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Abstract. Let F be the finite field of order q and M(n, r, F ) be the set of
n× n matrices of rank r over the field F . For α ∈ F and A ∈ M(n, F ), let

Zα
A,r = {X ∈ M(n, r, F ) | Tr(AX) = α} .

In this note, we compute the cardinality of Zα
A,r.

1. Introduction

Let F be the finite field of order q. For n a positive integer and 0 ≤ r ≤ n, we
let M(n, F ) to be the set of n× n matrices with entries in F and M(n, r, F ) to be
the subset of M(n, F ) consisting of rank r matrices. For 1 ≤ k ≤ n, we define the
k-trace of a matrix as the sum of its first k diagonal entries. For α ∈ F , let Y α

n,r,k

be the set of n × n matrices of rank r such that its k-trace is α. The main result
of this paper is to compute the cardinality of Y α

n,r,k. It is easy to see that the sets
Zα
A,r and Y α

n,r,k where k is the rank of A, have the same cardinality.

In [2], Buckhiester counted the number of n × n matrices of rank r and trace
α over F . This cardinality was also counted independently by Prasad in [5] and
was used to compute the dimension of a certain representation of GL(2n, F ). In
[1], Balasubramanian, Khurana and Dangodara computed the cardinality of n× n
matrices of rank r and 1-trace α over F , and used it to calculate the dimension
of a certain representation of GL(2n, F ). More recently in [4], a similar type of
calculation was done, generalizing the work of Prasad, to compute the dimension of
a certain representation of GL(kn, F ). Motivated by these works, in this article, we
count the number of n× n matrices of rank r and k-trace α over F for 1 ≤ k ≤ n.
The main reason behind this calculation is to compute the dimension formula for a
certain twisted Jacquet module of a cuspidal representation of GL(2n, F ). We will
discuss the dimension formula in a forthcoming paper.

For the sake of clarity, we mention below the statement of the main theorem. We
let a(n, r, q) be the cardinality of M(n, r, q) and fα

n,r,k be the cardinality of Y α
n,r,k.

The Gaussian binomial coefficient is the number of r-dimensional linear subspaces

of the n-dimensional space Fn and is denoted as

ñ
n

r

ô
q

.

Theorem 1.1 (Main Theorem). We have

f0
n,r,k − f1

n,r,k =

r∑
i=0

(−1)iq

(
i
2

)
+k(r−i)

ñ
k

i

ô
q

a(n− k, r − i, q).
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Using the above theorem, we can explicitly determine the cardinality of Y α
n,r,k

for all α ∈ F .

2. Preliminaries

Throughout, we let F to be the finite field of order q and M(n, F ) for the set of
n×n matrices with entries in F . For 0 ≤ r ≤ n, we let M(n, r, F ) denote the subset
of M(n, F ) consisting of matrices of rank r. For 1 ≤ k ≤ n, and α ∈ F , define

Y α
n,r,k =

{
X = (xij) ∈ M(n, r, F ) |

k∑
i=1

xii = α

}
.

We write fα
n,r,k for the cardinality of Y α

n,r,k. If k = n, to simplify notation, we will
denote Y α

k,r,k = Y α
k,r and fα

k,r,k = fα
k,r.

Proposition 2.1. Let n, r be non-negative integers. For A ∈ M(n, F ) and α ∈ F ,
let

Zα
A,r = {X ∈ M(n, r, F ) | Tr(AX) = α} .

If Rank(A) = k, then

|Zα
A,r| = fα

n,r,k.

Proof. Since A ∈ M(n, k, F ), there exists g1, g2 ∈ GL(n, F ) such that g1Ag−1
2 = B,

where

B =

ï
Ik 0
0 0

ò
.

Consider the map

ϕ : Zα
A,r → Y α

n,r,k

given by ϕ(X) = g2Xg−1
1 . Clearly ϕ(X) ∈ Y α

n,r,k. Indeed, we have

Tr(Bϕ(X)) = Tr(Bg2Xg−1
1 )

= Tr(g−1
1 Bg2X)

= Tr(AX)

= α.

Trivially, ϕ is a bijection and the result follows. □

Before we proceed further, we set up some more notation and recall some more
results that we need. We write a(n, q) (respectively a(n, r, q)) for the cardinality

of M(n, F ) (respectively M(n, r, F )). We let

ñ
n

r

ô
q

for the Gaussian binomial coeffi-

cient and (X; q)n for the q-Pochhammer symbol. For the sake of clarity, we record
their definitions below.

Definition 2.2. Let n, r be non-negative integers. We defineñ
n

r

ô
q

=


r−1∏
i=0

(qn−i−1)
(qr−i−1) , if 0 ≤ r ≤ n

0, if , r > n

.
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Definition 2.3. Let n be a non-negative integer. We define

(X; q)n =


n−1∏
i=0

(1−Xqi), if n > 0

1, if n = 0

.

Theorem 2.4 (q-binomial theorem). We have

(X; q)n =

n∑
r=0

ñ
n

r

ô
q

(−1)rq

(
r
2

)
Xr.

Proof. See Theorem 3.2 in [3]. □

Proposition 2.5. Let n be a positive integer and let 0 ≤ r ≤ n. Then

a(n, r, q) =

ñ
n

r

ô2
q

|GL(r, F )|.

Proof. We have

a(n, r, q) =

r−1∏
i=0

(qn − qi)2

(qr − qi)

= q

(
r
2

)
(qn − 1)2 · · · (qn−r+1 − 1)2

(qr − 1)2 · · · (q − 1)2
((qr − 1) · · · (q − 1))

=

ñ
n

r

ô2
q

|GL(r, F )|.

□

Proposition 2.6. Let n be a positive integer and let 0 ≤ r ≤ n. Then

f0
n,r,k + (q − 1)f1

n,r,k = a(n, r, q).

Proof. Let α ̸= 0 ∈ F . It is enough to show that fα
n,r,k = f1

n,r,k. Let

Z =

ï
P Q
R S

ò
∈ Y α

n,r,k.

Then P ∈ M(k, F ) and Tr(P ) = α ̸= 0. Clearly the map ϕ : Y α
n,r,k → Y 1

n,r,k defined

by ϕ(Z) = KZ, where

K =

ï
α−1Ik 0

0 In−k

ò
∈ GL(n, F )

is a bijection. The result follows. □

The following result is due to Prasad where he computes f0
k,r − f1

k,r. We can use
this result in combination with Proposition 2.6 to explicitly compute the numbers
f0
k,r and f1

k,r.

Lemma 2.7 (Prasad).

f0
k,r − f1

k,r = (−1)rq

(
r
2

)ñ
k

r

ô
q

.

Proof. For a proof, we refer the reader to Lemma 2 in [5]. □

We can reformulate Lemma 2.7, using generating functions and the q-binomial
theorem as follows.
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Lemma 2.8. Consider the polynomial generating function

fα
k,k(X) =

∑
r≥0

fα
k,rX

r ∈ Q[X].

We have

f0
k,k(X)− f1

k,k(X) = (1−X)(1− qX) · · · (1− qk−1X) = (X; q)k. (2.1)

3. main theorem

In this section, we prove the main result of this paper. We continue with the
same notation as in the previous section. Before we proceed further, we prove some
preliminary results that we need.

Lemma 3.1. Let k = n− 1. For 0 ≤ r ≤ k, we have

f0
k+1,r,k − f1

k+1,r,k = (−1)r−2q

(
r
2

)ñ
k

k − r

ô
q

®
(qk−r+2 − 1) + qk+1(1− q)

(qk+1−r − 1)

´
.

Proof. Let X ∈ Y 0
k+1,r,k. Then, X is of the form

X =

ï
D v
w x

ò
where x ∈ F , wT , v ∈ F k and D ∈ M(k, F ). We denote the (k + 1) × 1 column

vector

ï
v
x

ò
by ṽ. We write the (k + 1)× k matrixï

D
w

ò
=

[
v1 v2 · · · vk

]
where vi ∈ F k+1 for all 1 ≤ i ≤ k.

Let V be the column span of D and W = Span{v1, v2, . . . , vk}. Since X ∈
Y 0
k+1,r,k, the rank of D has three possibilities, either r, r − 1 or r − 2. We consider

these cases separately.

Case 1) Suppose that Rank(D) = r. Then we have thatD ∈ Y 0
k,r. Since Rank(X) =

r, it follows that w ∈ V and ṽ ∈ W . It implies that dim(V ) = r = dim(W ).
Therefore, the number of choices for the vector w are qr and for the vector
ṽ are qr.

Case 2) Suppose that Rank(D) = r − 1. Then we have that D ∈ Y 0
k,r−1 and

dim(V ) = r − 1. There are two possibilities for the vector w, either w ∈ V
or w /∈ V .

a) If w ∈ V , it implies that dim(W ) = r − 1. Since Rank(X) = r, it
follows that ṽ /∈ W . Then the number of choices for w are qr−1 and
for ṽ are (qk+1 − qr−1).

b) If w /∈ V , it implies that dim(W ) = r. Since Rank(X) = r, it follows
that ṽ ∈ W . Then the number of choices for w are (qk − qr−1) and for
ṽ are qr.

Case 3) Suppose that Rank(D) = r − 2. Then we have that D ∈ Y 0
k,r−2. Since

Rank(X) = r, it follows that w /∈ V and dim(W ) = r − 1. It also implies
that ṽ /∈ W . Therefore, the number of choices for w are (qk − qr−2) and for
ṽ are (qk+1 − qr−1).
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It follows that

f0
k+1,r,k = q2rf0

k,r + f0
k,r−1

(
qr−1(qk+1 − qr−1) + qr(qk − qr−1)

)
+ f0

k,r−2(q
k − qr−2)(qk+1 − qr−1). (3.1)

Similarly, the number f1
k+1,r,k satisfies the recursion

f1
k+1,r,k = q2rf1

k,r + f1
k,r−1

(
qr−1(qk+1 − qr−1) + qr(qk − qr−1)

)
+ f1

k,r−2(q
k − qr−2)(qk+1 − qr−1).

Thus, we have

f0
k+1,r,k − f1

k+1,r,k = q2r
(
f0
k,r − f1

k,r

)
+
(
f0
k,r−1 − f1

k,r−1

)(
qr−1(qk+1 − qr−1) + qr(qk − qr−1)

)
+
(
f0
k,r−2 − f1

k,r−2

)
(qk − qr−2)(qk+1 − qr−1)

= q2r(−1)rq

(
r
2

)ñ
k

k − r

ô
q

+ (qk − qr−2)(qk+1 − qr−1)(−1)r−2q

(
r−2
2

)ñ
k

k − (r − 2)

ô
q

+
(
qr−1(qk+1 − qr−1) + qr(qk − qr−1)

)
(−1)r−1q

(
r−1
2

)ñ
k

k − (r − 1)

ô
q

= (−1)r−2q

(
r
2

)ñ
k

k − r

ô
q

ï
q2r

+
(qk−r+2 − 1)2(qr−1 − 1)(qr − 1)

(qk+1−r − 1)(qk−r+2 − 1)

− q−r+1(qr − 1)

(qk+1−r − 1)

(
q2r−1(qk+1−r − 1) + q2r−2(qk−r+2 − 1)

)ò
=

(−1)r−2q

(
r
2

)
|
ñ

k

k − r

ô
q

(qk+1−r − 1)

ï
q2r(qk+1−r − 1)

+ (qk−r+2 − 1)(qr−1 − 1)(qr − 1)

− qr−1(qr − 1)(2qk−r+2 − q − 1)

ò
= (−1)r−2q

(
r
2

)ñ
k

k − r

ô
q

®
(qk−r+2 − 1) + qk+1(1− q)

(qk+1−r − 1)

´
.

□

Lemma 3.2. Let k = n− 1. We have

f0
k+1,k+1,k − f1

k+1,k+1,k = (−1)kq

(
k+1
2

)
(q − 1).

Proof. Continuing with the same notations as in Lemma 3.1, we have that if
X ∈ Y 0

k+1,k+1,k, then the rank of D has only two possibilities, either k or k − 1.
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Case 1) Suppose that Rank(D) = k. Then D ∈ Y 0
k,k and dim(V ) = k. Since w

is an 1 × k vector, we have that w ∈ V . It follows that dim(W ) = k.
Since Rank(X) = k + 1, it follows that the column vector ṽ /∈ W . Then, it
follows that number of choices for w is qk and for the vector ṽ is (qk+1−qk).

Case 2) Suppose that Rank(D) = k−1. Then D ∈ Y 0
k,k−1. Since Rank(X) = k+1,

it follows that w /∈ V which implies that dim(W ) = k. Furthermore, we
have that the column vector ṽ /∈ W . Therefore, the number of choices for
the row vector w are (qk − qk−1) and for the vector ṽ are (qk+1 − qk).

Hence, it follows that

f0
k+1,k+1,k = qk(qk+1 − qk)f0

k,k + (qk − qk−1)(qk+1 − qk)f0
k,k−1.

Similarly, computing f1
k+1,k+1,k we have

f1
k+1,k+1,k = qk(qk+1 − qk)f1

k,k + (qk − qk−1)(qk+1 − qk)f1
k,k−1.

Thus, we get

f0
k+1,k+1,k − f1

k+1,k+1,k = qk(qk+1 − qk)(f0
k,k − f1

k,k)

+ (qk − qk−1)(qk+1 − qk)(f0
k,k−1 − f1

k,k−1)

= (−1)k−1q

(
k−1
2

)
qk−1qk(q − 1)2

ñ
k

1

ô
q

+ (−1)k(qk)2(q − 1)q

(
k
2

)ñ
k

0

ô
q

= (−1)k−1q

(
k−1
2

)
(q − 1)[(qk − 1)q2k−1 − q3k−1]

= (−1)kq

(
k+1
2

)
(q − 1).

□

Lemma 3.3. fα
n,r,k satisfies the the recursion

fα
n,r,k = fα

n−1,r,kq
2r+fα

n−1,r−1,kq
2r−2(2qn−r+1−1−q)+fα

n−1,r−2,kq
2r−3(qn−r+1−1)2

for n > k.

Proof. Let X ∈ Y α
n,r,k. Then, X is of the form

X =

ï
D v
w x

ò
where x ∈ F , wT , v ∈ Fn−1 and D ∈ M(n − 1, F ). We denote the n × 1 column

vector

ï
v
x

ò
by ṽ. We also write the n× (n− 1) matrixï

D
w

ò
=

[
v1 v2 · · · vn−1

]
where vi ∈ Fn for all 1 ≤ i ≤ n− 1.
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Let V be the column span of D and W = Span{v1, v2, . . . , vn−1}. Since X ∈
Y α
n,r,k, the rank of D has three possibilities, either r, r − 1 or r − 2.

Since k < n, it is clear that

k∑
i=1

xii = α implies that

k∑
i=1

dii = α where D = (dij).

One can proceed as in Lemma 3.1 and obtain a recursion formula for fα
n,r,k similar

to Equation (3.1). To be precise, fα
n,r,k satisfies the following recursion for n > k:

fα
n,r,k = fα

n−1,r,kq
2r+fα

n−1,r−1,kq
2r−2(2qn−r+1−1−q)+fα

n−1,r−2,kq
2r−3(qn−r+1−1)2.

□

Lemma 3.4. Consider the polynomial generating function

fα
n,k(X) =

∑
r≥0

fα
n,r,kX

r ∈ Q[X].

For n > k, we have

fα
n,k(X) = fα

n−1,k(q
2X)(1−X)(1−qX)+fα

n−1,k(qX)2X(1−X)qn+fα
n−1,k(X)X2q2n−1.

Proof. It is easy to see that

fα
n,k(X) =

∑
r≥0

Å
fα
n−1,r,k(q

2X)r +Xfα
n−1,r−1,k(q

2X)r−1(2qn−r+1 − 1− q)

+ qX2fα
n−1,r−2,k(q

2X)r−2(qn−r+1 − 1)2
ã
. (3.2)

By applying the change of variable r− 1 = t to the second term in the sum, we get

X
∑
r≥1

fα
n−1,r−1,k(q

2X)r−1(2qn−r+1 − 1− q) = 2X
∑
t≥0

fα
n−1,t,k(q

2X)t(qn−t)

− (1 + q)X
∑
t≥0

fα
n−1,t,k(q

2X)t

= 2Xqn
∑
t≥0

fα
n−1,t,k(qX)t

− (1 + q)X
∑
t≥0

fα
n−1,t,k(q

2X)t

= 2Xqnfα
n−1,k(qX)− (1 + q)Xfα

n−1,k(q
2X).
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Similarly, we can simplify the third term in the sum by applying the change of
variable r − 2 = y to obtain

qX2
∑
r≥2

fα
n−1,r−2,k(q

2X)r−2(qn−r+1 − 1)2 =
∑
y≥0

Å
q2n−1X2fα

n−1,y,k(X)y

+X2qfα
n−1,y,k(q

2X)y

− 2qnX2fα
n−1,y,k(qX)y

ã
= X2q2n−1fα

n−1,k(X) + qX2fα
n−1,k(q

2X)

− 2qnX2fα
n−1,k(qX).

Hence, it follows that Equation (3.2) becomes

fα
n,k(X) = (1−X)(1−qX)fα

n−1,k(q
2X)+2Xqn(1−X)fα

n−1,k(qX)+X2q2n−1fn−1,k(X).

□

The numbers a(n, r, q) being independent of k, also obey the same recurrence as
fα
n,r,k for all 0 ≤ r ≤ n (i.e., without the restriction that n > k) because the cases
on the submatrices D,w, v̄ remain the same. Therefore, if

An(X) =
∑
r≥0

a(n, r, q)Xr ∈ Q[X]

is the polynomial generating function of the numbers a(n, r, q) (for fixed n), it
satisfies the following recurrence. We have

An(X) = An−1(q
2X)(1−X)(1−qX)+2X(1−X)qnAn−1(qX)+An−1(X)X2q2n−1. (3.3)

Let gn,r,k = f0
n,r,k − f1

n,r,k. Consider the polynomial generating function

gn,k(X) =
∑
r≥0

gn,r,kX
r = f0

n,k(X)− f1
n,k(X) ∈ Q[X].

Then, gn,k(X) = f0
n,k(X)−f1

n,k(X) also obeys the same recursion as An(X). To
be precise, we have

gn,k(X) = gn−1,k(q
2X)(1−X)(1− qX) + 2X(1−X)qngn−1,k(qX)

+ gn−1,k(X)X2q2n−1.
(3.4)

Since the base case of the recursion n = k is known for gn,k(X) (see Lemma 2.7),
we can solve the recurrence. For example if n = k + 1, we solve the recurrence for
the function gk+1,k(X). We record it in the Lemma below.

Lemma 3.5. We have

gk+1,k(X)

(X; q)k
= 1 + (q − 1)Xqk = A1(q

kX).

and

gk+2,k(X)

(X; q)k
= 1 + (q2 − 1)

[
(Xqk)(q + 1) + (Xqk)2(q2 − q)

]
= A2(q

kX).
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Proof. Using the fact that gk,k(X) = (X; q)k (the base case of the recursion),
Equation (3.4) becomes

gk+1,k(X)

(X; q)k
=

1

(X; q)k

ß
gk,k(q

2X)(1−X)(1− qX) + 2X(1−X)qk+1gk,k(qX)

+ gk,k(X)X2q2k+1

™
= (1− qkX)(1− qk+1X) + 2Xqk+1(1− qkX) +X2q2k+1

= 1 +Xqk(q − 1).

Substituting n = 1 in An(X) =
∑
r≥0

a(n, r, q)Xr, we obtain that

A1(X) = 1 + (q − 1)X.

Continuing in a similar way, we get

gk+2,k(X)

(X; q)k
=

1

(X; q)k

{
A1(q

k+2X)(q2X; q)k(1−X)(1− qX)

+ 2X(1−X)qk+2A1(q
k+1X)(qX; q)k +X2q2k+3A1(qX)(X; q)k

}
= A1(q

k+2X)(1− qkX)(1− q(qkX)) + 2Xqk+2A1(q
k+1X)(1− qkX)

+ q3A1(q
kX)(qkX)2

= A2(q
kX).

□

This suggests the following theorem.

Theorem 3.6. We have,

gn,k(X) = (X; q)k An−k(q
kX).

Proof. The base case is k = n which is true by Lemma 2.7. Assume inductively
that the theorem is true for gn−1,k(X). We have

gn,k(X) = gn−1,k(q
2X)(1−X)(1− qX) + 2X(1−X)qngn−1,k(qX) + gn−1,k(X)X2q2n−1

= (q2X; q)kAn−k−1(q
k+2X)(1−X)(1− qX) + 2X(1−X)qn(qX; q)kAn−k−1(q

k+1X)

+ (X; q)k An−k−1(q
kX)X2q2n−1

= (X; q)k
(
(1− qkX)(1− qk+1X)An−k−1(q

k+2X) + 2Xqn(1− qkX)An−k−1(q
k+1X)

+An−k−1(q
kX)X2q2n−1

)
.
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In terms of the recurrence relation (3.3) for Am(Y ) where Y = qkX and m = n−k,
we see that the above expression is just

An−k(q
kX).

This completes the proof of the theorem. □

Theorem 3.7. We have

f0
n,r,k − f1

n,r,k = gn,r,k =

r∑
i=0

(−1)iq

(
i
2

)
+k(r−i)

ñ
k

i

ô
q

a(n− k, r − i, q).

Proof. From Theorem 3.6, Equation(2.1) and the definition of An−k(X), it follows
that

gn,k(X) =
∑
i≥0

∑
j≥0

(−1)iq

(
i
2

)
+kj

ñ
k

i

ô
q

a(n− k, j, q)Xj+i.

Let j + i = r. Using the fact that i, j ≥ 0, we get that i ≤ r and r ≥ 0 and hence
it follows that

gn,k(X) =
∑
r≥0

r∑
i=0

(−1)iq

(
i
2

)
+k(r−i)

ñ
k

i

ô
q

a(n− k, r − i, q)Xr.

Thus,

gn,r,k =

r∑
i=0

(−1)iq

(
i
2

)
+k(r−i)

ñ
k

i

ô
q

a(n− k, r − i, q).

□

One can obtain f1
n,r,k and f0

n,r,k by using Theorem 3.7 and Proposition 2.6. We
mention it in the corollary below.

Corollary 3.8. We have that

f1
n,r,k =

1

q

(
a(n, r, q)− gn,r,k)

)
and

f0
n,r,k = a(n, r, q)− (q − 1)f1

n,r,k,

where gn,r,k is as in Theorem 3.7.

Proof. From Proposition 2.6, we have that

f0
n,r,k − f1

n,r,k + qf1
n,r,k = a(n, r, q).

Since gn,r,k = f0
n,r,k − f1

n,r,k, it follows that

f1
n,r,k =

1

q

(
a(n, r, q)− gn,r,k

)
.

and

f0
n,r,k = a(n, r, q)− (q − 1)f1

n,r,k.

□
10
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