MTH 406 : Differential Geometry of Curves and Surfaces

Quiz 1

17th January, 2024

Question. Let $\alpha: I \rightarrow \mathbb{R}^{2}$ be a regular plane curve and $\mathbf{a} \in \mathbb{R}^{2} \backslash \alpha(I)$.
Let $t_{0} \in I$ such that

$$
|\alpha(t)-\mathbf{a}| \geq\left|\alpha\left(t_{0}\right)-\mathbf{a}\right|
$$

for every $t \in I$.
Show that the straight line joining the point a with $\alpha\left(t_{0}\right)$ is the normal line of α at t_{0}.
Prove that the same is true if we reverse the inequality.

Solution.

We use the notation $\alpha(t)=(x(t), y(t))(t \in I)$ and $\mathbf{a}=\left(a_{1}, a_{2}\right)$. Now define $f: I \rightarrow \mathbb{R}$ by

$$
f(t)=|\alpha(t)-\mathbf{a}|^{2}=\left(x(t)-a_{1}\right)^{2}+\left(y(t)-a_{2}\right)^{2} \quad(t \in I) .
$$

From hypothesis, it follows that f is a positive valued C^{∞}-function and $t=t_{0}$ is a minima of f. Hence $f^{\prime}\left(t_{0}\right)=0$. Now we have

$$
f^{\prime}(t)=2\left(x(t)-a_{1}\right) x^{\prime}(t)+2\left(y(t)-a_{2}\right) y^{\prime}(t)=2(\alpha(t)-\mathbf{a}) \cdot \alpha^{\prime}(t) .
$$

Now from $f^{\prime}\left(t_{0}\right)=0$, it follows that $\alpha\left(t_{0}\right)-\mathbf{a}$ is perpendicular to the vector $\alpha^{\prime}\left(t_{0}\right)$. Hence the normal line to α at t_{0} has direction vector $\alpha\left(t_{0}\right)-\mathbf{a}=\left(x\left(t_{0}\right)-a_{1}, y\left(t_{0}\right)-a_{2}\right)$. Then the equation of the normal line at $\alpha\left(t_{0}\right)$ is of the form

$$
\left(y\left(t_{0}\right)-a_{2}\right) x-\left(x\left(t_{0}\right)-a_{1}\right) y+\lambda=0
$$

for some constant $\lambda \in \mathbb{R}$. Since $\alpha\left(t_{0}\right)=\left(x\left(t_{0}\right), y\left(t_{0}\right)\right)$ belongs to this line, we have

$$
\left(y\left(t_{0}\right)-a_{2}\right) x\left(t_{0}\right)-\left(x\left(t_{0}\right)-a_{1}\right) y\left(t_{0}\right)+\lambda=0 .
$$

Subtracting the above two equations (to free the unknown constant λ) we obtain

$$
\begin{equation*}
\left(y\left(t_{0}\right)-a_{2}\right)\left(x-x\left(t_{0}\right)\right)-\left(x\left(t_{0}\right)-a_{1}\right)\left(y-y\left(t_{0}\right)\right)=0 \tag{*}
\end{equation*}
$$

It is easy to verify that this equation satisfies $\left(a_{1}, a_{2}\right)$, which means that $(*)$ represents the line that passes through $\alpha\left(t_{0}\right)$ and \mathbf{a}.

If we reverse the inequality, $t=t_{0}$ would be a maxima of f, and then again we have $f^{\prime}\left(t_{0}\right)$. Now the rest of the calculation would be identical as before.

