MTH 406 : Differential Geometry of Curves and Surfaces

Mid semester Exam 27th February, 2024
Full score: 50 Time: 120 minutes

Question 1. Let a : R — R? a plane curve p.b.a.l. (i.e. |o/(s)] =1 for
all s € R) such that a(R) is included in a closed disc of radius r > 0
and center a, that satisfies |k(s)| < 1/r for every s € R. Prove that:
(i) The function f(s) := |a(s) —a|? (s € R) is bounded from above and
satisfies f”(s) > 0 for all s € R.
(ii) Any differentiable function g : R — R that is both bounded from
above and satisfies ¢” > 0 is necessarily a constant function.
Using (i) and (ii) deduce that « is a circle centred at a with radius
r > 0.

Points. 5+5+2

Question 2. Let o and 8 be two regular plane curves defined, respec-
tively, on two open intervals of R containing the origin. Suppose that
a(0) = B(0) = p and that o/(0) = 5(0).
We say that o is over g at p if there is a neighbourhood of 0 in R
where (o — «(0), No(0)) > (8 — 5(0), Ns(0)). Prove that:
(i) If a is over 8 at p, then k,(0) > kg(0).
(i) If £4(0) > ks(0), then « is over § at p.

Points. 6+6

Question 3. Let 01,0, C R? be Euclidean open sets and let ¢ :
01 — O3 be a diffeomorphism. If § C O; is a surface, show that
#(S) is a surface. Prove that the restriction map ¢ : S — ¢(S) is a
diffeomorphism.

Points. 6+6

Question 4. Let S be the right cylinder of radius r > 0, whose axis
is the line passing through the origin with direction a (with |a] = 1),
given by

S = {p cR® : |p]*— (p,a)’ = 7“2}.
Prove that
T,S = {U eR® : (p,v) — (p,a){a,v) = 0}.
Conclude that all the normal lines of S cut the axis perpendicularly.
Points. 7+7



Solution.

Question 1. Let a : R — R? a plane curve p.b.a.l. (i.e. |a/(s)| =1 for
all s € R) such that a(R) is included in a closed disc of radius r > 0
and center a, that satisfies |k(s)| < 1/r for every s € R. Prove that:

(i) The function f(s) := |a(s) —al?® (s € R) is bounded from above and
satisfies f”(s) > 0 for all s € R.

(ii) Any differentiable function g : R — R that is bounded and satisfies
¢” > 0 is necessarily a constant function.

Using (i) and (ii) deduce that « is a circle centred at a with radius
r > 0.

Solution. (i) We write a(s) = (z(s),y(s)) (s € R) and a = (ay, az).

Since a(R) is included in a closed disc of radius r > 0 and center a, we
have

la(s) —a| <r (s€R) ().
This shows that 0 < f(s) < r? for all s € R. Next,
f(s) = (z(a) — a)* + (y(s) —a2)* (s €R).
Then, for every s € R we have
() = 2(x(s) —ar)2(s) + 2(y(s) — az)y'(s) = 2(a(s) —a)-a/(s),
f'(s) = 2(x(s) —ar)a"(s) +22'(s)" + 2(y(s) — az)y"(s) + 2y'(s)’
= 2(a(s) —a)-a”(s) +2
since « is p.b.a.l.
Now from Frenet’s first equation 7"(s) = k(s)N(S), we have

2'(s) = —k(s)y/(s),  ¢(s) = K(s)a(s)

and hence

(s 9 (5) = M)’ <

= (s € R) (xx).
Next, using the dot product inequality we have

‘(a(s) — a)-a"(s)‘ <la(s)—a|-|a"(s)|<r-—=1

1
,
using (%) and (*x). This implies that,

0< (afs) —a)-a’(s)+1<2

and hence f”(s) > 0 for all s € R.
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(ii) For any x,y € R, using Taylor’s theorem with second order approx-
imation we have

o(r) = 9(0) + g )z —9) + 50"(€)(x — v)”

for some c in between x and y, where ¢ depends on x and y. Using our
hypothesis, we have

g(x) > g(y) + ' () (x — y).
for any x,y € R.

Now suppose, g is not constant. Then there exists y € R such that
g (y) > 0 or ¢'(y) < 0. In the first case, keeping y fixed, we have
g(x) = 400 as © — +00. In the second case, keeping y fixed, we have
g(x) = —o0 as x — +00. In either case, it contradicts the fact that g
is bounded. Hence g must be a constant map.

(iii) The function f in (i) satisfies the property stated in (ii), and hence
is a constant function. Using (%) we have

la(s) —al| =X (s €R) (% % %)

for some constant 0 < A < r. If A = 0, then « itself is a constant
map, which contradicts |o/(s)| = 1 for all s € R. This implies that
O<A<r.

Now assume that A < r. Then we can write
a(s) = (z(s),y(s)) = (a1 + AcosO(s),az + Asinf(s)) (s € R),

for some 6 : R — R. Now notice that « is not even locally constant,
since |&/(s)| = 1 for all s € R. This implies that, except possibly for
the points where either the cosine or the sine functions vanish, 6 is
differentiable. For any such point s € R, we have

o/(s) = (— Asinf(s)8'(s), AcosO(s)8(s)).

Now since |o/(s)| = 1, we have |#(s)| = 1/, and hence 6'(s) = +1/\.
From this we have

o(s) = (Fsinb(s),£cos(s)),

1 1
o’(s) = (Fcosb(s)f(s), Fsinb(s)f(s)) = (— 5, cos 0(s), Y sinf(s))
Now using the Frenet’s equations we have |k(s)| = 1/A. However, using
equation (**), we have 1/A\? < 1/r?, which contradict A < r. Denoting
by Cla;r|, the set of points on the circle with center a and radius r,
we have «a(s) € Cla;r] for every s € R, where 0(s) is differentiable.
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Now if 4 is differentiable at s, we have 6(s) = i%s+ i, for some constant
1 € R, where the sign would depend on the point s. This implies that

a(s) = (a1 +rcos ((£1/r)s + p), az + rsin ((£1/r)s + u))

Finally, since « is continuous, we have the above equation hold for
every s € R, where the sign is either + or — for all s € R.

Question 2. Let o and 3 be two regular plane curves defined, respec-
tively, on two open intervals of R containing the origin. Suppose that

a(0) = (0) = p and that o/(0) = 5'(0).

We say that « is over g at p if there is a neighbourhood of 0 in R
where (a — «(0), N,(0)) > (8 — (0), Ns(0)). Prove that:

(i) If v is over 8 at p, then k,(0) > kg(0).

(ii) If £4(0) > kg(0), then « is over 3 at p.

Solution. Let a and 3 be defined on the open intervals I; and I, and
we consider the open intervals I := I; N I;. By hypothesis, we have

_ a(0) _ B(0)
(O] ~ 150)]

Ta(o) = Tﬁ([))

and consequently,
Na(0) = JTo(0) = JT5(0) = N5(0).

We denote this common normal at 0 by u (and we have |u] = 1). Now
define f,g: I — R by

f(s) = {als) =p,w),  g(s) := (B(s) —p,u) (s €).

(i) By hypothesis, there exists an open interval I, C I containing 0
such that f(s) > g(s) for all s € Iy. Define ¢ : I — R by

p(s) == f(s) —g(s) (s € I).

Since a, f are C*-functions, so is ¢. Now, f(0) = ¢(0) and hence ¢
has a local minima at s = 0 (within Iy). Now if ¢ is locally constant
at 0, say within a neighbourhood 0 € I} C Iy, then ¢(s) = 0 for all
s € I). In that case,

{a(s) = B(s),u) =0
for all s € I, and consequently, o« = § on Ij. In this case k,(0) = kz(0).
0

So assume that ¢ is not locally constant at 0. Then ¢'(0) = 0 and

¢©"(0) > 0. Note that
"(0) = f"(0) = ¢"(0) = ("(0) = 8(0), u) > 0.



Step 1. We deduce
4
ds

/ _ 1 Oz” Oé/

5=0
If we write a(s) = (za(s),ya(s)). Then |o/(s)|> = 2.(s)* + 9/, (s)".
Differentiating this with respect to s we have

20 (5)] -Jo’(s)] = 2 (5)(s) + v ()5)) = 2’ (5), /().

which implies that

4y _ ! o’ (s), (s
% CY(S)| - |O/(S>| < ( )7 ( ))7

and then the expression follows by setting s = 0 to both sides of the
equation.

Step 2. Now we deduce
T (0) = a”(0)  (a"(0),0'(0)) ,

[0} / / « (O)
|/ (0)] |/ (0)°
Differentiating T, (s) = /(s)/|d/(s)|, we have
, a(s)|c(s)] = o/ (s) gl (s)| (s oa'(s) d
To(s) = o = ,( ) _ /< )2—a(s)].
o/ (s)] /()] la'(s)[*ds

Now setting s = 0 in above equation and using Step 1, we obtain

, a”(0 a/(0 d , (0 a/(0 " ,
T10) = S = T e O = Tl — T (000

~a/(0)) o' (0)? dsle=o () Ja(0)

Step 3. We deduce

£a(0) = (g (@0 s(0) = (0.

(
£ 0) = (T2(0).0) = rrr (o 0). 0 = S0 0,0,

Now since «/(0) is orthogonal to u, the first statement follows. The
second statement can be similarly obtained by replacing o by [ in the
Steps 1, 2 and as arguing as above.

Final Step.
Using the fact o/(0) = 5(0) and Step 3, we have
1 " " o 1 "
ka(o) - kﬁ(o) = |a/(0)| <Oé (0) 6 (O),U) - |a,(0)|90 (O) > 0.
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(ii) In the above steps, we have not used the definition of « is over (3 at p.
So, repeating these arguments it follows that, if k,(0) —kz(0) > 0, then
¢" > 0. Now from hypothesis, we have ¢/(0) = (a/(0) — £'(0),u) = 0.
Hence ¢ has a local minima at s = 0. The statement is now immediate
from this.

Question 3. Let 0,0, C R3 be Euclidean open sets and let ¢ :
07 — O3 be a diffeomorphism. If S C O, is a surface, show that
¢(9) is a surface. Prove that the restriction map ¢ : S — ¢(9) is a
diffeomorphism.

Solution. Let ¢ € ¢(S) be any arbitrary point. Let p € S such that
#(p) = q. Since S is a surface, there exists an open set U C R? an
open neighbourhood V of p in S, and a differentiable map X : U — R3
such that:

() X(U) =V,

(ii) X : U — V is a homeomorphism,

(iii) (dX), : R?* — R? is injective for all u € U.

Since a diffeomorphism is a homeomorphism, we have ¢(V) is an open
neighbourhood of ¢ = ¢(p) in ¢(S), and po X : U — (V) is a
homeomorphism. Next, using chain rule, we have for any v € U,

d(¢ © X)u = dng(u) o (dX)ua

where ddx(,) : R*> — R? is a linear isomorphism. This implies that
d(¢ o X), : R? = R3 is injective for all w € U. This proves that ¢(.9)
is a surface.

We use the notation ¢ : S — ¢(S) to denote this restriction map.
If i : ¢(S) — R? denote the inclusion map, then i ot = ¢. Now
let X : U — R?® be an arbitrary parametrization of S (and we can
assume the properties (i)-(iii) listed as above for this X). Since ¢ :
0O, — R? is differentiable, we have ¢ o X : U — R3 is differentiable,
and hence (i 01)o X = ¢ o X is differentiable function. Hence, from
definition, we have v is a differentiable map in sense of definition 2.27
A. (Page 40, Montiel & Ros). Reversing the roles of O; and Oy, we
can similarly show that 1~! : ¢(S) — S is also differentiable. Hence v
is a diffeomorphism.

Question 4. Let S be the right cylinder of radius r > 0, whose axis
is the line passing through the origin with direction a (with |a] = 1),
given by

S = {p cR® : |p* - (p,a)? = 7“2}.



Prove that
T,5={veR : (pv) - (p,a)(a,v) = 0}.
Conclude that all the normal lines of S cut the axis perpendicularly.

Solution. Let f : R® — R denote the function defined by

f(p) = (p.p) = (p.a)* (peR’).
Denoting a = (ay, as, az), we have a? + a3 + a3 = 1 and we can write
this function explicitly as

f(z, oy, 2) = (@* +y* + 2%) — (a2 + apy + a3zz)? ((x, y,z) € ]R?’).

If M, . denote the matrix of the linear map (df)(s,,.) Wwith respect
to the canonical basis of R?, then

My = <2x—2(a1x—|—a2y+a32)a1, 2y—(a1x+asy+azz)as, 22—2(a1x—|—a2y+a32)a3>
Now, if (df)(zy.) = (0,0,0), then (z,y, z) € R?® satisfies the equations:

r = ai(az+ agy + azz),
y = ay(mx + axy + asz),
z = az(arz + ay + azz).

Now if f(x,y,2) = r?, then
2

2 2
r? = (al(alx + asy + a32)> + (ag(alz + asy + agz)) + (ag(alx + asy + a;;z))

—(a17 + agy + azz)? =0
since a? + a3 + a3 = 1. This is absurd, since > 0. This shows that

r? is a regular value of the function f and the cylinder S is given as

S = f1({r*}).
Recall from Example 2.51, we have T(, , ) S = ker((df)(x,w) ‘R3 — R).
The linear map (df)(z,y,-) is given by

V1 U1
(df) (z,y,2) | V2 = My | v2
U3 U3

= (29@ —2(a1x + agy + CL3,Z>CL1>U1 + <2y — (a1 + agy + CL32)CL2> Uy

+(22 —2(a1z + asy + CL3Z)CL3> U3
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Now setting p = (z,y, z) and v = (v, ve, v3) we have

(df)p(v) = 2(p,v) — 2(p,a){a,v) (v €R?).
Then the required description of 7,5 follows immediately.
Next, modifying the description of 7,5, we can write

1,5 = {v cR® : (v,p) — (p,a)(v,a) = O}

= {veR : (vp—(p.aja) =0}
which is the equation of the plane that passes through origin and is
normal to the vector p — (p,a)a. Now, for any p € S, we have
<p - <p7 a>a7a> = <p7 CL> - <pv a><a7 a) =0,
since (a,a) = |a|*> = 1. This proves that for every p € S, the normal
line R(p — (p,a)a) at p is orthogonal to the axis Ra of S.



