MTH 406 : Differential Geometry of Curves and Surfaces

Mid semester Exam
 Full score: 50

27th February, 2024

Time: 120 minutes
Question 1. Let $\alpha: \mathbb{R} \rightarrow \mathbb{R}^{2}$ a plane curve p.b.a.l. (i.e. $\left|\alpha^{\prime}(s)\right|=1$ for all $s \in \mathbb{R}$) such that $\alpha(\mathbb{R})$ is included in a closed disc of radius $r>0$ and center a, that satisfies $|k(s)| \leq 1 / r$ for every $s \in \mathbb{R}$. Prove that:
(i) The function $f(s):=|\alpha(s)-\mathbf{a}|^{2}(s \in \mathbb{R})$ is bounded from above and satisfies $f^{\prime \prime}(s) \geq 0$ for all $s \in \mathbb{R}$.
(ii) Any differentiable function $g: \mathbb{R} \rightarrow \mathbb{R}$ that is both bounded from above and satisfies $g^{\prime \prime} \geq 0$ is necessarily a constant function.
Using (i) and (ii) deduce that α is a circle centred at a with radius $r>0$.

Points. $5+5+2$
Question 2. Let α and β be two regular plane curves defined, respectively, on two open intervals of \mathbb{R} containing the origin. Suppose that $\alpha(0)=\beta(0)=p$ and that $\alpha^{\prime}(0)=\beta^{\prime}(0)$.
We say that α is over β at p if there is a neighbourhood of 0 in \mathbb{R} where $\left\langle\alpha-\alpha(0), N_{\alpha}(0)\right\rangle \geq\left\langle\beta-\beta(0), N_{\beta}(0)\right\rangle$. Prove that:
(i) If α is over β at p, then $k_{\alpha}(0) \geq k_{\beta}(0)$.
(ii) If $k_{\alpha}(0)>k_{\beta}(0)$, then α is over β at p.

Points. 6+6
Question 3. Let $O_{1}, O_{2} \subseteq \mathbb{R}^{3}$ be Euclidean open sets and let ϕ : $O_{1} \rightarrow O_{2}$ be a diffeomorphism. If $S \subseteq O_{1}$ is a surface, show that $\phi(S)$ is a surface. Prove that the restriction map $\phi: S \rightarrow \phi(S)$ is a diffeomorphism.

Points. 6+6
Question 4. Let S be the right cylinder of radius $r>0$, whose axis is the line passing through the origin with direction a (with $|\mathbf{a}|=1$), given by

$$
S:=\left\{p \in \mathbb{R}^{3}:|p|^{2}-\langle p, \mathbf{a}\rangle^{2}=r^{2}\right\} .
$$

Prove that

$$
T_{p} S=\left\{v \in \mathbb{R}^{3}:\langle p, v\rangle-\langle p, a\rangle\langle a, v\rangle=0\right\} .
$$

Conclude that all the normal lines of S cut the axis perpendicularly.
Points. $7+7$

Solution.

Question 1. Let $\alpha: \mathbb{R} \rightarrow \mathbb{R}^{2}$ a plane curve p.b.a.l. (i.e. $\left|\alpha^{\prime}(s)\right|=1$ for all $s \in \mathbb{R}$) such that $\alpha(\mathbb{R})$ is included in a closed disc of radius $r>0$ and center a, that satisfies $|k(s)| \leq 1 / r$ for every $s \in \mathbb{R}$. Prove that:
(i) The function $f(s):=|\alpha(s)-\mathbf{a}|^{2}(s \in \mathbb{R})$ is bounded from above and satisfies $f^{\prime \prime}(s) \geq 0$ for all $s \in \mathbb{R}$.
(ii) Any differentiable function $g: \mathbb{R} \rightarrow \mathbb{R}$ that is bounded and satisfies $g^{\prime \prime} \geq 0$ is necessarily a constant function.
Using (i) and (ii) deduce that α is a circle centred at a with radius $r>0$.

Solution. (i) We write $\alpha(s)=(x(s), y(s))(s \in \mathbb{R})$ and $\mathbf{a}=\left(a_{1}, a_{2}\right)$.
Since $\alpha(\mathbb{R})$ is included in a closed disc of radius $r>0$ and center a, we have

$$
|\alpha(s)-\mathbf{a}| \leq r \quad(s \in \mathbb{R}) \quad(*)
$$

This shows that $0 \leq f(s) \leq r^{2}$ for all $s \in \mathbb{R}$. Next,

$$
f(s)=\left(x(a)-a_{1}\right)^{2}+\left(y(s)-a_{2}\right)^{2} \quad(s \in \mathbb{R}) .
$$

Then, for every $s \in \mathbb{R}$ we have

$$
\begin{aligned}
f^{\prime}(s) & =2\left(x(s)-a_{1}\right) x^{\prime}(s)+2\left(y(s)-a_{2}\right) y^{\prime}(s)=2(\alpha(s)-\mathbf{a}) \cdot \alpha^{\prime}(s), \\
f^{\prime \prime}(s) & =2\left(x(s)-a_{1}\right) x^{\prime \prime}(s)+2 x^{\prime}(s)^{2}+2\left(y(s)-a_{2}\right) y^{\prime \prime}(s)+2 y^{\prime}(s)^{2} \\
& =2(\alpha(s)-\mathbf{a}) \cdot \alpha^{\prime \prime}(s)+2
\end{aligned}
$$

since α is p.b.a.l.
Now from Frenet's first equation $T^{\prime}(s)=k(s) N(S)$, we have

$$
x^{\prime \prime}(s)=-k(s) y^{\prime}(s), \quad y^{\prime \prime}(s)=k(s) x^{\prime}(s)
$$

and hence

$$
x^{\prime \prime}(s)^{2}+y^{\prime \prime}(s)^{2}=k(s)^{2} \leq \frac{1}{r^{2}} \quad(s \in \mathbb{R}) \quad(* *)
$$

Next, using the dot product inequality we have

$$
\left|(\alpha(s)-\mathbf{a}) \cdot \alpha^{\prime \prime}(s)\right| \leq|\alpha(s)-\mathbf{a}| \cdot\left|\alpha^{\prime \prime}(s)\right| \leq r \cdot \frac{1}{r}=1
$$

using $(*)$ and $(* *)$. This implies that,

$$
0 \leq(\alpha(s)-\mathbf{a}) \cdot \alpha^{\prime \prime}(s)+1 \leq 2
$$

and hence $f^{\prime \prime}(s) \geq 0$ for all $s \in \mathbb{R}$.
(ii) For any $x, y \in \mathbb{R}$, using Taylor's theorem with second order approximation we have

$$
g(x)=g(y)+g^{\prime}(y)(x-y)+\frac{1}{2!} g^{\prime \prime}(c)(x-y)^{2}
$$

for some c in between x and y, where c depends on x and y. Using our hypothesis, we have

$$
g(x) \geq g(y)+g^{\prime}(y)(x-y)
$$

for any $x, y \in \mathbb{R}$.
Now suppose, g is not constant. Then there exists $y \in \mathbb{R}$ such that $g^{\prime}(y)>0$ or $g^{\prime}(y)<0$. In the first case, keeping y fixed, we have $g(x) \rightarrow+\infty$ as $x \rightarrow+\infty$. In the second case, keeping y fixed, we have $g(x) \rightarrow-\infty$ as $x \rightarrow+\infty$. In either case, it contradicts the fact that g is bounded. Hence g must be a constant map.
(iii) The function f in (i) satisfies the property stated in (ii), and hence is a constant function. Using (*) we have

$$
|\alpha(s)-\mathbf{a}|=\lambda \quad(s \in \mathbb{R}) \quad(* * *)
$$

for some constant $0 \leq \lambda \leq r$. If $\lambda=0$, then α itself is a constant map, which contradicts $\left|\alpha^{\prime}(s)\right|=1$ for all $s \in \mathbb{R}$. This implies that $0<\lambda \leq r$.

Now assume that $\lambda<r$. Then we can write

$$
\alpha(s)=(x(s), y(s))=\left(a_{1}+\lambda \cos \theta(s), a_{2}+\lambda \sin \theta(s)\right) \quad(s \in \mathbb{R})
$$

for some $\theta: \mathbb{R} \rightarrow \mathbb{R}$. Now notice that α is not even locally constant, since $\left|\alpha^{\prime}(s)\right|=1$ for all $s \in \mathbb{R}$. This implies that, except possibly for the points where either the cosine or the sine functions vanish, θ is differentiable. For any such point $s \in \mathbb{R}$, we have

$$
\alpha^{\prime}(s)=\left(-\lambda \sin \theta(s) \theta^{\prime}(s), \lambda \cos \theta(s) \theta^{\prime}(s)\right)
$$

Now since $\left|\alpha^{\prime}(s)\right|=1$, we have $\left|\theta^{\prime}(s)\right|=1 / \lambda$, and hence $\theta^{\prime}(s)= \pm 1 / \lambda$. From this we have
$\alpha^{\prime}(s)=(\mp \sin \theta(s), \pm \cos \theta(s))$,
$\alpha^{\prime \prime}(s)=\left(\mp \cos \theta(s) \theta^{\prime}(s), \mp \sin \theta(s) \theta^{\prime}(s)\right)=\left(-\frac{1}{\lambda} \cos \theta(s),-\frac{1}{\lambda} \sin \theta(s)\right)$
Now using the Frenet's equations we have $|k(s)|=1 / \lambda$. However, using equation $(* *)$, we have $1 / \lambda^{2} \leq 1 / r^{2}$, which contradict $\lambda<r$. Denoting by $C[\mathbf{a} ; r]$, the set of points on the circle with center a and radius r, we have $\alpha(s) \in C[\mathbf{a} ; r]$ for every $s \in \mathbb{R}$, where $\theta(s)$ is differentiable.

Now if θ is differentiable at s, we have $\theta(s)= \pm \frac{1}{r} s+\mu$, for some constant $\mu \in \mathbb{R}$, where the sign would depend on the point s. This implies that

$$
\alpha(s)=\left(a_{1}+r \cos ((\pm 1 / r) s+\mu), a_{2}+r \sin ((\pm 1 / r) s+\mu)\right)
$$

Finally, since α is continuous, we have the above equation hold for every $s \in \mathbb{R}$, where the sign is either + or - for all $s \in \mathbb{R}$.

Question 2. Let α and β be two regular plane curves defined, respectively, on two open intervals of \mathbb{R} containing the origin. Suppose that $\alpha(0)=\beta(0)=p$ and that $\alpha^{\prime}(0)=\beta^{\prime}(0)$.
We say that α is over β at p if there is a neighbourhood of 0 in \mathbb{R} where $\left\langle\alpha-\alpha(0), N_{\alpha}(0)\right\rangle \geq\left\langle\beta-\beta(0), N_{\beta}(0)\right\rangle$. Prove that:
(i) If α is over β at p, then $k_{\alpha}(0) \geq k_{\beta}(0)$.
(ii) If $k_{\alpha}(0)>k_{\beta}(0)$, then α is over β at p.

Solution. Let α and β be defined on the open intervals I_{1} and I_{2} and we consider the open intervals $I:=I_{1} \cap I_{2}$. By hypothesis, we have

$$
T_{\alpha}(0)=\frac{\alpha^{\prime}(0)}{\left|\alpha^{\prime}(0)\right|}=\frac{\beta^{\prime}(0)}{\left|\beta^{\prime}(0)\right|}=T_{\beta}(0)
$$

and consequently,

$$
N_{\alpha}(0)=J T_{\alpha}(0)=J T_{\beta}(0)=N_{\beta}(0) .
$$

We denote this common normal at 0 by u (and we have $|u|=1$). Now define $f, g: I \rightarrow \mathbb{R}$ by

$$
f(s):=\langle\alpha(s)-p, u\rangle, \quad g(s):=\langle\beta(s)-p, u\rangle \quad(s \in I) .
$$

(i) By hypothesis, there exists an open interval $I_{0} \subseteq I$ containing 0 such that $f(s) \geq g(s)$ for all $s \in I_{0}$. Define $\varphi: I \rightarrow \mathbb{R}$ by

$$
\varphi(s):=f(s)-g(s)(s \in I) .
$$

Since α, β are C^{∞}-functions, so is φ. Now, $f(0)=g(0)$ and hence φ has a local minima at $s=0$ (within I_{0}). Now if φ is locally constant at 0 , say within a neighbourhood $0 \in I_{0}^{\prime} \subseteq I_{0}$, then $\varphi(s)=0$ for all $s \in I_{0}^{\prime}$. In that case,

$$
\langle\alpha(s)-\beta(s), u\rangle=0
$$

for all $s \in I_{0}^{\prime}$ and consequently, $\alpha=\beta$ on I_{0}^{\prime}. In this case $k_{\alpha}(0)=k_{\beta}(0)$. So assume that φ is not locally constant at 0 . Then $\varphi^{\prime}(0)=0$ and $\varphi^{\prime \prime}(0)>0$. Note that

$$
\varphi^{\prime \prime}(0)=f^{\prime \prime}(0)-g^{\prime \prime}(0)=\left\langle\alpha^{\prime \prime}(0)-\beta^{\prime \prime}(0), u\right\rangle>0 .
$$

Step 1. We deduce

$$
\left.\frac{d}{d s}\right|_{s=0}\left|\alpha^{\prime}(s)\right|=\frac{1}{\left|\alpha^{\prime}(0)\right|}\left\langle\alpha^{\prime \prime}(0), \alpha^{\prime}(0)\right\rangle .
$$

If we write $\alpha(s)=\left(x_{\alpha}(s), y_{\alpha}(s)\right)$. Then $\left|\alpha^{\prime}(s)\right|^{2}=x_{\alpha}^{\prime}(s)^{2}+y_{\alpha}^{\prime}(s)^{2}$. Differentiating this with respect to s we have

$$
2\left|\alpha^{\prime}(s)\right| \frac{d}{d s}\left|\alpha^{\prime}(s)\right|=2\left(x_{\alpha}^{\prime}(s) x_{\alpha}^{\prime \prime}(s)+y_{\alpha}^{\prime}(s) y_{\alpha}^{\prime \prime}(s)\right)=2\left\langle\alpha^{\prime \prime}(s), \alpha^{\prime}(s)\right\rangle
$$

which implies that

$$
\frac{d}{d s}\left|\alpha^{\prime}(s)\right|=\frac{1}{\left|\alpha^{\prime}(s)\right|}\left\langle\alpha^{\prime \prime}(s), \alpha^{\prime}(s)\right\rangle,
$$

and then the expression follows by setting $s=0$ to both sides of the equation.

Step 2. Now we deduce

$$
T_{\alpha}^{\prime}(0)=\frac{\alpha^{\prime \prime}(0)}{\left|\alpha^{\prime}(0)\right|}-\frac{\left\langle\alpha^{\prime \prime}(0), \alpha^{\prime}(0)\right\rangle}{\left|\alpha^{\prime}(0)\right|^{3}} \alpha^{\prime}(0) .
$$

Differentiating $T_{\alpha}(s)=\alpha^{\prime}(s) /\left|\alpha^{\prime}(s)\right|$, we have

$$
T_{\alpha}^{\prime}(s)=\frac{\alpha^{\prime \prime}(s)\left|\alpha^{\prime}(s)\right|-\alpha^{\prime}(s) \frac{d}{d s}\left|\alpha^{\prime}(s)\right|}{\left|\alpha^{\prime}(s)\right|^{2}}=\frac{\alpha^{\prime \prime}(s)}{\left|\alpha^{\prime}(s)\right|}-\frac{\alpha^{\prime}(s)}{\left|\alpha^{\prime}(s)\right|^{2}} \frac{d}{d s}\left|\alpha^{\prime}(s)\right| .
$$

Now setting $s=0$ in above equation and using Step 1, we obtain

$$
T_{\alpha}^{\prime}(0)=\frac{\alpha^{\prime \prime}(0)}{\left|\alpha^{\prime}(0)\right|}-\left.\frac{\alpha^{\prime}(0)}{\left|\alpha^{\prime}(0)\right|^{2}} \frac{d}{d s}\right|_{s=0}\left|\alpha^{\prime}(s)\right|=\frac{\alpha^{\prime \prime}(0)}{\left|\alpha^{\prime}(0)\right|}-\frac{\alpha^{\prime}(0)}{\left|\alpha^{\prime}(0)\right|^{3}}\left\langle\alpha^{\prime \prime}(0), \alpha^{\prime}(0)\right\rangle
$$

Step 3. We deduce

$$
k_{\alpha}(0)=\frac{1}{\left|\alpha^{\prime}(0)\right|}\left\langle\alpha^{\prime \prime}(0), u\right\rangle, \quad k_{\beta}(0)=\frac{1}{\left|\beta^{\prime}(0)\right|}\left\langle\beta^{\prime \prime}(0), u\right\rangle
$$

From definition of curvature and using $u=N_{\alpha}(0)$, we have

$$
k_{\alpha}(0)=\left\langle T_{\alpha}^{\prime}(0), u\right\rangle=\frac{1}{\left|\alpha^{\prime}(0)\right|}\left\langle\alpha^{\prime \prime}(0), u\right\rangle-\frac{\left\langle\alpha^{\prime \prime}(0), \alpha^{\prime}(0)\right\rangle}{\left|\alpha^{\prime}(0)\right|^{3}}\left\langle\alpha^{\prime}(0), u\right\rangle .
$$

Now since $\alpha^{\prime}(0)$ is orthogonal to u, the first statement follows. The second statement can be similarly obtained by replacing α by β in the Steps 1, 2 and as arguing as above.

Final Step.

Using the fact $\alpha^{\prime}(0)=\beta^{\prime}(0)$ and Step 3, we have

$$
k_{\alpha}(0)-k_{\beta}(0)=\frac{1}{\left|\alpha^{\prime}(0)\right|}\left\langle\alpha^{\prime \prime}(0)-\beta^{\prime \prime}(0), u\right\rangle=\frac{1}{\left|\alpha^{\prime}(0)\right|} \varphi^{\prime \prime}(0)>0 .
$$

(ii) In the above steps, we have not used the definition of α is over β at p. So, repeating these arguments it follows that, if $k_{\alpha}(0)-k_{\beta}(0)>0$, then $\varphi^{\prime \prime}>0$. Now from hypothesis, we have $\varphi^{\prime}(0)=\left\langle\alpha^{\prime}(0)-\beta^{\prime}(0), u\right\rangle=0$. Hence φ has a local minima at $s=0$. The statement is now immediate from this.

Question 3. Let $O_{1}, O_{2} \subseteq \mathbb{R}^{3}$ be Euclidean open sets and let ϕ : $O_{1} \rightarrow O_{2}$ be a diffeomorphism. If $S \subseteq O_{1}$ is a surface, show that $\phi(S)$ is a surface. Prove that the restriction map $\phi: S \rightarrow \phi(S)$ is a diffeomorphism.

Solution. Let $q \in \phi(S)$ be any arbitrary point. Let $p \in S$ such that $\phi(p)=q$. Since S is a surface, there exists an open set $U \subseteq \mathbb{R}^{2}$, an open neighbourhood V of p in S, and a differentiable map $X: U \rightarrow \mathbb{R}^{3}$ such that:
(i) $X(U)=V$,
(ii) $X: U \rightarrow V$ is a homeomorphism,
(iii) $(d X)_{u}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ is injective for all $u \in U$.

Since a diffeomorphism is a homeomorphism, we have $\phi(V)$ is an open neighbourhood of $q=\phi(p)$ in $\phi(S)$, and $\phi \circ X: U \rightarrow \phi(V)$ is a homeomorphism. Next, using chain rule, we have for any $u \in U$,

$$
d(\phi \circ X)_{u}=d \phi_{X(u)} \circ(d X)_{u},
$$

where $d \phi_{X(u)}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is a linear isomorphism. This implies that $d(\phi \circ X)_{u}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ is injective for all $u \in U$. This proves that $\phi(S)$ is a surface.
We use the notation $\psi: S \rightarrow \phi(S)$ to denote this restriction map. If $i: \phi(S) \rightarrow \mathbb{R}^{3}$ denote the inclusion map, then $i \circ \psi=\phi$. Now let $X: U \rightarrow \mathbb{R}^{3}$ be an arbitrary parametrization of S (and we can assume the properties (i)-(iii) listed as above for this X). Since ϕ : $O_{1} \rightarrow \mathbb{R}^{3}$ is differentiable, we have $\phi \circ X: U \rightarrow \mathbb{R}^{3}$ is differentiable, and hence $(i \circ \psi) \circ X=\phi \circ X$ is differentiable function. Hence, from definition, we have ψ is a differentiable map in sense of definition 2.27 A. (Page 40, Montiel \& Ros). Reversing the roles of O_{1} and O_{2}, we can similarly show that $\psi^{-1}: \phi(S) \rightarrow S$ is also differentiable. Hence ψ is a diffeomorphism.

Question 4. Let S be the right cylinder of radius $r>0$, whose axis is the line passing through the origin with direction a (with $|\mathbf{a}|=1$), given by

$$
S:=\left\{p \in \mathbb{R}^{3}:|p|^{2}-\langle p, \mathbf{a}\rangle^{2}=r^{2}\right\} .
$$

Prove that

$$
T_{p} S=\left\{v \in \mathbb{R}^{3}:\langle p, v\rangle-\langle p, a\rangle\langle a, v\rangle=0\right\} .
$$

Conclude that all the normal lines of S cut the axis perpendicularly.
Solution. Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ denote the function defined by

$$
f(p):=\langle p, p\rangle-\langle p, \mathbf{a}\rangle^{2} \quad\left(p \in \mathbb{R}^{3}\right) .
$$

Denoting $\mathbf{a}=\left(a_{1}, a_{2}, a_{3}\right)$, we have $a_{1}^{2}+a_{2}^{2}+a_{3}^{2}=1$ and we can write this function explicitly as

$$
f(x, y, z)=\left(x^{2}+y^{2}+z^{2}\right)-\left(a_{1} x+a_{2} y+a_{3} z\right)^{2} \quad\left((x, y, z) \in \mathbb{R}^{3}\right)
$$

If $M_{(x, y, z)}$ denote the matrix of the linear map $(d f)_{(x, y, z)}$ with respect to the canonical basis of \mathbb{R}^{3}, then

$$
M_{(x, y, z)}=\left(2 x-2\left(a_{1} x+a_{2} y+a_{3} z\right) a_{1}, 2 y-\left(a_{1} x+a_{2} y+a_{3} z\right) a_{2}, 2 z-2\left(a_{1} x+a_{2} y+a_{3} z\right) a_{3}\right)
$$

Now, if $(d f)_{(x, y, z)}=(0,0,0)$, then $(x, y, z) \in \mathbb{R}^{3}$ satisfies the equations:

$$
\begin{aligned}
x & =a_{1}\left(a_{1} x+a_{2} y+a_{3} z\right), \\
y & =a_{2}\left(a_{1} x+a_{2} y+a_{3} z\right), \\
z & =a_{3}\left(a_{1} x+a_{2} y+a_{3} z\right) .
\end{aligned}
$$

Now if $f(x, y, z)=r^{2}$, then

$$
\begin{aligned}
r^{2}= & \left(a_{1}\left(a_{1} x+a_{2} y+a_{3} z\right)\right)^{2}+\left(a_{2}\left(a_{1} x+a_{2} y+a_{3} z\right)\right)^{2}+\left(a_{3}\left(a_{1} x+a_{2} y+a_{3} z\right)\right)^{2} \\
& -\left(a_{1} x+a_{2} y+a_{3} z\right)^{2}=0
\end{aligned}
$$

since $a_{1}^{2}+a_{2}^{2}+a_{3}^{2}=1$. This is absurd, since $r>0$. This shows that r^{2} is a regular value of the function f and the cylinder S is given as $S=f^{-1}\left(\left\{r^{2}\right\}\right)$.
Recall from Example 2.51, we have $T_{(x, y, z)} S=\operatorname{ker}\left((d f)_{(x, y, z)}: \mathbb{R}^{3} \rightarrow \mathbb{R}\right)$.
The linear map $(d f)_{(x, y, z)}$ is given by

$$
\begin{aligned}
(d f)_{(x, y, z)}\left(\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right)= & M_{(x, y, z)}\left(\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right) \\
= & \left(2 x-2\left(a_{1} x+a_{2} y+a_{3} z\right) a_{1}\right) v_{1}+\left(2 y-\left(a_{1} x+a_{2} y+a_{3} z\right) a_{2}\right) v_{2} \\
& +\left(2 z-2\left(a_{1} x+a_{2} y+a_{3} z\right) a_{3}\right) v_{3}
\end{aligned}
$$

Now setting $p=(x, y, z)$ and $v=\left(v_{1}, v_{2}, v_{3}\right)$ we have

$$
(d f)_{p}(v)=2\langle p, v\rangle-2\langle p, a\rangle\langle a, v\rangle \quad\left(v \in \mathbb{R}^{3}\right) .
$$

Then the required description of $T_{p} S$ follows immediately.
Next, modifying the description of $T_{p} S$, we can write

$$
\begin{aligned}
T_{p} S & =\left\{v \in \mathbb{R}^{3}:\langle v, p\rangle-\langle p, a\rangle\langle v, a\rangle=0\right\} \\
& =\left\{v \in \mathbb{R}^{3}:\langle v, p-\langle p, a\rangle a\rangle=0\right\}
\end{aligned}
$$

which is the equation of the plane that passes through origin and is normal to the vector $p-\langle p, a\rangle a$. Now, for any $p \in S$, we have

$$
\langle p-\langle p, a\rangle a, a\rangle=\langle p, a\rangle-\langle p, a\rangle\langle a, a\rangle=0,
$$

since $\langle a, a\rangle=|a|^{2}=1$. This proves that for every $p \in S$, the normal line $\mathbb{R}(p-\langle p, a\rangle a)$ at p is orthogonal to the axis $\mathbb{R} a$ of S.

