MTH 406 : Differential Geometry of Curves and Surfaces
 Quiz 2
 11th April, 2024

Question. Show that if a surface contains a straight line, then it has non-positive Gauss curvature at all the points of this line.

Points 10.

Solution.

Solution. Let S denote the surface, $I \subseteq \mathbb{R}$ denote an open interval and $\alpha: I \rightarrow S$ be a segment of a straight line in \mathbb{R}^{3} (i.e., α is a restriction of an affine linear map). Pre-composing by a suitable diffeomorphism, we may assume that α is p.b.a.l.
Let $\alpha\left(t_{0}\right) \in \alpha(I)$ be arbitrary. Since we are required to examine the Gauss curvature at this point, we may assume that there is a local Gauss map N defined at all points of $\alpha(I)$.
By definition of Gauss map we have

$$
\left\langle(N \circ \alpha)(s), \alpha^{\prime}(s)\right\rangle=0 \quad(s \in I)
$$

Differentiating this w.r.t. s we have

$$
\left\langle(N \circ \alpha)^{\prime}(s), \alpha^{\prime}(s)\right\rangle+\left\langle(N \circ \alpha)(s), \alpha^{\prime \prime}(s)\right\rangle=0
$$

and using chain rule of derivatives we have

$$
\left\langle(N \circ \alpha)(s), \alpha^{\prime \prime}(s)\right\rangle=-\left\langle(d N)_{\alpha(s)}\left(\alpha^{\prime}(s)\right), \alpha^{\prime}(s)\right\rangle=\sigma_{\alpha(s)}\left(\alpha^{\prime}(s), \alpha^{\prime}(s)\right)
$$

for all $s \in I$. Since α is affine linear, we have $\alpha^{\prime \prime}(s)=0$ for all $s \in I$. This implies that $\sigma_{\alpha(s)}$ cannot be either positive definite, or negative definite.
Now suppose that $K(\alpha(s))>0$ for some $s \in I$. Then the eigenvalues of the matrix of $\sigma_{\alpha(s)}$ are either both positive, or both negative. This happens if and only if $\sigma_{\alpha(s)}$ is either positive definite, or negative definite, a contradiction.

