the closed disk

Proposition 2.6 (Alexander Lemma). The mapping class group of a closed disk,

i.e., Mod(𝐷2), is trivial.

Proof. Let 𝑓 ∶ 𝐷2 → 𝐷2 be a homeomorphism that restricts to the identity on

𝜕𝐷2. Then

𝑓𝑡(𝑥) =
⎧
{
⎨
{
⎩

(1 − 𝑡)𝑓(𝑥/(1 − 𝑡)), 0 ≤ |𝑥| < 1 − 𝑡,

𝑥, 1 − 𝑡 ≤ |𝑥| ≤ 1
(2.2)

defines an isotopy between 𝑓 and the identity map fixing boundary pointwise.

Since every homeomorphism 𝑓𝑡 in Equation (2.2) fixes origin, the same isotopy will

also work for a punctured disk (disk with the center removed). Thus, Mod(𝑆1
0,1)

is also trivial.

2.2.2 Mapping class group of a punctured sphere

Lemma 2.7. Let 𝛼, 𝛽 be simple arcs on the 3-punctured sphere with distinct

endpoints. If 𝛼, 𝛽 have the same endpoints, then they are isotopic.

Proof. Since the once punctured sphere is homeomorphic to the plane, we can

take 𝛼, 𝛽 to be arcs between 2 points in the plane. If 𝛼, 𝛽 intersect, then there

exists an innermost disk bounded by subarcs of 𝛼, 𝛽. Then 𝛼 can be isotoped

across this disk to reduce the intersection number until 𝛼, 𝛽 are disjoint. Moreover,

their union is an embedded circle in the plane, which bounds a disk. Hence, they

are isotopic.

Proposition 2.8. The mapping class group of a 3-punctured sphere is isomorphic

to Σ3, the symmetric group on 3 letters.
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Proof. Suppose that ℎ ∈ Homeo+(𝑆0, {1, 2, 3}), then ℎ induces a permutation of

marked points (labelled 1,2, and 3). Since isotopic homeomorphism will induce the

same permutation of marked points, the mapping class [ℎ] corresponding to ℎ will

induce a permutation of marked points. We define a map 𝜓 ∶ Mod(𝑆0,3) → Σ3

which sends an element [ℎ] of Mod(𝑆0,3) to the permutation induced on the

three marked points. It is clear that 𝜓 is a homomorphism. Since Möbius

transformations act triply-transitively on the Riemann sphere, 𝜓 is surjective.

We want to show that 𝜓 is injective. Suppose that [ℎ] ∈ Mod(𝑆0,3) and ℎ fixes

3 marked points. Let 𝛼 be an arc connecting two different marked points. Then

ℎ(𝛼) and 𝛼 are the arcs with same endpoints. By Lemma 2.7, ℎ(𝛼) and 𝛼 are

isotopic. By Theorem 1.6, ℎ is isotopic to a homeomorphism fixing 𝛼 pointwise,

and so without loss of generality, we can assume that ℎ fixes 𝛼 pointwise.

Now cutting the surface along 𝛼 gives us a disk with one marked point. Since

ℎ is orientation-preserving, it induces an orientation-preserving homeomorphism

ℎ′ of the disk, which restricts to the identity map on the boundary. Hence, by

Alexander lemma, ℎ′ is isotopic to identity, and thus ℎ is isotopic to identity.

Corollary 2.8.1. For 𝑛 = 1, 2, 3, we have Mod(𝑆0,𝑛) ≅ Σ𝑛 for 1 ≤ 𝑛 ≤ 3, where

𝑆𝑛 is the symmetric group on 𝑛 letters.

Proof. We take map 𝜓 ∶ Mod(𝑆0,𝑛) → Σ𝑛 defined in the proof of Proposition 2.8.

It follows that 𝜓 is a surjective homomorphism. To prove injectivity, suppose

that ℎ ∶ 𝑆0,𝑛 → 𝑆0,𝑛 fixes punctures. Since the group of orientation-preserving

Möbius transformations of 𝑆0, i.e., PSL2(ℂ) acts transitively on the 𝑆0, we take

a 𝜙 ∈ PSL2(ℂ) such that ℎ ∘ 𝜙 fixes 3 points. Then ℎ is isotopic to ℎ ∘ 𝜙, as

PSL2(ℂ) is connected. From Proposition 2.8, we have ℎ ∘ 𝜙 is isotopic to identity.

Therefore, 𝜓 is injective.
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Corollary 2.8.2. The mapping class group of the sphere is trivial.

Proof. If ℎ is a homeomorphism of a sphere, then it is isotopic to a homeomorphism

fixing one point. Thus, ℎ restricts to a homeomorphism of the complex plane.

Since Mod(𝑆0,1) is trivial, we have ℎ is isotopic to identity map, and therefore

Mod(𝑆0) is trivial.

2.2.3 Mapping class group of the annulus

Proposition 2.9. The mapping class group of annulus 𝐴 = [0, 1] × 𝑆1 is infinite

cyclic.

Proof. The universal cover of 𝐴 is ̃𝐴 = [0, 1]×ℝ, with the covering map 𝑝 ∶ ̃𝐴 → ̃𝐴

given by 𝑝(𝑥, 𝑦) = (𝑥, 𝑒2𝜋𝑖𝑦). Let 𝜙 ∶ 𝐴 → 𝐴 be a homeomorphism of the annulus

that restricts to the identity on 𝜕𝐴 = {0, 1} × 𝑆1. Now 𝜙 ∘ 𝑝 ∶ ̃𝐴 → 𝐴 has a

unique lift ̃𝜙 ∶ ̃𝐴 → ̃𝐴 such that ̃𝜙 fixes origin. Let ̃𝜙1 denote the restriction of ̃𝜙

to {1} × ℝ,

𝑝|{1}×𝑆1 = 𝑝|{1}×𝑆1 ̃𝜙1.

Now observe that 𝑝|{1}×𝑆1 is the universal covering map from ℝ to 𝑆1 and ̃𝜙1 is a

deck transformation of this cover. Therefore, ̃𝜙1 is a translation by some integer

𝑛.

The homotopy lifting criterion (Proposition 1.4) implies that modifying 𝜙

by a homotopy change 𝑛 continuously, so 𝑛 is constant for homotopic maps

(since ℤ is discrete). Thus, we have a well-defined map 𝜌 ∶ Mod(𝐴) → ℤ given by

𝜌([𝜙]) = ̃𝜙1(0). It follows from the uniqueness of the lift that 𝜌 is a homomorphism.

First, we will prove that the homomorphism 𝜌 is surjective. For 𝑛 ∈ ℤ, let
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𝜙 ∶ 𝐴 → 𝐴 be the homeomorphism given by

𝜙(𝑥, 𝑒2𝜋𝑖𝑦) = (𝑥, 𝑒2𝜋𝑖(𝑛𝑥+𝑦)).

Then 𝜙 lift to ̃𝜙 given by ̃𝜙(𝑥, 𝑦) = (𝑥, 𝑛𝑥 + 𝑦). Then ̃𝜙 translate {1} × ℝ by 𝑛.

This proves that 𝜌 is a surjective.

Now we will show that 𝜌 is injective. Assume that 𝜙 ∶ 𝐴 → 𝐴 is in kernel of

𝜌. Then ̃𝜙 fixes (0,1). To prove injectivity, we must show that 𝜙 is isotopic to

the identity map. Let 𝛼 be the arc defined as 𝛼(𝑡) = (𝑡, 1). Then 𝛼 and 𝜙(𝛼) are

isotopic by an isotopy leaving 𝜕𝐴 pointwise fixed. Using the fact that cutting

𝐴 along 𝛼 gives us a disk, one obtains a homotopy between 𝜙 and the identity.

Hence, 𝜌 is an isomorphism, and therefore, Mod(𝐴) ≅ ℤ.

2.3 Dehn twist

Dehn twists are the simplest infinite-order mapping classes that can be studied

by looking at their action on closed curves on the surface. It is known [7] that

finitely many Dehn twists generate the mapping class group of a compact surface.

Let 𝐴 = 𝑆1 × [0, 1] be the annulus. Let 𝑇 ∶ 𝐴 → 𝐴 be the twist map 𝐴 given

by

𝑇 (𝜃, 𝑡) = (𝜃 + 2𝜋𝑡, 𝑡). (2.3)

observe that the map 𝑇 is orientation-preserving and restricts to identity on 𝜕𝐴.

Definition 2.10. Let 𝛼 be a simple closed curve in 𝑆. Let 𝑁 be a regular

neighborhood of 𝛼 and choose an orientation-preserving homeomorphism 𝜙 ∶

𝐴 → 𝑁. We obtain a homeomorphism 𝑇𝛼 ∶ 𝑆 → 𝑆, called a Dehn twist about 𝛼,
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defined as

𝑇𝛼(𝑥) =
⎧
{
⎨
{
⎩

𝜙 ∘ 𝑇 ∘ 𝜙−1(𝑥), 𝑥 ∈ 𝑁,

𝑥, otherwise.
(2.4)

Even though 𝑇𝛼 depends on the choice of 𝑁 and 𝜙, the isotopy class of 𝑇𝛼 does

not depend on these choices. Moreover, for two isotopic simple closed curves 𝛼

and 𝛽 the homoemorphisms 𝑇𝛼 and 𝑇𝛽 belongs to same isotopy class. Therefore,

𝑇𝑎 represents an element of Mod(𝑆), where 𝑎 is the isotopy class of 𝛼.

2.4 Birman exact sequence

For a punctured surface 𝑆, let (𝑆, 𝑥) denote the surface 𝑆 marked at point 𝑥 in

the interior of 𝑆. If [𝑓] ∈ Mod(𝑆, 𝑥), then 𝑓 is a homeomorphism of 𝑆 which fixes

𝑥. Thus, we can define a natural homomorphism 𝐹𝑜𝑟𝑔𝑒𝑡 ∶ Mod(𝑆, 𝑥) → Mod(𝑆)

by 𝐹𝑜𝑟𝑔𝑒𝑡([𝑓]) = [𝑓]. Here, for the sake of simplicity, we resort to the abuse of

notation. Note that the homotopies in the Mod(𝑆, 𝑥) fix the point 𝑥 while the

homotopies in Mod(𝑆) may not fix the point 𝑥.

For 𝛼 ∈ 𝜋1(𝑆, 𝑥), let 𝑎 be the representative of the homotopy class 𝛼. Since

the loop 𝑎 is an isotopy of points from 𝑥 to itself, by isotopy extension property,

we get an isotopy from identity to a homeomorphism 𝑓𝑎 of 𝑆 fixing 𝑥. The

isotopy class [𝑓𝑎] defines a mapping class in Mod(𝑆, 𝑥), which lies in the kernel

of 𝐹𝑜𝑟𝑔𝑒𝑡 map. Suppose [𝑓] is in the kernel of 𝐹𝑜𝑟𝑔𝑒𝑡. We have a loop 𝑎 traced

by 𝑥 under the isotopy from 𝑓 to identity, and thus we get [𝑎] ∈ 𝜋1(𝑆, 𝑥). Let

𝑃𝑢𝑠ℎ ∶ 𝜋1(𝑆, 𝑥) → Mod(𝑆, 𝑥) be the map 𝛼 ↦ [𝑓𝑎]. It can be shown that 𝑃𝑢𝑠ℎ

is well-defined [5]. Hence, we get the following short exact sequence known as
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the Birman-exact sequence.

Theorem 2.11. The sequence of groups and their homomorphisms,

1 → 𝜋1(𝑆, 𝑥)
𝑃𝑢𝑠ℎ
−−−→ Mod(𝑆, 𝑥)

𝐹𝑜𝑟𝑔𝑒𝑡
−−−−→ Mod(𝑆). (2.5)

is a short exact sequence.

We note that if 𝑆 is a closed surface, then Mod(𝑆, 𝑥) = Mod(𝑆𝑜), where 𝑆𝑜 =

𝑆 ⧵ {𝑥}.

2.5 Dehn-Nielsen-Baer Theorem

The Dehn-Nielsen-Baer Theorem gives us a way to relate the automorphism

group of 𝜋1(𝑆) to Mod(𝑆). Let 𝑆 be the closed surface of genus 𝑔. Let

Inn(𝐺) = {𝜙 ∈ Aut(𝐺)|𝜙(𝑥) = 𝑔𝑥𝑔−1, ∀𝑥 ∈ 𝐺, for some 𝑔 ∈ 𝐺},

be the group of inner automorphisms. The outer automorphism group of 𝐺 is

defined as,

Out(𝐺) = Aut(𝐺)/Inn(𝐺).

Let 𝑓 be an homeomorphism of 𝑆, then it induces an isomorphism 𝑓∗ ∶ 𝜋1(𝑆, 𝑥) →

𝜋1(𝑆, 𝑓(𝑥)), where 𝑥 is the base point. If 𝛾 is a path from 𝑥 to 𝑓(𝑥), then 𝛾

induces an isomorphism ̂𝛾 ∶ 𝜋1(𝑆, 𝑓(𝑥)) → 𝜋1(𝑆, 𝑥). Thus, ̂𝛾 ∘ 𝑓∗ is an auto-

morphism of 𝜋1(𝑆, 𝑥). We observe that the automorphism ̂𝛾 ∘ 𝑓∗ differ by an

inner automorphism for a different choice of path. Therefore, 𝑓∗ represents

a well-defined element in Out(𝜋1(𝑆, 𝑥)), will be denoted by 𝑓∗ for simplicity.
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Furthermore, the automorphisms induced by 2 homotopic homeomorphisms dif-

fer by an inner automorphism. Hence, there is a well-defined homomorphism

𝜎 ∶ Mod(𝑆) → Out(𝜋1(𝑆, 𝑥)) which maps the homotopy class [𝑓] to the outer

automorphism 𝑓∗, where Mod(𝑆) is the extended mapping class group of 𝑆.

Theorem 2.12 (Dehn-Nielsen-Baer Theorem). For 𝑔 ≥ 1, the homomorphism

𝜎 ∶ Mod(𝑆𝑔) → Out(𝜋1(𝑆𝑔)) is an isomorphism.

The original proof of the surjectivity of 𝜎 is due to Dehn [7], although Nielsen

was the first to publish a proof [14].

21



Chapter 3

Birman–Hilden Theory

In 1970s, Birman and Hilden wrote several papers on the problem of relating

mapping class group of a surface and its covering space, concluding in [6]. The

aim of this chapter is to understand the main theorems of their paper [6].

3.1 Introduction

Let 𝑝 ∶ ̃𝑆 → 𝑆 be a finite-sheeted, possibly branched, covering map branched

at finitely many points ℬ ⊂ 𝑆 ⧵ 𝜕𝑆 with deck group 𝐷 < Homeo+( ̃𝑆). A

homeomorphism 𝑓 ∈ Homeo+( ̃𝑆) is said to be fiber-preserving if 𝑝(𝑥) = 𝑝(𝑥′),

implies 𝑝 ̃𝑓(𝑥) = 𝑝 ̃𝑓(𝑥′) for every 𝑥, ̃𝑥 ∈ ̃𝑆. We denote the subgroup consisting of

all fiber-preserving homeomorphisms by SHomeo( ̃𝑆).

A homeomorphism 𝑓 ∈ Homeo+(𝑆,ℬ) is said to be liftable, if there exists a

hoemomorphisms ̃𝑓 ∈ Homeo+( ̃𝑆) such that 𝑝 ̃𝑓(𝑥) = 𝑓𝑝(𝑥) for every 𝑥 ∈ ̃𝑆. We

denote the subgroup consisting of all liftable homeomorphisms by LHomeo(𝑆,ℬ).

we note that any lift ̃𝑓 of a liftable homeomorphism 𝑓 must be fiber-preserving.

Proposition 3.1. There exists a surjective homomorphism 𝜙 ∶ SHomeo( ̃𝑆) →
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LHomeo(𝑆,ℬ), with ker 𝜙 = 𝐷. Hence, we have the following short exact

sequence.

1 → 𝐷 → SHomeo( ̃𝑆) → LHomeo(𝑆,ℬ) → 1. (3.1)

Proof. Given ̃𝑓 ∈ SHomeo( ̃𝑆), we define 𝜙( ̃𝑓) = 𝑓, where 𝑓 is the projection

of ̃𝑓 defined as 𝑓(𝑥) = 𝑝( ̃𝑓(𝑝−1(𝑥))). This function is well-defined since ̃𝑓 is

fiber-preserving. Also, 𝑓 is a homeomorphism because ̃𝑓 is a homeomorphism.

Therefore, 𝑓 ∈ LHomeo(𝑆,ℬ) and the map 𝜙 is well-defined.

The map 𝜙 is a surjective homomorphism since a lift of 𝑓 ∈ LHomeo(𝑆,ℬ) is

a fiber-preserving homeomorphism. A homeomorphism ̃𝑓 is in ker𝜙 if and only if

𝑝( ̃𝑓(𝑝−1(𝑥))) = 𝑥 that is 𝑝( ̃𝑓(𝑥)) = 𝑝(𝑥). Thus, we have ker𝜙 = 𝐷.

Remark 3.2 (Branched vs Unbranched Cover). Let 𝑝 ∶ ̃𝑆 → 𝑆 be a finite-sheeted,

branched cover branched at ℬ ⊂ 𝑆. For ̃𝑆𝑜 = ̃𝑆 ⧵ 𝑝−1(ℬ) and 𝑆𝑜 = 𝑆 ⧵ ℬ the

restriction of 𝑝 to ̃𝑆𝑜 is an unbranched cover 𝑝𝑜 ∶ ̃𝑆𝑜 → 𝑆𝑜. Since Homeo+(𝑆,ℬ) ≅

Homeo+(𝑆𝑜) and any fiber-preserving homeomorphism of ̃𝑆 preserves the set

𝑝−1(ℬ), there is an isomorphism SHomeo( ̃𝑆) ≅ SHomeo( ̃𝑆𝑜). It follows that

LHomeo(𝑆,ℬ) ≅ LHomeo(𝑆𝑜).

Proposition 3.3. If the covering map 𝑝 ∶ ̃𝑆 → 𝑆 is regular, then SHomeo( ̃𝑆) is

the normalizer of 𝐷 in Homeo+( ̃𝑆), where 𝐷 is the deck group.

Proof. For ̃𝑓 ∈ SHomeo( ̃𝑆) and ℎ ∈ 𝐷, we have 𝑝( ̃𝑓 ∘ ℎ ∘ ̃𝑓−1) = 𝑝 and thus ̃𝑓

belongs to normalizer of 𝐷. Now let ̃𝑓 be in normalizer of 𝐷 and suppose 𝑝(𝑥) =

𝑝(𝑦) for 𝑥, 𝑦 ∈ ̃𝑆. Then there exists a deck transformation ℎ such that ℎ(𝑥) = 𝑦.

But, there exists a deck transformation ℎ′ ∈ 𝐷 such that ̃𝑓ℎ(𝑥) = ℎ′ ̃𝑓(𝑥). Thus
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̃𝑓(𝑦) = ℎ′ ̃𝑓(𝑥) which implies that 𝑝 ̃𝑓(𝑦) = 𝑝 ̃𝑓(𝑥). Therefore, ̃𝑓 is fiber-preserving.

Hence, SHomeo( ̃𝑆) is the normalizer of 𝐷.

Proposition 3.4. A homeomorphism 𝑓 lifts to ̃𝑓 if and only if for every 𝑥 ∈ 𝑆,

we have 𝑓∗(𝑝∗(𝜋1( ̃𝑆, ̃𝑥))) = 𝑝∗(𝜋1( ̃𝑆, ̃𝑥′)), where ̃𝑥 ∈ 𝑝−1(𝑥) and ̃𝑥′ ∈ 𝑝−1(𝑓(𝑥)).

The proof of Proposition 3.4 follows from the fact that both 𝑓 and 𝑓−1 satisfy

the lifting criterion (Proposition 1.4).

Definition 3.5. A finite sheeted, possibly branched covering map 𝑝 ∶ ̃𝑆 → 𝑆 is

said to have the Birman–Hilden property if any fiber-preserving homeomorphism

isotopic to identity is isotopic through fiber-preserving homeomorphisms.

Example 3.6 (Example of a cover with the Birman–Hilden property). The

hyperelliptic involution of 𝑆2 induces a 2-sheeted branched cover 𝑝 ∶ 𝑆2 → 𝑆0,6

(see Figure 3.1). Since the cover is regular and the hyperelliptic involution fixes

the branch points, it follows from Theorem 3.8 that 𝑝 has the Birman–Hilden

property.

Example 3.7 (Example of a cover without the Birman–Hilden property). Con-

sider the 2-sheeted branched covering of 𝑆0,2 by sphere 𝑆0 induced by 𝜋 rotation

about an axis of 𝑆0 (see Figure 3.2). Let ̃𝑓 be the fiber-preserving homeomorphism

of 𝑆0 isotopic to identity exchanging the branch points. Since its projection 𝑓

exchanges the 2 punctures of 𝑆0,2, 𝑓 is not isotopic to identity, and thus ̃𝑓 is not

fiber-isotopic to identity.

Now a natural question to ask is when does a cover have the Birman–Hilden

property? In the following sections, we give a sufficient condition for a cover to

have the Birman–Hilden property.
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Figure 3.1: A 2-sheeted branched cover from 𝑆2 and 𝑆0,6 with the Birman–Hilden
property.

Figure 3.2: A covering map from 𝑆0 to 𝑆0,2 without the Birman–Hilden property.
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3.2 Statement of the theorems

Let ̃𝑆 and 𝑆 be orientable surfaces. Following are the main theorems of [6].

Theorem 3.8. Let 𝑝 ∶ ̃𝑆 → 𝑆 be a regular covering map, either branched or

unbranched, with a finite deck group and a finite number of branch points. Suppose

that the deck transformations leave each branch point fixed. In the case of branched

covering, assume that ̃𝑆 is not homeomorphic to a sphere or torus. Then 𝑝 ∶ ̃𝑆 → 𝑆

has the Birman–Hilden property.

Theorem 3.9. Let 𝑝 ∶ ̃𝑆 → 𝑆 be a regular, possibly branched covering map with,

at most, finitely many branch points. Let the deck group be finite and solvable.

Then 𝑝 ∶ ̃𝑆 → 𝑆 has the Birman–Hilden property.

We note that Theorem 3.8 implies that all regular unbranched covers have the

Birman–Hilden property. On the other hand, Theorem 3.9 implies that all regular

solvable branched covers have the Birman–Hilden property. Thus, Theorems

3.8-3.9 can be stated together as follows.

Theorem 3.10 ([11]). Let 𝑝 ∶ ̃𝑆 → 𝑆 be a finite sheeted, regular branched cover.

Let ̃𝑆 be a hyperbolic surface. Assume that 𝑝 is either unbranched or solvable.

Then 𝑝 has the Birman–Hilden property.

3.3 Birman–Hilden property for regular unbranched

covers

In this section, we prove Theorem 3.8 via a sequence of lemmas. Without loss

of generality, we can assume that ̃𝑆 and 𝑆 are Riemann surfaces. It is known
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that if 𝑝 ∶ ̃𝑆 → 𝑆 is a covering map and 𝑆 is a Riemann surface, then there is

a unique conformal structure on ̃𝑆 such that 𝑝 is analytic. Since 𝑝 is analytic,

we can assume that deck transformations are also analytic. In what follows, we

assume that 𝜒( ̃𝑆) < 0 unless stated otherwise. From the Proposition 1.14 and

Theorem 1.12, it follows that ̃𝑆 has the following 2 properties.

(i) The universal covering surface of ̃𝑆 is ℍ.

(ii) The center of 𝜋1( ̃𝑆) is trivial.

Lemma 3.11. Let 𝑓 be a non-trivial analytic homeomorphism of ̃𝑆. Suppose

𝑓(𝑥) = 𝑥 and 𝑓∗ be the induced automorphism of 𝜋1( ̃𝑆, 𝑥). Then 𝑓∗ leaves no

element of 𝜋1( ̃𝑆, 𝑥) fixed except the identity element.

Proof. Let [𝛾] ∈ 𝜋1( ̃𝑆, 𝑥) be a non-trivial loop such that 𝑓(𝛾) ≃ 𝛾 (here ≃ denotes

path-homotopic). Consider universal covering 𝑞 of ̃𝑆 such that lift of 𝑓 is an

analytic homeomorphism ̃𝑓 ∶ ℍ → ℍ, so that, ̃𝑓 ∈ Isom+(ℍ). Assuming 𝑞( ̃𝑥) = 𝑥

and ̃𝑓(𝑦) = ̃𝑥, then there exists a deck transformation ℎ such that ℎ(𝑦) = ̃𝑥.

Composing ̃𝑓 with ℎ, we get another lift of 𝑓 that fixes ̃𝑥. Thus, without loss of

generality, we can assume that ̃𝑓( ̃𝑥) = ̃𝑥.

If ̃𝛾 is the lift of the loop 𝛾, then ̃𝑓( ̃𝛾) is a lift of 𝑓(𝛾). Since 𝛾 and 𝑓(𝛾) are

path-homotopic, ̃𝑓( ̃𝛾) and ̃𝛾 are also path-homotopic. Thus, if ̃𝑦 is the end point

of ̃𝛾, then ̃𝑦 is also the end point of ̃𝑓( ̃𝛾), that is, ̃𝑓( ̃𝑦) = ̃𝑦. Therefore, ̃𝑓 is an

isometry of ℍ with 2 fixed points in the interior of ℍ. Hence, ̃𝑓 must be identity

which implies that 𝑓 is identity.

Lemma 3.12. Let 𝑓 be a fiber-preserving homeomorphism of ̃𝑆, which is isotopic

to identity. Then 𝑓 commutes with all the deck transformations.
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Proof. Let ℎ be a deck transformation and 𝑟 = 𝑓 ∘ℎ∘𝑓−1 ∘ℎ−1. We show that 𝑟 is

identity. Since 𝑓 is fiber-preserving, by Proposition 3.3 it follows that 𝑓 ∘ℎ ∘ 𝑓−1 is

a deck transformation. Thus, 𝑟 is also a deck transformation. Since 𝑓 is isotopic

to identity, we have ℎ ∘ 𝑔−1 ∘ ℎ−1 is isotopic to identity, and therefore, 𝑟 is isotopic

to identity.

Since 𝑟 is a deck transformation, it is analytic and fixes branch points. Thus,

𝑟∗ = ̂𝛼, where 𝛼 is a loop based at a branch point 𝑏. Therefore, 𝑟∗ is an

automorphism of 𝜋1( ̃𝑆, 𝑏) which fixes loop 𝛼. Hence, by Lemma 3.11, 𝑟 must be

the identity map.

Let 𝑥1, 𝑥2,… , 𝑥𝑛 ∈ 𝑆 be the branch points. By our hypothesis, deck transfor-

mations fix each pre-image of the branch point. Assume that ̃𝑥1, ̃𝑦1 ∈ ̃𝑆 such that

𝑝( ̃𝑥1) = 𝑝( ̃𝑦1). Since for regular covers, there exists a deck transformation that

maps ̃𝑥1 → ̃𝑦1, we must have ̃𝑥1 = ̃𝑦1. Thus, the pre-image of each branch point

is a single point. Let us denote the corresponding pre-images by ̃𝑥1, ̃𝑥2,… , ̃𝑥𝑛.

Lemma 3.13. Let 𝑓 be a fiber-preserving homeomorphism of ̃𝑆 which is isotopic

to the identity map via an isotopy 𝐻(𝑡, 𝑥). Then

(i) 𝑓( ̃𝑥𝑖) = ̃𝑥𝑖, for all 𝑖, and

(ii) 𝐻(𝑡, ̃𝑥𝑖) is nullhomotopic in 𝜋1( ̃𝑆, ̃𝑥1), for all 𝑖.

Proof. Suppose 𝑓( ̃𝑥𝑖) = ̃𝑥𝑗, for some 𝑖 ≠ 𝑗. Let 𝛾 be a loop based at ̃𝑥𝑖 and ℎ be a

non-trivial deck transformation. Then by Lemma 3.12, we have 𝑓(ℎ(𝛾)) = ℎ(𝑓(𝛾)).

Now, let 𝛽 be a path from ̃𝑥𝑖 to ̃𝑥𝑗 defined as 𝛽(𝑠) = 𝐻(𝑠, ̃𝑥𝑖). Then

𝛾 ≃ 𝛽𝑓(𝛾)𝛽−1, (3.2)
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and from Equation (3.2), we get

ℎ(𝛾) ≃ ℎ(𝛽)ℎ(𝑓(𝛾))ℎ(𝛽)−1 ≃ ℎ(𝛽)𝑓(ℎ(𝛾))ℎ(𝛽)−1. (3.3)

Since 𝛾 is an arbitrary loop based at ̃𝑥𝑖 and 𝑡(𝛾) is also a loop based at ̃𝑥𝑖, we

have

ℎ(𝛾) ≃ 𝛽𝑓(ℎ(𝛾))𝛽−1. (3.4)

From Equations (3.3-3.4), we get

𝛽−1ℎ(𝛽)𝑓(ℎ(𝛾))ℎ(𝛽)−1𝛽 ≃ 𝑓(ℎ(𝛾)). (3.5)

As 𝛾 was arbitrary and 𝑓, ℎ are homeomorphisms, 𝛽−1ℎ(𝛽) commutes with all

elements of 𝜋1( ̃𝑆, ̃𝑥𝑗). Observe that 𝜋1( ̃𝑆) has a trivial center, therefore 𝛽−1ℎ(𝛽)

is nullhomotopic, and so we have ℎ(𝛽) ≃ 𝛽. Now let ℎ̃ be the lift of ℎ to ℍ under

the universal cover. By composing ℎ̃ with a deck transformation, if required, we

can assume that ℎ̃( ̃𝑦𝑖) = ̃𝑦𝑖, for some ̃𝑦𝑖 in the fiber of ̃𝑥𝑖. Let ̃𝑦𝑗 be the endpoint

of the lift of 𝛽 starting at ̃𝑦𝑖. Since ℎ(𝛽) is path-homotopic to 𝛽 by lifting the

homotopy, their lifts are also path-homotopic, and therefore, ℎ̃( ̃𝑦𝑗) = ̃𝑦𝑗. Thus, ℎ̃

has 2 fixed points and so ℎ̃ must be identity. Since ℎ was non-trivial, we must

have 𝑓( ̃𝑥𝑖) = ̃𝑥𝑖. Hence, the first claim is proved.

Let ℎ be a non-trivial deck transformation. Then following the similar ar-

guments as above, we get 𝑡(𝛽) ≃ 𝛽, where 𝛽 is a closed loop based at ̃𝑥1. By

Lemma 3.11 𝛽 must be nullhomotopic, and hence 𝐻(𝑡, ̃𝑥𝑖) is nullhomotopic in

𝜋1( ̃𝑆, ̃𝑥1).

The following lemma follows from the simplicial approximation theorem [2]
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and Theorem 1.6.

Lemma 3.14. Let 𝑃 be a point in a piecewise-linear manifold 𝑋 without boundary.

Let 𝛽(𝑠) be a curve in 𝑋 homotopic to 0 in 𝜋1(𝑋, 𝑃 ). There is an isotopy

𝐾 ∶ [0, 1] × 𝑋 → 𝑋 such that 𝐾(0, 𝑥) = 𝐾(1, 𝑥) = 𝑥 where the map 𝐾𝑠 ∶ 𝑋 →

𝑋,𝐾𝑠(𝑥) = 𝐾(𝑠, 𝑥) has the compact support and 𝐾𝑠(𝑃 ) = 𝛽(𝑠).

Lemma 3.15. Let 𝑓 be a fiber-preserving homeomorphism of ̃𝑆, isotopic to identity

via 𝐻 ∶ [0, 1] × ̃𝑆 → ̃𝑆. Then 𝑓 is isotopic to identity via �̄� ∶ [0, 1] × ̃𝑆 → ̃𝑆 such

that �̄�(𝑠, ̃𝑥𝑖) = ̃𝑥𝑖, for 1 ≤ 𝑖 ≤ 𝑛 and 𝑠 ∈ [0, 1].

Proof. By Lemma 3.13 𝑓( ̃𝑥1) = ̃𝑥1 and 𝛽(𝑠) = 𝐻(𝑠, ̃𝑥1) is nullhomotopic in

𝜋1( ̃𝑆, ̃𝑥1). Now, by Lemma 3.14 there is an isotopy 𝐾 ∶ [0, 1] × ̃𝑆 → ̃𝑆 with

𝐾(0, 𝑥) = 𝐾(1, 𝑥) = 𝑥 and 𝐾𝑠( ̃𝑥1) = 𝛽(𝑠). Let 𝐺𝑠 = 𝐾−1
𝑠 ∘ 𝐻𝑠, where 𝐾𝑠

is a map from ̃𝑆 → ̃𝑆 and 𝐾𝑠(𝑥) = 𝐾(𝑠, 𝑥) (𝐻𝑠 is defined similarly). Then,

𝐺𝑠( ̃𝑥1) = ̃𝑥1 for all 𝑠 ∈ [0, 1] and 𝐺 ∶ [0, 1] × ̃𝑆 → ̃𝑆 is an isotopy of 𝑓 to identity.

We consider the covering map ̄𝑝 ∶ ̃𝑆 − ̃𝑥1 → 𝑆 − 𝑥1 and homeomorphism 𝑓|𝑆−�̃�1
.

Since ̃𝑆 − ̃𝑥1 is hyperbolic, deck transformations of ̄𝑝 fixes branch points and

𝑓|𝑆−�̃�1
is isotopic to identity via the isotopy 𝐺|[0,1]×𝑆−�̃�1

. Thus, we can repeat

the argument for each of ̃𝑥2, ̃𝑥3,… , ̃𝑥𝑛 to obtain an isotopy with the required

properties.

Lemma 3.16. Let 𝑞 ∶ ̃𝑆 → 𝑆 be a regular, unbranched cover. Let ̃𝑓 ∶ ̃𝑆 → ̃𝑆 be a

fiber-preserving homeomorphism isotopic to identity. Assume that the centralizer

of 𝑞∗𝜋1( ̃𝑆) in 𝜋1(𝑆) is trivial. Then ̃𝑓 is isotopic to identity via fiber-preserving

homeomorphisms.

Proof. Let 𝑓 be the projection of ̃𝑓 to 𝑆. Suppose that ̃𝑥 ∈ ̃𝑆 and 𝑥 ∈ 𝑆

such that 𝑞( ̃𝑥) = 𝑥. Let ̃𝛽(𝑠) = 𝐻(𝑠, ̃𝑥) be the path from ̃𝑥 to ̃𝑓( ̃𝑥), where
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𝐻(𝑠, 𝑦) ∶ [0, 1]× ̃𝑆 → ̃𝑆 is an isotopy of ̃𝑓 to identity. The projection 𝛽(𝑠) = 𝑞( ̃𝛽(𝑠))

is a path from 𝑥 to 𝑓(𝑥). Suppose that ̃𝛾 is a loop based at ̃𝑥 and 𝛾 = 𝑞( ̃𝛾).

Since 𝑓 is a homeomorphism, we have an automorphism 𝑓∗ of 𝜋1(𝑆, 𝑥) defined as

𝑓∗([𝛾]) = [𝛽𝑓(𝛾)𝛽−1]. If [𝛾] ∈ 𝑞∗𝜋1( ̃𝑆, ̃𝑥), then

𝑓∗([𝛾]) = [𝛽𝑞( ̃𝑓( ̃𝛾))𝛽−1] = [𝑞( ̃𝛽 ̃𝑓( ̃𝛾) ̃𝛽−1)].

Since ̃𝑓 is isotopic to identity, we have ̃𝛾 ≃ ̃𝛽 ̃𝑓( ̃𝛾) ̃𝛽−1. Therefore, 𝑓∗([𝛾]) = [𝛾] for

all [𝛾] ∈ 𝑞∗𝜋1( ̃𝑆, ̃𝑥). We choose some [𝛼] ∈ 𝑞∗𝜋1( ̃𝑆, ̃𝑥) and [𝛿] ∈ 𝜋1(𝑆, 𝑥). Since 𝑞

is regular, [𝛿𝛼𝛿−1] ∈ 𝑞∗𝜋1( ̃𝑆, ̃𝑥). Therefore,

[𝛿𝛼𝛿−1] = 𝑓∗([𝛿𝛼𝛿−1]) = 𝑓∗([𝛿])[𝛼]𝑓∗([𝛿])−1. (3.6)

From Equation (3.6), it follows that 𝑓∗([𝛿])−1[𝛿] belongs to the centralizer of

𝜋1(𝑆), and therefore, is trivial. Hence, 𝑓∗([𝛿]) = [𝛿] for any [𝛿] ∈ 𝜋1(𝑆, 𝑥). By the

Dehn-Nielsen-Baer Theorem, it follows that 𝑓 is isotopic to identity, and so ̃𝑓 is

isotopic to identity through fiber-preserving homeomorphisms.

Proof of Theorem 3.8. First, we consider the case when 𝑝 is unbranched. Assume

that 𝑆 is not homeomorphic to 𝑆0,0, 𝑆0,1, 𝑆0,2, and 𝑆1,0. We show that the

hypothesis of Lemma 3.16 is satisfied, by showing that 𝐻 has a trivial centralizer

in 𝐺 = 𝜋1(𝑆), where 𝐻 = 𝑞∗(𝜋1( ̃𝑆)). The fundamental group 𝐺 is either free

or is 1-relator group. If 𝐺 is free, then 𝐺 must have rank at least 2 (as 𝑆 is

not homeomorpic to 𝑆0,0, 𝑆0,1 or 𝑆0,2). Hence, any subgroup of 𝐺 has a trivial

centralizer.

If 𝐺 is 1-relator, then 𝐺 has a trivial center. Therefore, 𝐻 has also trivial

center. Since the deck group is finite, 𝐻 is of finite index in 𝐺. Suppose that
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𝛼 ∈ 𝐶𝐺(𝐻) − 1, where 𝐶𝐺(𝐻) denotes the centralizer of 𝐻 in 𝐺. Let [𝛼] be a

coset of 𝐻 in 𝐺. Since 𝐻 is of finite index in 𝐺, we have [𝛼]𝜆 = 𝐻 for some 𝜆 ∈ ℤ.

Therefore, 𝛼𝜆 ∈ 𝐻, and since 𝛼𝜆 ∈ 𝐶𝐺(𝐻) we must have 𝛼𝜆 in the center of 𝐻.

Thus, 𝛼𝜆 = 1. Since 𝐺 is torsion-free, we have 𝛼 = 1. Hence, 𝐶𝐺(𝐻) is trivial.

If 𝑆 is homeomorphic to 𝑆0,0 or 𝑆0,1, then the conclusion holds trivially, as

Mod(𝑆0,0) and Mod(𝑆0,1) are trivial. Now assume that 𝑆 ≈ 𝑆0,2. Let ̃𝑓 be a

fiber-preserving homeomorphism isotopic to identity and 𝑓 be its projection onto

Mod(𝑆0,2). Since Mod(𝑆0,2) ≅ ℤ2, 𝑓 is either isotopic to identity (we are done in

that case) or 𝑓 is isotopic to a homeomorphism that exchange punctures. In the

second case, ̃𝑓 must also exchange punctures, so that it can not be isotopic to

identity.

For 𝑆1,0, as in the proof of Lemma 3.16, we may assume 𝑓∗ restricted to

𝑝∗(𝜋1( ̃𝑆)) is identity. We have that any automorphism of ℤ⊕ℤ, whose restriction

to a subgroup of finite index is identity, is itself identity. Since 𝜋1(𝑆) ≅ ℤ ⊕ ℤ, it

follows from the Dehn-Nielsen-Baer theorem that ̃𝑓 is isotopic to identity.

Now assume that 𝑝 is branched. If 𝜒(𝑆) < 0, then by Lemma 3.15, we can

replace the branched covering with the associated unbranched covering. Hence,

the conclusion follows from the previous case. Since the cases ̃𝑆 = 𝑆0,0 and

̃𝑆 = 𝑆1,0 are excluded by hypothesis, to complete the proof, we show that the

conclusion holds when ̃𝑆 ≈ 𝑆0,2 or 𝑆0,1. We note that a deck transformation for

the cover of 𝑆0,2 is a rotation, and the identity is the only rotation that fixes a

point other than the origin. Hence, the case is trivial. If there is a non-trivial deck

transformation of 𝑆0,1, then the deck transformation can have at most one fixed

point (since it is an isometry of plane), which we can assume to be the origin.

Thus, the deck group is a finite group of rotations which is cyclic. Thus, 𝑆 ≈ 𝑆0,1.
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The proof of the theorem follows from the fact that any homeomorphism of 𝑆0,1

is isotopic to the identity.

3.4 Birman–Hilden property for solvable deck

groups

Lemma 3.17. Let 𝑝 ∶ ̃𝑆 → 𝑆 be a regular, finite sheeted, branched covering of

Riemann surfaces, with at least one branch point, where ̃𝑆 is either the torus

or sphere. Assume that the deck transformations leave the branch points fixed.

If ̃𝑓 ∶ ̃𝑆 → ̃𝑆 is a fiber-preserving homeomorphism isotopic to identity, then the

induced homeomorphism 𝑓 ∶ 𝑆 → 𝑆 is also isotopic to identity.

Proof. If ̃𝑆 is a sphere, then ̃𝑆 can only cover a sphere (as 𝑆 is orientable). In

this case, the result holds trivially. Now we assume that ̃𝑆 is the torus. We

shall think of ̃𝑆 as ℂ quotient with the subgroup of isometries isomorphic to ℤ2.

Without loss of generality, we assume that the origin is a branch point. The deck

transformations of 𝑝 can be lifted to a Möbious transformations of ℂ, leaving

the lattice invariant and fixing origin. These Möbious transformations are of

the form 𝑇 (𝑧) = 𝑒𝑖𝜃𝑧, where 𝜃 ∈ {𝜋/2, 𝜋, 3𝜋/2}. Observe that the quotient of ̃𝑆

by the cyclic group of isometries generated by any of the above isometry 𝑇 is

homeomorphic to the sphere. Since any homeomorphism of a sphere is isotopic

to identity, the assertion follows.

Remark 3.18. If 𝑝 ∶ ̃𝑆 → 𝑆 is a covering map, then 𝑆 is homeomorphic to the

orbit space ̃𝑆/𝐺, where 𝐺 is the deck group. Suppose that 𝐻C𝐺. The covering

𝑞 ∶ ̃𝑆 → ̃𝑆/𝐻 is regular as ̃𝑆/𝐻 is the orbit space of the 𝐻−action on ̃𝑆. Let
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𝑟 ∶ ̃𝑆/𝐻 → ̃𝑆/𝐺 be the covering map obtained by the action of 𝐺/𝐻 on ̃𝑆. Since

𝐻C𝐺, 𝑟 is regular. Suppose that 𝑞 and 𝑟 have the Birman–Hilden property. Let

̃𝑓 ∶ ̃𝑆 → ̃𝑆 be fiber-preserving homeomorphism for covering map 𝑝 isotopic to

identity. Then the projection 𝑓1 ∶ ̃𝑆/𝐻 → ̃𝑆/𝐻 under 𝑞 is isotopic to identity.

Since 𝑓1 preserves fibers of 𝑟, the projection 𝑓2 ∶ ̃𝑆/𝐺 → ̃𝑆/𝐺 of 𝑓1 under 𝑟 is

isotopic to the identity. Since 𝑓2 is the projection of ̃𝑓 under 𝑝, it follows that 𝑝

has the Birman–Hilden property.

Proof of Theorem 3.9. First, we assume that the deck group 𝐺 is cyclic of prime

order. By the orbit-stabilizer theorem, the number of elements in each orbit

divides the number of elements in 𝐺. Thus, 𝑝 must be one-to-one on the branch

points. Therefore, every deck transformation leaves the branch point fixed. Thus,

the result follows from Theorem 3.8 and Lemma 3.17.

Now we assume that 𝐺 is a finite solvable group. Then 𝐺 can be factored

through cyclic groups of prime order. The factoring of 𝐺 induces a factoring of

covering map 𝑝 under composition. The result follows from Remark 3.18 and an

inductive argument.

3.5 Restatement of the theorem in terms of map-

ping class groups

In this section, we relate the Birman–Hilden property to mapping class groups.

This section is based on [11].

Definition 3.19. Let 𝑝 ∶ ̃𝑆 → 𝑆 be a covering map. Then the subgroup of Mod( ̃𝑆)

consisting of mapping classes represented by fiber-preserving homeomorphisms is

known as the symmetric mapping class group, denoted by SMod( ̃𝑆).
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Definition 3.20. Let 𝑝 ∶ ̃𝑆 → 𝑆 be a covering map and ℬ be the set of branch

points. Then the subgroup of Mod(𝑆,ℬ) consisting of mapping classes represented

by liftable homeomorphisms is known as liftable mapping class group, denoted by

LMod(𝑆,ℬ).

Let 𝐾 be the subgroup of SMod( ̃𝑆) consisting of the homotopy classes of the

deck transformations of the covering 𝑝 ∶ ̃𝑆 → 𝑆. Now we can restate the above

theorems in terms of mapping class groups using the following proposition.

Proposition 3.21 ([11]). Let 𝑝 ∶ ̃𝑆 → 𝑆 be a finite sheeted, branched covering

map with the set of branched points ℬ, where ̃𝑆 is a hyperbolic surface without

boundary. Then the following are equivalent.

(i) The map 𝑝 has the Birman–Hilden property.

(ii) There exists a surjective homomorphism from SMod( ̃𝑆) → LMod(𝑆,ℬ),

with kernel 𝐾.

Proof. Let 𝑝 has the Birman–Hilden property. Define Φ ∶ SMod( ̃𝑆) → LMod(𝑆,ℬ)

as Φ([ ̃𝑓]) = [𝑓], where 𝑓 is the projection of ̃𝑓 under 𝑝. The map Φ is well-defined

as 𝑝 has the Birman–Hilden property. By definition, it is clear that Φ is a surjec-

tive homomorphism. Since deck transformations are lifts of identity, it follows

that ker Φ is 𝐾.

Conversely, if there exists a surjective homomorphism from SMod( ̃𝑆) →

LMod(𝑆,ℬ), then given a fiber-preserving homeomorphism ̃𝑓 isotopic to identity,

its projection 𝑓 is also isotopic to identity. By lifting this isotopy, we get an

isotopy through fiber-preserving homeomorphisms. Hence, 𝑝 has the Birman–

Hilden property.
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The following is immediate from Theorem 3.10 and Proposition 3.21.

Corollary 3.21.1. Let 𝑝 ∶ ̃𝑆 → 𝑆 be a finite sheeted, regular branched covering

map with the set of branched points ℬ, where ̃𝑆 is a hyperbolic surface. Assume

that 𝑝 is either unbranched or solvable. Then we have the following short exact

sequence

1 → 𝐾 → SMod( ̃𝑆) → LMod(𝑆,ℬ) → 1. (3.7)
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Chapter 4

Injections of Mapping Class

Groups

In their paper [1], Aramayona, Leininger, and Souto constructed injective homo-

morphisms between the mapping class groups using the covering between surfaces.

The construction of these homomorphisms between the mapping class groups

uses the Birman–Hilden property of the covers. This chapter is based on their

paper [1].

4.1 Introduction

Throughout this chapter, for the surface 𝑆 = 𝑆𝑔,𝑛 without boundary, we assume

that 3𝑔+𝑛 ≥ 5. To keep better track of marked points, we denote 𝑆𝑔,𝑛 by (𝑆,ℬ),

where 𝑆 = 𝑆𝑔 and ℬ ⊂ 𝑆 is a set of 𝑛 marked points.

We say a cover is irregular if it is not regular. Let 𝑝 ∶ ̃𝑆 → 𝑆 be a 𝑘-sheeted,

unbranched, possibly irregular cover and ℬ̃ = 𝑝−1(ℬ) a set of 𝑘𝑛 marked points

of ̃𝑆. Let LHomeo(𝑆,ℬ) be the set of all liftable homeomorphisms of 𝑆 which
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preserves ℬ. Let SHomeo( ̃𝑆, ℬ̃) be the set of all fiber-preserving homeomorphisms

of ̃𝑆 which preserves ℬ̃.

Remark 4.1. For a finite-sheeted unbranched cover 𝑝 ∶ ̃𝑆 → 𝑆, recall that there

is a homomorphism 𝜙 ∶ SHomeo( ̃𝑆, ℬ̃) → LHomeo(𝑆,ℬ), with ker 𝜙 ≅ 𝐷. In

other words, we have the following short exact sequence

1 → 𝐷 → SHomeo( ̃𝑆, ℬ̃) → LHomeo(𝑆,ℬ). (4.1)

4.2 Birman–Hilden property for unbranched cov-

ers

The work of Birman–Hilden was mostly restricted to regular covers. Since we

will be using irregular covers, we first show that all unbranched covers have the

Birman–Hilden property.

Proposition 4.2. Let 𝑝 ∶ ̃𝑆 → 𝑆 be a finite sheeted unbranched covering. If

̃𝑓 ∈ SHomeo( ̃𝑆, ℬ̃) ∩ Homeo0( ̃𝑆, ℬ̃), then 𝜙( ̃𝑓) ∈ Homeo0(𝑆,ℬ). Moreover, the

restriction of 𝜙 to SHomeo( ̃𝑆, ℬ̃) ∩Homeo0( ̃𝑆, ℬ̃) is an isomorphism.

Proof. For 𝑆0 = 𝑆 − ℬ and ̃𝑆0 = ̃𝑆 − ℬ̃, 𝑝 induces a cover 𝑞 ∶ ̃𝑆0 → 𝑆0. Let

𝑥 and ̃𝑥 be the base points of 𝑆0 and ̃𝑆0 respectively with 𝑞( ̃𝑥) = 𝑥. Then

𝑞∗ ∶ 𝜋1( ̃𝑆0, ̃𝑥) → 𝜋1(𝑆0, 𝑥) is a homomorphism and we have an isomorphism from

𝜋1( ̃𝑆0, ̃𝑥) → 𝜋1( ̃𝑆0, ̃𝑓( ̃𝑥)) given by [𝜂] ↦ [ ̃𝑓(𝜂)]. For a path 𝜏 from ̃𝑥 to ̃𝑓( ̃𝑥), there

is an isomorphism ̂𝜏 ∶ 𝜋1( ̃𝑆0, ̃𝑓( ̃𝑥)) → 𝜋1( ̃𝑆0, ̃𝑥) given by [𝜂] ↦ [𝜏𝜂𝜏−1]. Thus,

we get an automorphism ̃𝑓∗ ∶ 𝜋1( ̃𝑆0, ̃𝑥) → 𝜋1( ̃𝑆0, ̃𝑥) by composing the two maps.

Similarly, for 𝑓 = 𝜙( ̃𝑓) we have an automorphism 𝑓∗ ∶ 𝜋1(𝑆0, 𝑥) → 𝜋1(𝑆0, 𝑥) by
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composing the isomorphism induced by 𝑓 and the isomorphism induced by the

path 𝑞(𝜏).

Since 𝑞 ̃𝑓 = 𝑓𝑞, we have

𝑞∗ ∘ ̃𝑓∗(𝜂) = 𝑞∗([𝜏 ̃𝑓(𝜂)𝜏−1]) = 𝑞([𝜏 ])𝑞([ ̃𝑓(𝜂)])𝑞([𝜏 ])−1 = 𝑓∗ ∘ 𝑞∗(𝜂). (4.2)

As ̃𝑓 is isotopic to identity, we have [𝑓(𝜂)] = [𝛼𝜂𝛼−1], where 𝛼 is a path from

̃𝑓( ̃𝑥) to ̃𝑥 induced by the isotopy between ̃𝑓 and identity. Thus, ̃𝑓∗ is given by

̃𝑓∗([𝜂]) = [ ̃𝛾𝜂 ̃𝛾−1], where ̃𝛾 is a loop based at ̃𝑥.

Let 𝜓 be an automorphism of 𝜋1(𝑆0, 𝑥) defined as 𝜓([𝜂]) = [𝛾−1𝑓∗(𝜂)𝛾], where

𝛾 = 𝑞( ̃𝛾) is a loop based at 𝑥. We observe that 𝜓 is identity on the subgroup

𝑞∗(𝜋1( ̃𝑆0, ̃𝑥)). Since the deck group is finite, 𝑞∗(𝜋1( ̃𝑆0, ̃𝑥)) has finite index in

𝜋1(𝑆0, 𝑥). Let 𝐻 = 𝑞∗(𝜋1( ̃𝑆0, ̃𝑥)) and 𝐺 = 𝜋1(𝑆0, 𝑥). Suppose 𝑔𝐻 is a coset

of 𝐻 in 𝐺. Since |𝐺/𝐻| is finite, 𝑔𝑛 ∈ 𝐻 for some 𝑛 ∈ ℤ. For [𝜂] ∈ 𝜋1(𝑆, 𝑥),

we have [𝜂𝑚] ∈ 𝐻. Since 𝜓 is identity on 𝐻, we have 𝜓([𝜂]𝑚) = [𝜂]𝑚, that

is, [(𝛾−1𝑓∗([𝜂])𝛾)]𝑚 = [𝜂]𝑚. By Proposition 1.15, we have [𝛾−1𝑓∗([𝜂])𝛾] = [𝜂].

Therefore, 𝜓 is identity, and 𝑓∗ is an inner automorphism. Hence, by the Dehn-

Neilsen-Baer theorem, 𝑓 is isotopic to identity.

The surjectivity of 𝜙 follows from Proposition 1.4. Without loss of generality,

we assume that 𝑞 is a Riemannian cover. Any ̃𝑓 ∈ ker 𝜙 is a lift of the identity

(which is an isometry). Then it follows that ̃𝑓 is an isometry of ̃𝑆0. Since ̃𝑓 is an

isometry of a hyperbolic surface isotopic to identity the lift of ̃𝑓 an isometry of ℍ

which is at a bounded distance from identity, and hence ̃𝑓 is identity. Therefore,

𝜙 is an isomorphism.

Let SMod( ̃𝑆, ℬ̃) be the subgroup of the extended mapping class group Mod( ̃𝑆, ℬ̃)
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consisting of mapping classes represented by fiber-preserving homeomorphisms

and LMod(𝑆,ℬ) be the subgroup of Mod(𝑆,ℬ) consisting of mapping classes

represented by liftable homeomorphisms.

Corollary 4.2.1. The sequence 4.1 descends to a short exact sequence.

1 → 𝐾 → SMod( ̃𝑆, ℬ̃) → LMod(𝑆,ℬ) → 1. (4.3)

Proof. Define Φ ∶ SMod( ̃𝑆, ℬ̃) → LMod(𝑆,ℬ) by Φ([ ̃𝑓] = [𝜙( ̃𝑓)]). If ̃𝑓1, ̃𝑓2 ∈

SHomeo( ̃𝑆, ℬ̃) and ̃𝑓1 is isotopic to ̃𝑓2, then ̃𝑓1 ∘ ̃𝑓−1
2 is isotopic to identity and

̃𝑓1 ∘ ̃𝑓−1
2 ∈ SHomeo( ̃𝑆, ℬ̃). Thus, 𝑓1 ∘ 𝑓2 is isotopic to identity by Proposition

4.2, where 𝑓1 = 𝜙( ̃𝑓1) and 𝑓2 = 𝜙( ̃𝑓2). Since 𝑓1 is isotopic to 𝑓2, Φ is well

defined. Since 𝜙 is an isomorphism, it follows that the sequence in (4.3) short

exact sequence exists.

4.3 Injections between mapping class groups of

punctured surfaces

In this section, we study how one can use the Birman–Hilden property of covers to

construct injective homomorphisms between the mapping class groups of surfaces.

Proposition 4.3. Given a finite sheeted, unbranched covering 𝑝 ∶ ̃𝑆 → 𝑆, there is

an injective homomorphism Mod(𝑆,ℬ) → Mod( ̃𝑆, ℬ̃) obtained by lifting mapping

classes in Mod(𝑆,ℬ) to Mod( ̃𝑆, ℬ̃), provided the following conditions hold.

(i) The conjugacy class of 𝑝∗(𝜋1( ̃𝑆)) in 𝜋1(𝑆) is invariant by the action of

Mod(𝑆,ℬ).
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(ii) The following sequence splits

1 → 𝐾 → SMod( ̃𝑆, ℬ̃) → LMod(𝑆,ℬ) → 1.

Proof. Let 𝑓 be a homeomorphism of (𝑆,ℬ). Then as in the proof of Proposition

4.2, we define an automorphism 𝑓∗ of 𝜋1(𝑆, 𝑥) by composing the isomorphism

induced by 𝑓 and isomorphism induced by a path from 𝑓(𝑥) to 𝑥. This au-

tomorphism is well-defined up to inner automorphisms of 𝜋1(𝑆, 𝑥), since for

different choices of paths, the isomorphisms induced by paths differ by inner

automorphisms. Therefore, 𝑓∗ maps a finite index subgroup of 𝜋1(𝑆, 𝑥) to a

conjugate subgroup of finite index. Thus, the group Homeo(𝑆,ℬ) acts on the

set of conjugacy classes of finite index subgroups of 𝜋1(𝑆). Note that this action

does not depend on marked points.

This action of Homeo(𝑆,ℬ) descends to the action of Mod(𝑆,ℬ) on the set of

conjugacy classes of finite index subgroups of 𝜋1(𝑆), as the automorphism induced

by homotopic maps differ by inner automorphisms. By Proposition 3.4, condition

(i) is equivalent to Mod(𝑆,ℬ) = LMod(𝑆,ℬ). Thus, we have the following short

exact sequence

1 → 𝐾 → SMod( ̃𝑆, ℬ̃) → Mod(𝑆,ℬ) → 1.

By condition (ii), the above short exact sequence splits, that is, there exists an

injective homomorphism from Mod(𝑆,ℬ) → Mod( ̃𝑆, ℬ̃).

From Proposition 4.3, we can construct injective homomorphisms between

mapping class groups of punctured surfaces. The following corollary illustrates
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this construction.

Corollary 4.3.1. For 𝑔 ≥ 2, let 𝑆 be a surface of genus 𝑔 with a single marked

point {𝑧}. Let 𝑝 ∶ ̃𝑆 → 𝑆 be a 𝑘-sheeted characteristic cover, that is, 𝑝∗(𝜋1( ̃𝑆)) is

a characteristic subgroup of 𝜋1(𝑆). Let 𝒵 = 𝑝−1(𝑧) be the set of 𝑘 marked points

in ̃𝑆. Then there is an injective homomorphism from Mod(𝑆, 𝑧) → Mod( ̃𝑆, 𝒵).

Proof. We show that the cover 𝑝 satisfies the hypothesis of Proposition 4.3. Since

any automorphism of 𝜋1(𝑆) fixes 𝑝∗(𝜋1( ̃𝑆)), condition (i) is satisfied. Since a char-

acteristic subgroup is normal, the deck group acts transitively on 𝒵. Therefore, for

any 𝑓 ∈ Homeo(𝑆, 𝑧), by composing with a deck transformation if necessary, there

is a lift of 𝑓 which fixes ̃𝑧, for some fixed ̃𝑧 ∈ 𝒵. This induces a homomorphism

Homeo(𝑆, 𝑧) → SHomeo( ̃𝑆, 𝒵). Hence, the short exact sequence (4.3) splits.

Therefore, 𝑝 induces an injective homomorphism Mod(𝑆, 𝑧) → Mod( ̃𝑆, 𝒵).

4.4 Injections between the mapping class groups

of closed surfaces

In this section, we study an application of Proposition 4.3 to construct injective

homomorphisms between mapping class groups of closed surfaces. From now on,

we assume that 𝑆 is a closed surface of genus 𝑔 ≥ 2.

Proposition 4.4. For a finite group 𝐺, let 𝜌 ∶ 𝜋1(𝑆) → 𝐺 be a surjective

homomorphism with characteristic kernel. Suppose that 𝐻 ⊂ 𝐺 is a subgroup

such that

(i) 𝑁𝐺(𝐻) = 𝐻, and

(ii) Aut(𝐺) 𝐻 = Inn(𝐺) 𝐻,
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where 𝑁𝐺(𝐻) is the normalizer of 𝐻 in 𝐺 and Aut(𝐺) and Inn(𝐺) are the group

of automorphisms and inner automorphisms of 𝐺, respectively. Let 𝑝 ∶ ̃𝑆 → 𝑆 be

a cover corresponding to 𝜌−1(𝐻). Then 𝑝 induces an injective homomorphism

Mod(𝑆) → Mod( ̃𝑆).

Proof. We show that 𝑝 satisfies the hypothesis of Proposition 4.3. Let 𝑋 = 𝜋1(𝑆)

and 𝑋0 = 𝜌−1(𝐻). We know that the deck group is isomorphic to 𝑁𝑋(𝑋0)/𝑋0.

For 𝑥 ∈ 𝑁𝑋(𝑋0), we have 𝜌(𝑥𝑋0𝑥−1) = 𝜌(𝑋0). Since 𝑁𝐺(𝐻) = 𝐻, it follows

that 𝜌(𝑥) ∈ 𝐻, so that, 𝑁𝑋(𝑋0) = 𝑋0. Hence, the deck group of 𝑝 is trivial.

Thus, Φ ∶ SMod( ̃𝑆) → LMod(𝑆) is an isomorphism, and therefore, the short

exact sequence in (4.3) splits.

If Aut(𝑋) 𝑋0 = Inn(𝑋) 𝑋0, then by the Dehn-Nielsen-Baer theorem, con-

jugacy class of 𝜋1( ̃𝑆) is invariant by the action of Mod(𝑆). Hence, it suffices

to show that Aut(𝑋) 𝑋0 = Inn(𝑋) 𝑋0. For 𝜎 ∈ Aut(𝑋). Define 𝜏 ∶ 𝐺 → 𝐺 as

𝜏(𝑔) = 𝜌𝜎𝜌−1(𝑔). Since 𝜎 preserves ker 𝜌 which is characteristic, the map 𝜏 is

well-defined. Moreover, 𝜏 is an automorphism as 𝜎 is an automorphism. It follows

that 𝜌 ∘ 𝜎 = 𝜏 ∘ 𝜌.

Since Aut(𝐺) 𝐻 = Inn(𝐺) 𝐻, there is a 𝑔 ∈ 𝐺 such that 𝜏(𝐻) = 𝑔𝐻𝑔−1. For,

𝑥 ∈ 𝜌−1(𝑔), we have

𝜎(𝑋0) = 𝜌−1(𝜏(𝐻)) = 𝑥𝜌−1(𝐻)𝑥−1 = 𝑥𝑋0𝑥−1. (4.4)

Thus, Aut(𝑋) 𝑋0 = Inn(𝑋) 𝑋0. Hence, by Proposition 4.3, 𝑝 induces an injective

homomorphism Mod(𝑆) → Mod( ̃𝑆).

Now we show that there exists a finite group 𝐺 with a self-normalizing group

𝐻 such that Aut(𝐺) 𝐻 = Inn(𝐺) 𝐻.
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Proposition 4.5. Let 𝒮 = Σ3 ×…×Σ3 be the 𝑘-fold product of Σ3, where Σ3 is

the symmetric group on 3 letters. Let 𝑟𝑗 ∶ 𝒮 → Σ3 be the projection onto the 𝑗𝑡ℎ

factor. Let 𝐺 be a subgroup of 𝒮 such that 𝑟𝑗(𝐺) = Σ3 for all 1 ≤ 𝑗 ≤ 𝑘. If 𝐻

is a Sylow 2-subgroup of 𝐺, then 𝐻 is a proper self-normalizing subgroup with

Aut(𝐺) 𝐻 = Inn(𝐺) 𝐻.

Proof. Since |Σ3| = 6 and 𝑟𝑗 is surjective, it follows that 3 divides |𝐺|, and thus

any Sylow 2-subgroup of 𝐺 is proper. For any 𝜏 ∈ Aut(𝐺), 𝜏(𝐻) is also a Sylow

2-subgroup of 𝐺. Let 𝑝 be a prime. Since the Sylow 𝑝-subgroups of a finite group

are conjugate, we have Aut(𝐺) 𝐻 = Inn(𝐺) 𝐻. Since the Sylow 𝑝-subgroups are

maximal 𝑝-subgroups of 𝒮 and a Sylow 𝑝-subgroup of 𝐺 is a 𝑝-subgroup of 𝒮,

every Sylow 𝑝-subgroup of 𝐺 is contained in some Sylow 𝑝-subgroup of 𝒮. Hence,

every Sylow 𝑝-subgroup of 𝐺 is the intersection of a Sylow 𝑝-subgroup 𝒮 with 𝐺.

Since |Σ3| = 2 × 3, all order 2 subgroup of Σ3 are Sylow 2-subgroups of Σ3.

Since order 2 subgroups are generated by order 2 elements. A Sylow 2-subgroup

𝑃 < 𝒮 must be 𝑃 = {(𝑥1,… , 𝑥𝑘)|𝑥𝑗 = 𝑋𝑗 or 𝑥𝑗 = 1} = ⟨𝑋1⟩ × …× ⟨𝑋𝑘⟩, where

𝑋1,… ,𝑋𝑘 ∈ Σ3 are of order 2, and 1 is the identity in Σ3. Let 𝑃 be such a

Sylow 2-subgroup with 𝐻 = 𝑃 ∩𝐺. For 𝑦 = (𝑦1,… , 𝑦𝑘) ∈ 𝑁𝐺(𝐻). We now show

that 𝑦 ∈ 𝐻. Since 𝑦 ∈ 𝐺, it suffices to show that 𝑦 ∈ 𝑃. For every 1 ≤ 𝑗 ≤ 𝑘,

we claim that there exists ℎ = (ℎ1,… , ℎ𝑘) ∈ 𝐻 so that ℎ𝑗 = 𝑋𝑗. Since 𝑟𝑗 is

surjective , there exists 𝑔 ∈ 𝐺 such that 𝑟𝑗(𝑔) = 𝑋𝑗. Since 𝑔 is order 2, it is in

some Sylow 2-subgroup of 𝐺. Therefore, there exists a conjugate ℎ of 𝑔 in 𝐻.

Since 𝑟𝑗(𝑔) = 𝑋𝑗, ℎ𝑗 is non-trivial, ℎ𝑗 = 𝑋𝑗. As 𝑦ℎ𝑦−1 ∈ 𝐻, we have 𝑦𝑗𝑋𝑗𝑦−1
𝑗

or 𝑦𝑗𝑋𝑗𝑦−1
𝑗 = 1. The second case is not possible, since 𝑋𝑗 ≠ 1, so 𝑦𝑗 is in the

centralizer of 𝑋𝑗 in Σ3 which is {1,𝑋𝑗}. Since this is true for all 𝑗, we have

𝑦𝑗 = 𝑋𝑗 or 𝑦𝑗 = 1 for all 𝑗. Therefore, 𝑦 ∈ 𝑃, and it follows that 𝑁𝐺(𝐻) = 𝐻.
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4.5 Proof of the Main Theorem

Now, we state and prove the main theorem of [1].

Theorem 4.6. For every 𝑔 ≥ 2 there exists a 𝑔′ > 𝑔 and an injective homomor-

phism 𝜙 ∶ Mod(𝑆𝑔) → Mod(𝑆𝑔′).

Proof. Let Hom(𝑋,Σ3) be the group of all homomorphisms 𝑋 → Σ3, where

𝑋 = 𝜋1(𝑆𝑔). The group Aut(𝑋) acts on Hom(𝑋,Σ3). It is known that there

exists a surjective homomorphism 𝑋 → Σ3. Let {𝜌1,… , 𝜌𝑘} be the orbit of such

a surjective homomorphism under the action of Aut(𝑋). Define 𝜌 ∶ 𝑋 → 𝒮

as 𝜌 = 𝜌1 × … × 𝜌𝑘. For 𝐺 = 𝜌(𝑋) < 𝒮, we have 𝜌 is surjective onto 𝐺.

Moreover, since 𝜌𝑖 is surjective, the projection of 𝐺 onto 𝑗𝑡ℎ component is

𝑟𝑗(𝐺) = 𝜌𝑗(𝑋) = Σ3. By Proposition 4.5, 𝐺 has a proper subgroup which

satisfies the hypothesis of Proposition 4.4. We claim that the kernel of 𝜌 is

characteristic. Then by Proposition 4.4, the result follows. Let 𝐾 denote the

kernel of 𝜌. For 𝜎 ∈ Aut(𝑋) and 𝑘 ∈ 𝐾, we have 𝜌𝑖(𝑘) = 1 for all 𝑖. Further,

since 𝜌𝑖 ∘ 𝜎 lies in the orbit {𝜌1,… , 𝜌𝑘}, we must have 𝜌𝑖 ∘ 𝜎 = 𝜌𝑗 for some 𝑗.

Thus, 𝜌𝑖(𝜎(𝑘)) = 1, for all 𝑖. Hence, it follows that 𝐾 is characteristic.

4.6 An alternative construction of injective

In this section, we describe an alternate construction of a group 𝐺 and a 𝐻 < 𝐺,

satisfying the hypothesis of Proposition 4.4. For this construction, we need the

following result of Hall [10]

Lemma 4.7. Assume that 𝑋 is any group, that 𝑄1,… ,𝑄𝑘 are finite, non-

abelian simple groups, and that 𝜌𝑖 ∶ 𝑋 → 𝑄𝑖 is an epimorphism for 1 ≤ 𝑖 ≤ 𝑘.
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If 𝜌𝑖 and 𝜌𝑗 do not differ by an isomorphism 𝑄𝑖 → 𝑄𝑗 for any 𝑖 ≠ 𝑗, then

𝜌 = 𝜌1 ×…× 𝜌𝑘 ∶ 𝑋 → 𝑄𝑖 ×…×𝑄𝑗 is surjective.

For 𝑝 ≥ 5, let 𝐴 = PSL2(𝔽𝑝) be a finite, non-abelian, simple group. For

𝑋 = 𝜋1(𝑆), let 𝜌0 ∶ 𝑋 → 𝐴 be an epimorphism. We note that Aut(𝑋) and

Aut(𝐴) both act on Hom(𝑋,𝐴). Let {𝜌1,… , 𝜌𝑘} be a maximal collection of

elements of an Aut(𝑋)-orbit no two of which are in the same Aut(𝐴)-orbit.

Let 𝐺 be a 𝑘-fold product of PSL2(𝔽𝑝). Define 𝜌 ∶ 𝑋 → 𝐺 as 𝜌 = 𝜌1 ×…×𝜌𝑘.

For 𝜙 ∈ Aut(𝑋) and 1 ≤ 𝑖 ≤ 𝑘, 𝜌𝑖 ∘ 𝜙 must lie in a Aut(𝑋)-orbit. By maximality,

either 𝜌𝑖 ∘ 𝜙 ∈ {𝜌1,… , 𝜌𝑘} or 𝜌𝑖 ∘ 𝜙 differs by an automorphism from 𝜌𝑗 for some

𝜏 ∈ Aut(𝐴) and 1 ≤ 𝑗 ≤ 𝑘. Thus, for 𝜙 ∈ Aut(𝑋) and 1 ≤ 𝑖 ≤ 𝑘, there exists

𝜏 ∈ Aut(𝐴) and 1 ≤ 𝑗 ≤ 𝑘 such that 𝜌𝑖 ∘ 𝜙 = 𝜏 ∘ 𝜌𝑗. Further, if 𝑥 ∈ ker 𝜌, then

𝜌𝑖(𝜙(𝑥)) = 𝜏(𝜌𝑗(𝑥)) = 0, that is, 𝜙(𝑥) ∈ ker 𝜌 for all 𝜙 ∈ Aut(𝑋). Hence, ker 𝜌

is characteristic in 𝑋. Moreover, Lemma 4.7 implies that 𝜌 is surjective.

Now we construct 𝐻 < 𝐺 such that the hypothesis of Proposition 4.4 holds.

Consider the subgroup 𝐻0 of upper triangular matrices in 𝐴 and set 𝐻 =

𝐻0 × … × 𝐻0. Since 𝑁𝐴(𝐻0) = 𝐻0, it follows that 𝑁𝐺(𝐻) = 𝐻. Since 𝐺 is a

product of nonabelian finite simple groups, Aut(𝐺) acts on 𝐺 via automorphisms

in each factor up to a permutation. Since Aut(𝐴) 𝐻0 = Inn(𝐴) 𝐻0, it follows

that Aut(𝐺) 𝐻 = Inn(𝐺) 𝐻.

4.7 Constructing injections using the Birman

Exact Sequence

Let 𝑆 and ̃𝑆 be closed surfaces of genus 𝑔 and 𝑔′, respectively such that 𝑝 ∶ ̃𝑆 → 𝑆

is a characteristic cover. Let 𝑧 ∈ 𝑆 and ̃𝑧 ∈ ̃𝑆 be such that 𝑝( ̃𝑧) = 𝑧. We denote
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𝜋1(𝑆, 𝑧) and 𝜋1( ̃𝑆, ̃𝑧) by 𝑋 and 𝑋, respectively. Then we have the homomorphism

𝑝∗ ∶ 𝑋 → 𝑋 induced by 𝑝. The Birman exact sequence is given by

1 → 𝑋 → Mod(𝑆, 𝑧) → Mod(𝑆) → 1. (4.5)

For [𝑓] ∈ Mod(𝑆, 𝑧) we get an automorphism 𝑓∗ ∶ 𝜋1(𝑆, 𝑧) → 𝜋1(𝑆, 𝑧). If 𝑓 ′

is isotopic to 𝑓 relative to 𝑧, then the path induced by this isotopy from 𝑓(𝑧) = 𝑧

to 𝑓 ′(𝑧) = 𝑧 is null-homotopic. Therefore, we must have 𝑓 ′
∗ = 𝑓∗. Thus, an

element of Mod(𝑆, 𝑧) induces an automorphism of 𝑋. Since 𝑋 acts on itself via

inner automorphisms, we have the following commutative diagram of short exact

sequences.

1 𝑋 Mod(𝑆, 𝑧) Mod(𝑆) 1

1 Inn(𝑋) Aut(𝑋) Out(𝑋) 1,

𝛼 𝛽 𝛾

Where 𝛼, 𝛽, and 𝛾 are obvious maps. Since 𝜒(𝑆) < 0, the center of 𝑋 is trivial,

therefore 𝛼 is an isomorphism. By the Dehn-Nielsen-Baer Theorem 𝛾 is also an

isomorphism. Hence, by the Five Lemma, it follows that 𝛽 is an isomorphism.

Similarly, we have Mod( ̃𝑆, ̃𝑧) ≅ Aut(𝑋).

Now, we construct an injective homomorphism Aut(𝑋) → Aut(𝑋). For

𝜔 ∈ Aut(𝑋), define 𝛼 ∶ Aut(𝑋) → Aut(𝑋) as 𝛼(𝜔) = �̃�, where �̃� is defined as

�̃�( ̃𝛾) = 𝑝−1
∗ (𝜔(𝑝∗( ̃𝛾))), ̃𝛾 ∈ 𝑋. (4.6)

Since 𝑝∗(𝑋) is a characteristic in 𝑋, we have 𝜔(𝑝∗(𝑋)) = 𝑝∗(𝑋), where 𝜔 ∈

Aut(𝑋). Moreover, since 𝑝∗ is an isomorphism onto 𝑝∗(𝑋), �̃� is a well-defined
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element of Aut(𝑋).

Lemma 4.8. The homomorphism 𝛼 ∶ Aut(𝑋) → Aut(𝑋) is injective.

Proof. Assume that 𝜔 ∈ ker𝛼, that is, �̃�( ̃𝛾) = ̃𝛾 for all ̃𝛾 ∈ 𝑋. Therefore,

𝜔(𝛾) = 𝛾, where 𝛾 = 𝑝∗( ̃𝛾). Thus, 𝜔 restricts to identity on the finite index

subgroup 𝑝∗(𝑋). Now it follows from Proposition 1.15 that 𝜔 is identity.
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