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ABSTRACT

The purpose of this project is to understand the proof of Lickorish-Wallace

Theorem. We begin with studying some aspects of knot theory and prove

the existence and uniqueness of prime factorisation of knots. We go on to

understand the Jones polynomial and establish the fact that it is a knot

invariant. We study surface homeomorphisms and prove the classic result

that any orientation preserving homeomorphism can be written as a compo-

sition of Dehn twists [8]. Lickorish-Wallace theorem is proved by using the

aforementioned theorem.
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1. BASIC SURFACE TOPOLOGY

Surfaces are one of the most interesting objects in topology. In this chapter,

we skim through some standard results of surface topology. We also define

Euler characteristic and genus of a surface.

1.1 Surfaces and Triangulations

Definition 1.1.1. An n-dimensional manifold is a hausdorff topological

space such that every point has a neighbourhood homeomorphic to an n-

dimensional open disc. A 2-manifold is called a surface.

Definition 1.1.2. An n-dimensional manifold with boundary is a hausdorff

topological space such that every point has a neighbourhood homeomorphic

to an n-dimensional open disc or an half disc. The points with half-disc

neighbourhoods are called boundary points.

Definition 1.1.3. A surface S is triangulable if there is a two complex struc-

ture K such that S = |K| and satisfies following conditions:

(i). K has only triangular cells.

(ii). Any two triangles are identified along a single edges or a single vertex

or are disjoint.

This triangulated complex K is called a triangulation on S.

It is a very classic result about surfaces that every surface permits a

triangulation [11]. Moreover, every compact surface has a triangulation with

finite triangles. [7, Theorem 4.12]
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1.2 Euler characteristic and genus

Definition 1.2.1. Let V,E, F be the number of vertices, edges and faces in

a triangulation of a compact surface S respectively. The Euler characteristic,

denoted by χ(S) is given by

χ(S) = V − E + F.

The following theorem [7, Theorem 5.13] about Euler characteristic is a

well-known result and gives us the well definedness of the property.

Theorem 1.2.2. Euler characteristic does not depend on triangulation.

Remark 1.2.3. Let S be a surface with boundary and S∗ be the surface

(without boundary) obtained by sewing disks onto the k boundary circles.

Then, euler characteristic of S is given by

χ(S) = χ(S∗)− k.

Definition 1.2.4. Let S be a compact surface. The genus of S, denoted by

g(S) is given by

g(S) =

1
2
(2− χ), if S is orientable, and

2− χ, if S is non-orientable.

The genus of a surface S with boundary is the genus of S∗.

Definition 1.2.5. Let S1 and S2 be two surfaces. Remove a small disk from

each S1 and S2, then glue the boundary cirlces of these discs together to form

a new surface called connected sum of S1 and S2, denoted by S1#S2.

Theorem 1.2.6. χ(S1#S2) = χ(S1) + χ(S2)− 2.

Proof. Let Ti be triangulation of Si. Let vi, ei, fi be the number of vertices,

edges and faces respectively of triangles in the triangulation Ti. Removing

a disc from each of the surface is equivalent of removing a triangle from

the triangulation. Therefore, the connected sum is equivalent to removing a
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triangle each from the triangulations and gluing them along the boundaries

of these triangles. Therefore, in the new triangulated complex, number of

vertices, edges and faces are v1 + v2 − 3, e1 + e2 − 3, f1 + f2 − 2, respectively.

χ(S1#S2) = (v1 + v2 − v3)− (e1 + e2 − 3) + (f1 + f2 − 2)

= (v1 − e1 + f1) + (v2 − e2 + f2)− 2

= χ(S1) + χ(S2)− 2.

The following is a direct consequence of Theorem 1.2.6.

Corollary 1.2.7. g(S1#S2) = g(S1) + g(S2).

Corollary 1.2.8. If S ′ is the surface obtained by attaching the endpoints of

a strip to a surface S. Then, χ(S ′) = χ(S)− 1 .



2. BASIC KNOT THEORY

In this chapter, after introducing some basic concepts in knot theory, we

go on to study Seifert surfaces and give the definition of genus of a knot.

Finally, we prove the additivity of genus of a knot, which gives us the prime

factorisation.

2.1 Knots and Links

Definition 2.1.1. A knot is an embedding of a circle S1 into S3. The disjoint

union of m knots is called link of m components.

(a) Unknot. (b) Trefoil Knot.

Fig. 2.1: Knots.

Definition 2.1.2. A knot diagram is a two dimensional projection of a

knot with transverse intersections at crossings, without triple points (see

Figure 2.2) and equipped with crossing information.
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Fig. 2.2: These are not allowed.

Figure 2.3 shows the knot diagrams for Trefoil and Figure-Eight knots.

(a) Trefoil Knot. (b) Figure-Eight knot.

Fig. 2.3: Knot Diagrams.

Definition 2.1.3. Two links L1 and L2 are said to be equivalent if there

exists a continuous family of homeomorphisms ht : S
3 → S3, t ∈ [0, 1] such

that h0 is identity and h1(L1) = L2. The homeomorphisms h0 and h1 are

said to be ambient isotopic.

Definition 2.1.4. A link for which each component has been given an ori-

entation is called an oriented link (see Figure 2.4).

Fig. 2.4: Oriented Links.
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Definition 2.1.5. Let K1 and K2 be two oriented knots such that they are

embedded in distinct copies of S3. Remove a small ball from each copy of S3

that meets the knot in an unknotted spanning arc and then identify together

the resulting boundary spheres and their intersection with the knots so that

all orientations match up. The resulting knot is called connected sum of K1

and K2, denoted by K1#K2 (see Figure 2.5).

Fig. 2.5: Connected sum of knots.

The connected sum of knots has following properties:

1. It is commutative (see Figure 2.6).

Fig. 2.6: Commutativity of connected sum.

2. It is associative.
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3. It has an identity, that is unknot.

Definition 2.1.6. A knot K is a prime knot, if K = K1#K2 then either K1

or K2 is the unknot.

2.2 Seifert surfaces and Knot genus

Definition 2.2.1. A Seifert surface for an oriented link L in S3 is a con-

nected compact oriented surface contained in S3 that has L as its oriented

boundary.

Theorem 2.2.2. (Seifert’s algorithm): Any oriented link in S3 has a Seifert

surface.

Proof. For a link L, we give an algorithm to construct a Seifert surface.

1. Give the link an orientation.

2. Manipulate all the crossings in the way described in diagrams below.

We will end up with circles, which are called Seifert circuits. Seifert

circuits bound discs in S3.

3. Add rectangular strips with a half twist at the crossings connecting the

disks.

4. Orient the surface in the following way.

(a) If disks are on top of each other. (b) If the disks are adjacent.
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This process yields a surface which could be disconnected. We connect the

disconnected parts by a cylinder. Thus, following this algorithm we get a

connected compact oriented surface with the link L as its boundary.

Definition 2.2.3. The genus g(K) of a knot K is defined by

g(K) = min{g(F ) : F is a Seifert surface for K}.

Example 2.2.4. The unknot has disk as a Seifert surface, which implies

g(unknot) ≤ 0. Therefore, unknot is a 0-genus knot.

Theorem 2.2.5. Let K be a knot and F be the Seifert surface obtained by

the Seifert’s algorithm on a diagram of K, say D. Suppose D has n crossings

and s Seifert circuits Then:

(i). χ(F ) = s− n, and

(ii). g(K) ≤ 1
2
(n− s+ 1).

Proof. We know that χ(disk) = 1. Here, the knot diagram D has n crossings

and s Seifert circuits. This means that we have to attach the endpoints n

strips to s disks to obtain the Seifert surafce F . Then, (i) follows by Corollary

1.2.8.

As F is a surface with one boundary component, it follows by definiton that

g(F ) =
1

2
(n− s+ 2)− 1

=
1

2
(n− s+ 1).

Now, because g(K) is minimum over all Seifert surfaces (ii) follows.

Example 2.2.6. The diagram of figure-eight knot below has 3 Seifert circuits

and 4 crossings. Therefore, g(trefoil) ≤ 1
2
(4 − 3 + 1) = 1, which implies

that figure-eight is a 1-genus knot. This follows because figure-eight is not

equivalent to unknot.
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Theorem 2.2.7. For any two knots K1 and K2,

g(K1#K2) = g(K1) + g(K2).

Proof. Let Fi be the minimal genus surface for Ki. Let S ⊂ S3 be a 2-sphere

which separates K1 from K2. Then F1∩S = F2∩S is an arc on S. Hence, the

surface, F1 ∪ F2 has the knot K as its boundary and forms a Seifert surface

for K. The genus of F1 ∪ F2 is g(F1) + g(F2). Therefore,

g(K1#K2) ≤ g(K1) + g(K2).

The idea of the proof of reverse inequality is to construct Seifert surfaces for

K1 and K2, say P and Q, from the minimal Seifert surface of K, say F , such

that the genus of ther union is equal to genus of K. If such a construction

is possible, the result follows easily. Suppose F1 and F2 to be the minimal

Seifert surfaces for K1 and K2 respectively, then we have

g(K) = g(F ) = g(P ) + g(Q) ≥ g(F1) + g(F2) = g(K1) + g(K2).

Let S be the separating sphere of K1 and K2. Let S divide K into two arcs

α1 and α2, and let β be any curve joining two points of intersection of S with

K. Then, α1 ∪ β = K1 and α2 ∪ β = K2. By general position argument,we

can assume that F and S intersect transversally, that is F ∩S is a 1-manifold.

In particular, it is a collection of simple closed curves and the arc β.

Let C be the innermost simple closed curve, that is the curve which bounds

a disc D on S and D ∩ F = ϕ. Now, cut F along C and attach two parallel

disks on the either side of D resulting in a new surface F ′. This surface also

has K as its boundary.
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The above surgery has an effect of removing a handle from a surface (if

it is still connected after surgery), which decreases the genus of a surface by

1. So, if F ′ is connected, it contradicts the minimality of genus of F . Hence,

F ′ is disconnected.

Repeating this surgery till all the intersections are removed will result in

a Seifert surface, P for K, with the same genus as F and intersecting S only

in β. Thus, S separates P into Seifert surfaces of K1 and K2 and the result

follows.

Corollary 2.2.8. No non-trivial knot has an additive inverse.

Corollary 2.2.9. There are infinitely many distinct knots.

Proof. Suppose K is a nontrivial knot, and nK denotes connected sum
n

#
i=1

K.

Since mK = nK if and only if m = n, there are infinitely many distinct

knots.

Corollary 2.2.10. A knot of genus 1 is prime.

Corollary 2.2.11. A knot can be expressed as a finite sum of prime knots.

Proof. Suppose a knot is non-prime, then it can be expressed as a sum of

knots of smaller genus. The assertion follows by inducting on the genus.

This proves that every knot can be factorised into prime knots. We will prove

uniqueness (up to order) of this factorisation in next chapter.



3. UNIQUE PRIME

FACTORIZATION THEOREM FOR

KNOTS

We have proved that the knots can be factorised into prime knots. This

chapter is dedicated entirely to the proof of uniqueness of this prime factori-

sation.

3.1 Preliminaries

Definition 3.1.1. A topological embedding i : M → N of a k-dimensional

manifoldM into an n-dimensional manifold N is locally flat at x ∈ M if there

exists a neighbourhood U of i(x) in N such that (U,U ∩ i(M)) ∼= (Rn,Rk).

An embedding is said to be locally flat if it is locally flat at each point x of

its domain.

The following theorem is a generalisation of Jordan curve theorem in 3-

dimensions [2].

Theorem 3.1.2. (Schönflies theorem) Let e : S2 → S3 be any local flat

embedding. Then S3 − eS2 has two components, the closure of each of which

is a ball.

Remark 3.1.3. The hypothesis of local flatness is required because there

happen to be weird embeddings of S2 into S3. One example is the Alexander’s

Horned Sphere (see Figure 3.1).
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Fig. 3.1: Alexander’s Horned Sphere.

3.2 Unique Prime Factorisation theorem

Definition 3.2.1. Let Sj, 1 ≤ j ≤ m, be a system of disjoint 2-spheres

embedded in S3, bounding 2m balls Bi, 1 ≤ i ≤ 2m, in S3, and denote by

Bj, Bc(j) the two balls bounded by Sj. If Bi contains the s balls Bl(1), . . . , Bl(s)

as proper subsets, Ri = Bi \
( s∪

q=1

int(Bl(q)
)
is called the domain Ri. The

spheres Sj are said to be decomposing with respect to a knot K ⊂ S3 if the

following conditions are fulfilled:

1. Each sphere Sj meets K in two points.

2. The arc αi = K ∩Ri , oriented as K, and completed by simple arcs on

the boundary of Ri to represent a knot Ki ⊂ Ri ⊂ Bi , is prime. Ki is

called the factor of K determined by Bi.

The set S = {Sj, 1 ≤ j ≤ m} is called the decomposing sphere system (DSS)

for K (see Figure 3.2).

Lemma 3.2.2. Let S be a DSS for K with m spheres. Then the factoring

has m+ 1 prime knots: K =
m+1

#
i=1

Ki.

Proof. The case m = 0 is vacuously true. The case m = 1 implies that there

is a separating sphere between connected sum of two knots, which is true.

Assume that the lemma is true for any value less than m. Let Bp be an

innermost ball, that is, there is no ball B such that B ⊂ Bx. Replace the
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Fig. 3.2: Decomposing Sphere system.

arc K ′
p = K ∩ Bp with any arc joining two points of K ∩ Sp on Sp. This

forms a new knot K̂. By the definition of factorising sphere, it is clear that

K = K̂#Kp. Let Ŝ = S \ {Sp}, then Ŝ is a DSS for K̂ and it has m − 1

spheres. By our induction hypothesis, this implies that K̂ is decomposed into

m factors that is
m

#
i=1

K̂i. Therefore, S gives the factorization K =
m

#
i=1

K̂i#K̂p,

which has m+ 1 terms, as required.

Definition 3.2.3. Let S and S ′ be DSS’s for the knot K. Then S ∼ S ′ if

they determine the same factorizations of K.

Lemma 3.2.4. Let S = {S1, . . . , Sm} be a DSS for K. Let Bk be an outer-

most ball within Bi. Then Bc(k) and Bi determine the same knot.

Proof. As Bk is the outermost ball in Bi, Bc(k) contains every ball outside Bk

except Bi. Hence, the knot determined by Bi is same as the knot determined

by Bc(k).

Lemma 3.2.5. Let S = {S1, . . . , Sm} be a DSS for K. Let Ŝj be another

2−sphere in S3, disjoint from each Si ∈ S, that bounds B̂j. Let Ŝ = (S \
{Sj}) ∪ {Ŝj}. Suppose Bj is outermost in B̂j and that B̂j determines the

same knot Kj (relative to Ŝ) as Bj does (relative to S). Then Ŝ ∼ S.

Proof. To prove the equivalence we have to prove that balls in both the DSSs

determine the same knots. The proof involves determining the knot factors

of each and every ball of both the DSS.
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By hypothesis Bj and B̂j determine the same factorKj. Hence, the region

M =
∪

Bi⊂B̂j
int(Bi), where Si ∈ S, determines the unknot. This implies that

B̂c(j) and Bc(j) determine the same factor Kc(j).

Now, consider balls lying inside B̂j. Let i ̸= j and assume Bi ⊂ B̂j.

Suppose Bi is not the outermost ball in B̂j. This means that there is a k

such that Bi ⊂ Bk ⊂ B̂j. Clearly, the knot determined by Bi in Ŝ is same

as the one in S. As it is not the outermost, Bc(i) determines the same knot

Kc(i) in both the DSS.

If Bi is the outermost ball, then Bi determines the factor Ki. Bc(i) con-

tains every ball contained in B̂c(j) and B̂j (except the ones inside Bi). Hence,

it determines the same knot as Bj, that is, Kj with respect to Ŝ. The knot

Kc(i) is determined by B̂c(j), since Bi is an outermost ball in Bc(j).

The same can be done for balls lying outside B̂j and the lemma follows.

Theorem 3.2.6 (Unique Prime factorisation of knots). Let S and S ′ be DSSs

for K. Then S ∼ S′.

Proof. Let S = {S1, . . . , Sm} and S ′ = {S ′
1, . . . , S

′
n} be two DSSs for K. We

prove this by induction on m+ n. For m+ n = 0, it is vacuously true. The

spheres are assumed to be in general position.

Suppose there exists Bi such that Bi ∩ S ′ = ∅, and does not contain any

other Bp or B′
p. Then, there exists S ′

j, Si is outermost within some S ′
j with

respect to S ′, otherwise S ′ would not be a DSS for K. Now, replace S ′
j by

Si, by Lemma 3.2.5, S ′ ∼ S ′′, where S ′′ = (S ′ \ {S ′
j}) ∪ Si.

Let K̂ = (K \ Bi) ∪ Ki. Then, K = K̂#Ki. Let Ŝ = S \ Si, and

Ŝ ′′ = S ′′ \ Si. Ŝ and Ŝ ′′ are DSSs for K̂. By induction hypothesis, Ŝ ∼ Ŝ ′′

and thus they give the same factors
m

#
j=1

K̂j. Then by definition of factoring,

S and S ′′ give
m

#
j=1

K̂j#Ki. Hence, S
′ ∼ S ′′ ∼ S.

Suppose there is no such ball. Let B′
j be an innermost ball with respect

to S and S ′. Let λ be an innermost curve of S ′
j ∩S. Thus there exists a disk

D ⊂ S ′
j with ∂D = λ and int(D) ∩ S = ∅.

Now there exists i such that λ ⊂ Si and D ⊂ Bi and int(D) ⊂ int(Bi).
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So, D divides Bi into two balls, Bi1 and Bi2 . One of these determines the

factor Ki and the other determines an unknot.

Without loss of generality, let Bi1 determine Ki. By surgery, reduce the

number of intersections and apply the previous case.



4. JONES POLYNOMIAL

This chapter is dedicated to understanding one of the most important in-

variants of links called Jones Polynomial, named after V.F.R Jones. We

introduce Reidemeister moves, which are one of the most important ways of

modifying knots without actually changing them. We define Jones Polyno-

mial using Kauffmann Bracket.

4.1 Reidemeister moves and Kauffmann

Bracket

Definition 4.1.1. (Reidemeister moves) Two links L1 and L2 are equivalent

if they are related by a sequence of Reidemeister moves. The three types of

Reidemeister moves are shown below.

Move-I

oo //

Move-II

oo //

Move-III

oo //

Definition 4.1.2. The Kauffmann Bracket of a link diagram in S2 is a
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Laurent polynomial with integer coefficients in an indeterminate A. It is

defined using these three rules:

(i)
⟨ ⟩

= 1.

(ii)
⟨
D ∪

⟩
= (−A−2 − A2)

⟨
D
⟩
.

(iii)
⟨ ⟩

= A
⟨ ⟩

+ A−1
⟨ ⟩

It is clear from the definition that any ambient isotopy on S2 is not going to

change the bracket polynomial of a link diagram.

Lemma 4.1.3. Kauffmann Bracket of a Link L is invariant over Type-II and

Type-III Reidemeister moves.

Proof. We have

⟨ ⟩
= A

⟨ ⟩
+ A−1

⟨ ⟩
= A2

⟨ ⟩
+
⟨ ⟩

+
⟨ ⟩

+ A−2
⟨ ⟩

= A2
⟨ ⟩

+
⟨ ⟩

+ (−A−2 − A2)
⟨ ⟩

+ A−2
⟨ ⟩

=
⟨ ⟩

Hence, its invariant under Type-II Reidemeister move.

Now, we have

⟨ ⟩
= A

⟨ ⟩
+ A−1

⟨ ⟩
= A

⟨ ⟩
+ A−1

⟨ ⟩
=

⟨ ⟩

Hence, its invariant under Type-III Reidemeister move.

Lemma 4.1.4. Type-I Reidemeister moves changes the bracket polynomial

in the following way:
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(i)
⟨ ⟩

= −A3
⟨ ⟩

(ii)
⟨ ⟩

= −A−3
⟨ ⟩

Proof. We have

⟨ ⟩
= A

⟨ ⟩
+ A−1

⟨ ⟩
= A(−A2 − A−2)

⟨ ⟩
+ A−1

⟨ ⟩
= −A3

⟨ ⟩
Hence, (i) follows. Similarly, (ii) can be proved.

Each crossing in an oriented link can be given signs in the following fashion:

??__

+1

??__

-1

Definition 4.1.5. The writhe w(L) of a diagram L of an oriented link is

defined as the sum of the signs of crossings of L.

Example 4.1.6. Consider the following diagram K of an oriented trefoil

knot.

−1��
−1

FF

−1
oo

Here, w(K) = −1− 1− 1 = −3.

It is easy to check that Type-II and Type-III Reidemeister moves would

not change the writhe. Type-I Reidemeister moves changes the writhe by

±1.
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4.2 Jones Polynomial

Definition 4.2.1. The Jones Polynomial V (D) of a diagramD of an oriented

link L is the Laurent polynomial with integer coefficients, defined by

V (D) = (−A)−3w(D)⟨D⟩ with A−2 = t1/2

Theorem 4.2.2. The Jones Polynomial is a oriented link invariant.

Proof. It is enough to prove that any Reidemeister move will not change the

Jones Polynomial. Clearly, Type-II and Type-III Reidemeister moves will

not change the Jones polynomial, as ⟨D⟩ and w(D) are unchanged by them.

It remains to check the invariance in the case of Type-I Reidemeister

move. From Lemma 4.1.4, the bracket polynomial of a diagram D is changed

by a factor of −A3 and w(D) changes by +1. So

(−A)−3(w(D)+1)(−A3⟨D⟩ ) = (−A)−3w(D)⟨D⟩

A similar argument works for the other Type-I Reidemeister move. Therefore,

the expression is unchanged by Type-I Reidemeister move and the assertion

follows.

It follows from the theorem that, any diagram D of an oriented link L will

give us the same polynomial.

Definition 4.2.3. Let L be an oriented link with two components K1 and

K2. The linking number lk(K1, K2) is the half of the sum of signs of crossings

involving a strand each from K1 and K2.

Proposition 4.2.4. Linking number is an oriented link invariant [12, The-

orem 3.8.2].

Remark 4.2.5. Let c denote the crossings of a diagram D of an oriented

link L. Define a function ε such that ε(c) gives the sign of the crossing c.

Therefore,

w(D) =
∑
c∈D

ε(c), and lk(K1, K2) =
1
2

∑
c∈K1∩K2

ε(c).
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Proposition 4.2.6. Let L be an oriented link and L∗ be the oriented link

obtained after reversing the orientation of one of the components, say K, of

L. Then,

V (L∗) = t−3lk(K,L−K)V (L).

Proof. Let D be a diagram of L. We know that w(D) =
∑
c∈D

ε(c) and

lk(K,L−K) = 1
2

∑
c∈K∩L−K

ε(c). Let D∗ be the diagram of L∗. Then

w(D∗) =
∑
c∈D

ε(c)

= w(D)− 2
∑

c∈K∩L−K

ε(c)

= w(D)− 4lk(K,L−K).

Note that ⟨D∗⟩ = ⟨D⟩ as bracket polynomial is independent of orientation.

Now,

V (L∗) = A−3w(D∗)⟨D∗⟩

= A−3(w(D)−4lk(K,L−K))⟨D∗⟩

= A12lk(K,L−K)A−3(w(D)⟨D⟩

= t−3lk(K,L−K). ∵ A2 = t−1/2.

Hence, the proposition follows.

Proposition 4.2.7. The Jones Polynomial invariant is a function

V : {Oriented links in S3} −→ Z[t−1/2, t1/2]

such that

(i) V ( ) = 1.

(ii) Let L+, L− and L0 are the same link, except for at one crossing as
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shown in the Figure 4.1, then

t−1V (L+)− tV (L−) + (t−1/2 − t1/2)V (L0) = 0.

??__

L+

??__

L−

oo //

L0

Fig. 4.1

Proof. We know that, w( ) = 0 and
⟨ ⟩

= 1. Hence, V ( ) = 1 and (i)

follows.

For (ii), we know that ,

⟨ ⟩
= A

⟨ ⟩
+ A−1

⟨ ⟩
. (4.1)⟨ ⟩

= A−1
⟨ ⟩

+ A
⟨ ⟩

. (4.2)

Multiplying (4.1) with A, (4.2) with A−1 and subtracting gives

A
⟨ ⟩

− A−1
⟨ ⟩

= (A2 − A−2)
⟨ ⟩

. (4.3)

It is clear from the diagrams above that

w(L+)− 1 = w(L0) = w(L−)− 1.

Multiply (−A)−3w(L0) on both sides of (4.3)

−A4V (L+) + A−4V (L−) = (A2 − A−2)V (L0).

After substituting t−1/2 = A2, we get

t−1V (L+)− tV (L−) + (t−1/2 − t1/2)V (L0) = 0.
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Remark 4.2.8. We can easily observe that,

V (K1#K2) = V (K1) · V (K2). (4.4)

This is because we can calculate the bracket polynomial of the connected

sum of knots by operating first on only first summand. This is true also for

links, but the connected sum is not well defined in links.

Example 4.2.9. (A limitation of Jones Polynomial) Let L be a link which

is disjoint union of a trefoil knot and an unknot and K be another trefoil.

Now, L#1K be the link obtained by performing connected sum operation

between K and unknot of L and L#2K be the link obtained by performing

connected sum operation between K and trefoil knot of L. Clearly, L#1K

and L#2K are not equivalent, but they have the same Jones polynomial by

(4.4).



5. DEHN-LICKORISH THEOREM

The main objects of study in this chapter are surface homeomorphisms. We

define Mapping class groups and also a special class of surface homeomor-

phisms called Dehn twists. Our aim is to prove the classic result about

surface homeomorphisms which was independently proved by Lickorish and

Dehn (see Theorem 5.2.11).

5.1 Mapping Class Groups

Definition 5.1.1. Let S be a surface; f0 and f1 be self-homeomorphisms

of S. f0 and f1 are said to be isotopic if there exists a homeomorphism

H : S × [0, 1] → S such that:

1. H(x, t) = ht(x) where each ht is a self-homeomorphism of S.

2. h0 = f0, h1 = f1.

The following result by Munkres [10] will help us to understand the idea

of orientation preserving homeomorphisms using diffeomorphisms.

Theorem 5.1.2. Every homeomorphism of a compact surface S is isotopic

to a diffeomorphism.

Definition 5.1.3. Let h be a homeomorphism of a surface S. Then h is called

an orientation preserving homeomorphism, if any diffeomorphism isotopic to

h is orientation preserving.

Let Homeo+(S, ∂S) be the set of all orientation preserving self-homeomorphisms

of S that is identity on ∂X. Let Homeo0(S, ∂S) be the set of all elements

in Homeo+(S, ∂S) which are isotopic to identity and these isotopies are also

identity on boundary.
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Proposition 5.1.4. Homeo+(S, ∂S) forms a group.

Proof. We will show that this set satisfies the group axioms with composition

as group operation:

1. Let f, g ∈ Homeo+(S, ∂S). It is clear that f ◦ g is also a homeomor-

phism. It is orientation preserving because the composition of orienta-

tion preserving diffeomorphisms is orientation preserving.

2. Associativity is property of the composition.

3. For every f ∈ Homeo+(S, ∂S), f−1 ∈ Homeo+(S, ∂S), since inverse

of a homeomorphism is a homeomorphism and orientation preserving

follows from its corresponding diffeomorphism.

4. The identity map of S, denoted as IdS, is an orientation preserving

homeomorphism and f ◦ IdS = f = IdS ◦ f, ∀f ∈ Homeo+(S, ∂S).

Thus, Homeo+(S, ∂S) forms a group.

Proposition 5.1.5. Homeo0(S) is a normal subgroup of Homeo+(S).

Proof. Let n1, n2 ∈ Homeo0(S, ∂S) and Ni be isotopies of ni for i = 1, 2.

1. Define F : S × [0, 1] → S by F (x, t) = N1(N2(x, t), t). This gives an

isotopy from n1 ◦ n2 to IdS.

2. Define G : S × [0, 1] → S by G(x, t) = N−1
1 (x, t). This gives an isotopy

from n−1
1 to IdS.

3. Define H : S × [0, 1] → S by H(x, t) = f ◦N1(f
−1(x), t), where

f ∈ Homeo+(S, ∂S).

Thus, Homeo0(S, ∂S) is a normal subgroup of Homeo+(S, ∂S). Note that all

isotopies are fixing the boundary pointwise as required.

Definition 5.1.6. The mapping class group of a surface S is defined as the

quotient group

MCG(S) = Homeo+(S, ∂S)/Homeo0(S, ∂S).
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Remark 5.1.7. Let f, g ∈ MCG(S). Then f = g iff fg−1 = n =⇒ f = ng,

where n ∈ Homeo0(S, ∂S). Suppose f = n1g1n2g2 i.e., f ∈ NSg1NSg2, then

f ∈ NSg1g2, where NS = Homeo0(S, ∂S). This implies that there exists

n3 ∈ N such that f = n3g1g2, in other words, f is isotopic to g1g2. From

now on, we will denote Homeo0(S, ∂S) by NS.

5.2 Dehn Lickorish Theorem

Definition 5.2.1. Let C be a simple closed curve on S. Consider an annular

neighbourhood of C, i.e, C× [0, 1] ∼= S1× [0, 1] , say A. Cut S along C, twist

one of the free ends of cylinder through an angle of 2π and glue it together

again. This is called a Dehn twist about the curve C (see Figure 5.1).

In other words, Dehn twist is a homeomorphism τ : S → S such that

τ |S−A is the identity and τ |A by τ(eiθ, t) = (ei(θ−2πt), t).

(a) (b)

(c) (d)

Fig. 5.1: Dehn Twist.

Similarly, if we twist in the other direction, we get the inverse of τ which

is the homeomorphism τ−1 : S → S such that τ−1|S−A is the identity and

τ |A by τ(eiθ, t) = (ei(θ+2πt), t).

Definition 5.2.2. Let p and q be two simple closed curves in a surface S.

The curve p is said to be twist equivalent to q, denoted as p ∼τ q, if there

exists a sequence of Dehn twists h1, . . . hm and n, a homeomorphism isotopic

to identity such that nh1 · · ·hmp = q.
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Proposition 5.2.3. ∼τ is an equivalence relation.

Proof. Reflexivity of ∼τ is straightforward. Let p ∼τ q. This implies that

there exists a sequence of Dehn twists h1, . . . hm and n ∈ NS such that

nh1 · · ·hmp = q =⇒ p = h−1
m · · ·h−1

1 n−1q =⇒ p = n′h−1
m · · ·h−1

1 q for some

n′. Hence, q ∼τ p. Let p ∼τ q and q ∼τ r. This implies that there exists

h1, · · ·hm, g1, · · · gk and n1, n2 ∈ NS such that p = n1h1 · · ·hmq and q =

n2g1 · · · gnr. Then, p = n1h1 · · ·hmn2g1 · · · gnr =⇒ p = n3h1 · · ·hmg1 · · · gnr,
for some n3 ∈ NS. Hence, p ∼τ r. Thus, ∼τ is an equivalence relation.

Lemma 5.2.4. If p and q are two simple closed curves in S intersecting at

only one point, then p ∼τ q.

Proof. Let p and q be as shown in Figure 5.2a. Let the intersection point of

p and q be x and τq be the Dehn twist about the curve q. We see that τqp

is a copy p, which is cut at x and traverses q to return to x and follows the

(a) (b) (c)

Fig. 5.2

remaining (see Figure 5.2b) . Now, perform a Dehn twist along the curve

r, as in the second picture, then τrτqp is shown in Figure 5.2c. Then, there

exists an isotopy of S sending τrτqp to q. Hence, ∃ n ∈ NS and Dehn twists

τr, τq such that nτrτqp = q; i.e., p ∼τ q.

Figure 5.3 illustrates the proof of previous lemma with the example of merid-

ian and longitude of the torus.
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Fig. 5.3

Corollary 5.2.5. Let p1, . . . , pn be simple closed curves on S such that pi

and pi+1 intersect at one point for 1 ≤ i ≤ n− 1. Then, p1 ∼τ pn.

Proof. As p1 and p2 intersect at only one point, from Lemma 5.2.4, it follows

that p1 ∼τ p2. Similarly, p2 ∼τ p3. Hence, by transitivity of ∼τ , p1 ∼τ p3.

Repeating this, we get p1 ∼τ pn .

Lemma 5.2.6. Let p and q be two simple closed curves in X and A be a

neighbourhood of q in S. Then, there exists a path p∗ such that

(i) p ∼τ p∗,

(ii) p∗ ∩ (S \ A) ⊂ p ∩ (S \ A), and

(iii) either p∗ does not intersect q or intersects it twice with zero algebraic

intersection.

Proof. Let m be the number of points of intersection of p and q.

Case 1: If m = 0, then the lemma is trivial.

Case 2: If m = 1, then by Lemma 5.2.4, p ∼τ q. We have an n ∈ NS such

that nq = q′ (see Figure 5.4), such that q′ ∩ (S \ A) = ∅. As q ∼τ q′, by

transitivity, p ∼τ q′ and q does not intersect q′. Hence, q′ = p∗.

Fig. 5.4
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Case 3: Ifm = 2, and p has opposite orientations at the points of intersection,

then take p = p∗ (see Figure 5.4).

Fig. 5.5

Now, assume that the lemma is true for all p and q intersecting at less than

k points, i.e., m < k. Let p and q be two curves with m = k.

Case 4: Suppose there are two adjacent points of intersection on q, say α

and β, such that p goes in the same direction at these points. Let P and

Q be two points in A, in a neighbourhood of α and β respectively. Join

the points P and Q by a line segment cutting p and q once in A. From P

traverse along p till the point Q to form a simple closed curve, say p1 (see

Figure 5.6). As p1 cuts p at one point, p1 ∼τ p. There is an n ∈ NS such

that np1 ∩ (S \ A) ⊂ p ∩ (S \ A). Also, observe that np1 cuts q at less than

k points. Hence, by induction hypothesis, there exists an l such that the

lemma is true for np1 and q. It is clear that l ∩ (S \ A) ⊂ p ∩ (S \ A) and

(a) (b)

Fig. 5.6
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by transitivity p ∼τ l. Hence, l is our required p∗.

Case 5: Suppose there are three adjacent points α, β and γ on q such that

the direction of p alternates accordingly at these points (see Figure 5.7a). β

will lie on either the segment −→γα or −→αγ. Assume that it lies on −→γα. Let P

and Q be points in A such that they lie in the neighbourhood of α and γ

respectively. Join P and Q by a line segment in A. From Q, traverse the

path along p to P to get simple closed curve, say C (see Figure 5.7b).

(a) (b)

Fig. 5.7

Now, perform a Dehn twist h along C on S, taking p to hp as shown in

Figure 5.8a. From the figure, it is clear that there exists an n ∈ NS such

that nhp is as shown in Figure 5.8b and nhp ∩ (S \ A) ⊂ p ∩ (S \ A). Now

(a) (b)

Fig. 5.8

nhp intersects q at atmost k − 2 points, as atleast two points of intersection

were removed and none added by our modifications. Hence, there exists an l
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such that the lemma is true for nhp and l. It is clear that l∩(S\A) ⊂ p∩(S\A)
and by transitivity p ∼τ l. Hence, l is our required p∗.

Corollary 5.2.7. Let p, q1, · · · , qn be simple closed curves on S such that

q′is are pairwise disjoint. Then, there exists p∗ such that :

(i) p ∼τ p∗, and

(ii) either p∗ does not intersect qi or intersects it twice with zero algebraic

intersection, for every i.

Proof. Let Ai be the neighbourhood of qi such that Ai ∩ Aj = ∅. Suppose p

intersects q1 at only one point, then p ∼τ q1 and there exists n ∈ NS such

that nq1 is disjoint from q1. Then, nq1 is the required p∗.

Suppose p intersects q1 at more than one point, then by applying Lemma

5.2.6, we get p1 ∼τ p such that p1 intersects q1 atmost twice with zero alge-

braic intersection and p1 ∩ (S \A1) ⊂ p∩ (S \A1). Now, if p1 intersects q2 at

only one point then there exists n′ ∈ NS such that n′q2 is our required p∗. If

p1 intersects q2 at more than one point, then again apply Lemma 5.2.6 to get

p2 ∼τ p1 such that p2 intersects q2 atmost twice with zero algebraic intersec-

tion and p2 ∩ (S \A2) ⊂ p1 ∩ (S \A2). Now, as q1 ⊂ X \A2, p2’s intersection

with q1 is same as p1. Repeating this way, finally we get pk satisfying the

properties of p∗.

From the classification theorem of surfaces, we know that every closed,

connected, orientable surfaces is connected sum of tori. In other words, any

Fig. 5.9: A typical surface.

closed, connected, orientable surface can be thought of as sphere with handles
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attached. A typical such surface is shown in Figure 5.9. From now on, we

think of a closed, connected oriented surface of genus g as a sphere with g

handles attached.

Definition 5.2.8. Let cα, cβ, cγ be as shown in Figure 5.10. A curve is said

to meet the handle if it intersects cβ (see Figure 5.11a), otherwise it does not

meet the handle (see Figure 5.11b). A curve is said to go through the handle

if it does not meet the handle and intersects cγ odd number of times (see

Figure 5.11c).

Fig. 5.10: A handle with cα, cβ, cγ.

(a) (b) (c)

Fig. 5.11

Lemma 5.2.9. Let p be a simple closed curve in S. Then there exists a p∗

such that:

(i) p ∼τ p∗, and
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(ii) p∗ does not meet any of the handles of S.

Proof. Let q1, . . . qk be the collection of all c′αs and c′βs on S. Thus, this is

a collection of pairwise disjoint curves on S. Applying Corollary 5.2.7, we

get a simple closed curve l which either does not intersect qi or intersects it

twice with zero algebraic intersection and p ∼τ l. Now, we will reduce this

intersection by performing an isotopy on l.

At any handle, l enters the handle cutting cα, then cuts cβ twice with

zero algebraic intersection and returns cutting cα in the opposite direction.

Let A and B be the points of intersection of l with some qi, which is a cβ of

some handle. Assume A to be the first point we encounter when we traverse

along l, according to its orientation. Let α be the path
−→
AB on qi, β be the

path
−→
BA on qi, γ be the part of l from A to B in the direction of the curve

(see Figure 5.12a). Then, [α ∗ β] = [qi]. The simple closed curves γ ∗ α and

γ ∗ β can be seen as loops based at A. Any part of l cannot follow cγ of the

(a) (b)

(c)

Fig. 5.12
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handle as it would result in non-zero algebraic intersection. The only pos-

sibilities left for γ ∗ α and γ ∗ β is that they are homotopic to qi. Suppose

[γ ∗ β] = [α ∗ β], then [γ] ∗ [β] = [α] ∗ [β] =⇒ [γ] = [α] =⇒ [γ] ∗ [α] = Id.

Thus, γ ∗ α bounds a disk (see Figure 5.12b). We can perform an iso-

topy to move the curve through this disk and remove the intersection (see

Figure 5.12c).

Lemma 5.2.10. Let f be homeomorphism of disk which is identity on

boundary. Then f is isotopic to identity. In other words, MCG(D2) is

trivial.

Proof. Consider for 0 ≤ t < 1

F (x, t) =

(1− t)f( x
1−t

), if 0 ≤ |x| ≤ 1− t, and

x, if 1− t ≤ |x| ≤ 1.

Clearly, F (x, 0) = f(x) and F (x, 1) = x = Id(x), and this defines and isotopy

from f to the identity.

Fig. 5.13: Pictorial representation of the isotopy.

This isotopy can be seen as increasing the portion of Identity on the disk and

ultimaley covering the entire disc (see Figure 5.13).
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Theorem 5.2.11. Any orientation preserving homeomorphism of a closed,

connected, orientable surface S is isotopic to the product of a sequence of

Dehn-twists.

Proof. The theorem will be proved in two steps. The first step is to prove

that given a homeomorphism, composing it with Dehn twists and a home-

omorphism isotopic to identity, we get another homeomorphism which is

identity on all cβ’s of S. Next, step will be to prove that given any homeo-

morphism of a disk with k holes which is identity on boundary, composing it

with Dehn twists and a homeomorphism isotopic to identity, we get another

homeomorphism which is identity.

Step-1: Let p1, . . . , pk be the c′βs of the handles of the surface S and

h ∈ Homeo+(S). We will prove that there exists n ∈ NS and s, a prod-

uct of Dehn twists such that nshpi = pi, for all 1 ≤ i ≤ k i.e., nsh is identity

on pi ∀i . Assume that this is true for all i ≤ t, we will prove that it is true

for t+ 1.

By induction hypothesis, there exists n ∈ NS and s, a product of Dehn

twists such that nshpi = pi, forall 1 ≤ i ≤ t. Let nshpt+1 be denoted by q.

By Lemma 5.2.9, there exists a p∗ such that p∗ does not meet any handles

and p∗ ∼τ q. As p∗ ∼τ q, there exists n1 ∈ NS and a product of Dehn

twists s1 such that n1s1q = p∗. We can choose this n1, s1 in such a way that

n1s1nshpi = pi for all i ≤ t. This is because q does not intersect any of the

pi, i ≤ t, since nsh fixes pi, i ≤ t. Thus, by the proof of Lemma 5.2.9, the

construction of p∗ can be done without affecting pi for i ≤ t.

Observe that p∗ is not trivial, as it is a homemorphic copy of a non-trivial

curve pt+1. Moreover, p∗ lies completely on the sphere component of S, as it

does not meet any handle of S. By Jordan Curve theorem, p∗ must divide

sphere into two components. We know that, p∗ is non-separating, since pt+1 is

non-separating. So, there exists a handle which connects the two components

of sphere. Hence, p∗ goes through some handles of S.

Since pt+1 is not homologous to any of the pi, we have nshpt+1 = q is not

homologous to any of the nshpi, as homeomorphism induces an isomorphism

of homologies. As nshpi = pi, for i ≤ t, q is not homologous to pi, for i ≤ t.

Hence, p∗ cannot be a linear combination of pi which means that p∗ has to
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pass through some handles which do not contain pi as cβ.

Let H be such a handle. Take curves l and m such as shown in the

Figure 5.14. Then, by Lemma 5.2.4 and the transitivity of twist equivalence,

p∗ ∼τ q. Hence, ∃ n2 ∈ NS and a product of Dehn twists, s2 such that

n2s2p∗ = pt+1. By the proof of Lemma 5.2.4, n2, s2 can be chosen such that

n2s2n1s1nshpi = pi , for i ≤ t. As q = nshpt+1 = p∗ and n2s2p∗ = pt+1, we

get that n2s2n1s1nshpt+1 = pt+1.

Fig. 5.14

We know that, there exists n3 ∈ NS, such that n3s2s1s = n2s2n1s1ns. Thus,

we have n′ = n3 and s′ = s2s1s such that n′s′hpi = pi, i ≤ t+ 1.

If we cut our surface along all p′is, we get a disc with k holes and n′s′h

would an orientation preserving homeomorphism of a disc with k holes which

is identity on the boundary.

Step-2: We will prove that, if Du be the disc with u holes and f , a home-

omorphism which is identity on the boundary, then ∃n ∈ Homeo0(X) and

s, a product of Dehn twists such that nsf = Id. The case u = 1 is done by

Lemma 5.2.10. Now, assume it is true for Dk, we have to prove it for Dk+1.

Let f be a homeomorphism of Dk+1 such that it is identity on the boundary.
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(a) (b)

Fig. 5.15

Let p be a path from a point P on one boundary circle to Q on another

boundary circle. We can assume that f is identity on small intervals near

the boundary circle. Let P1, . . . Pr be the points of the intersection of fp and

p, in the order of their appearance on p, such that f is identity on PP1.

Fig. 5.16

Case-I : Suppose fp is in the same direction at P1 and P2 (see Figure 5.17a).

Consider the curve C, which starts in a neighbourhood of P1 and goes till P2

then fp to reach back to P1 (see Figure 5.17b). Perform a Dehn twist along

this curve to get sfp as in Figure 5.17c . There exists n ∈ NS such that nsfp

is identity on PP2.
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(a) (b)

(c)

Fig. 5.17

(a) (b)

(c)

Fig. 5.18
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Case-II : Suppose fp is in different directions at P1 and P2 (see Figure 5.18a).

Consider the curve C in Figure 5.18b . Perform a Dehn twist along C to

get a curve which has same direction at these points which reduces to Case-I

(see Figure 5.18c). Repeating this we get n′′ ∈ NS and s′′, a product of Dehn

twists such that n′′s′′f is identity on p. Now, cut Dk+1 along p, this results

in a disk with k holes and n′′s′′f is a homeomorphism which is identity on

the boundary. Hence, n′′′s′′′f = IdDk+1
.

From Step 1, take f = n′s′h, then n′′′s′′′n′s′h = Id. This implies that

h = (s′)−1(n′)−1(s′′′)−1(n′′′)−1. Hence, h = ησ for some η ∈ NS and a

product of Dehn twists, σ.



6. 3-MANIFOLDS AND

LICKORISH-WALLACE THEOREM

As the title suggests, the objective of this chapter is to prove Lickorish-

Wallace Theorem. This is a neat application of Dehn-Lickorish theorem

proved in the previous chapter.

6.1 Preliminaries

Definition 6.1.1. Let M be a 3-manifold and e be the embedding of two

2-dimensional discs into the boundary ∂M . Then, M ∪e (D
2 × I) is called

M with an 1-handle added.

Definition 6.1.2. A handlebody of genus g is an orientable 3-manifold that

is 3-ball with g 1-handles added.

Definition 6.1.3. A Heegaard splitting of a closed, connected, orientable

3-manifold M is a pair of handlebodies X and Y contained in M such that

X
∪

Y ∼= M and X ∩ Y = ∂X = ∂Y.

The following result is an important theorem in 3-manifolds [9, Lemma 12.12]:

Theorem 6.1.4. Any closed connected orientable 3-manifold has a Heegaard

splitting.

6.2 Lickorish-Wallace Theorem

Theorem 6.2.1. Any closed connected orientable 3-manifold is homeomor-

phic to S3 from which have been removed a finite set of disjoint solid tori and

are sewn back in a different way.
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Proof. Let M be any 3-manifold and V1, V2 form a heegard splitting of M

i.e., M ∼= V1

∪
f V2 where f : ∂V1 → ∂V2. We know that, there exists an

i : ∂V1 → ∂V2 such that S3 ∼= V1

∪
i V2. Without loss of generality, assume

that f−1i : ∂V1 → ∂V1 is orientation preserving, then by Theorem 5.2.11,

f−1i = ns, where n ∈ NS and s is a product of Dehn twists. Suppose that

f−1i is just a single Dehn twist λ.

Let C be the curve on ∂V1 along which you perform λ and A be an

annulus. Imbed A× [0, 1] in V1 such that A× {0} is A and A× (0, 1] lies in

the interior of V1. Let T = A× [1/2, 1]. Define j : V1 \ T → V1 \ T such that

Fig. 6.1

j|A×[0,1/2](x, t) = (λ(x), t) and elsewhere it is identity. Clearly, j is a homeo-

morphism.

V1 \ T V1 \ T

V2 V2

λ

i f

Id

The maps indicated in the diagram above are the maps of the boundary

used to glue the handlebodies. We know that, V1 \ T
∪

i V2
∼= S3 \ T and

V1 \ T
∪

f V2
∼= M \ T . Define h : S3 \ T → M \ T as

h(x) =

j(x), if x ∈ V1 \ T, and

x, if x ∈ V2.
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We have to prove that h is well defined. It suffices to prove that h(x) =

h(i(x)), when x ∈ ∂V1. Let x ∈ ∂V1, then

h(x) = f(h(x))

= f(j(x)) ∵ h|V1 = j.

= f(λ(x)) ∵ j|∂V1 = λ.

= i(x) ∵ f−1i = λ.

= h(i(x)) ∵ h|V2 = Id.

Thus, M \ T ∼= S3 \ T . Now to reattach the removed torus, we will have

perform the Dehn twist and attach accordingly. Thus, if we remove the torus

T and reattach it with a twist, we get M .

Now, if we have f−1i to be a composition of Dehn twists, we can select

annuli and their regular neighbourhoods such that the tori being removed are

disjoint. Thus, removing disjoint solid tori from S3 and gluing them back

with a twist will give us any 3-manifold.

We can think of the solid torii being removed as a neighbourhood of a

link in S3. Thus, we can obtain any 3-manifold by removing neighbourhoods

of links and attaching them back with a twist.
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