
MTH 406 : Differential Geometry of Curves and Surfaces

Mid semester Exam 27th February, 2024
Full score: 50 Time: 120 minutes

Question 1. Let α : R→ R2 a plane curve p.b.a.l. (i.e. |α′(s)| = 1 for
all s ∈ R) such that α(R) is included in a closed disc of radius r > 0
and center a, that satisfies |k(s)| ≤ 1/r for every s ∈ R. Prove that:

(i) The function f(s) := |α(s)−a|2 (s ∈ R) is bounded from above and
satisfies f ′′(s) ≥ 0 for all s ∈ R.

(ii) Any differentiable function g : R → R that is both bounded from
above and satisfies g′′ ≥ 0 is necessarily a constant function.

Using (i) and (ii) deduce that α is a circle centred at a with radius
r > 0.

Points. 5+5+2

Question 2. Let α and β be two regular plane curves defined, respec-
tively, on two open intervals of R containing the origin. Suppose that
α(0) = β(0) = p and that α′(0) = β′(0).

We say that α is over β at p if there is a neighbourhood of 0 in R
where 〈α− α(0), Nα(0)〉 ≥ 〈β − β(0), Nβ(0)〉. Prove that:

(i) If α is over β at p, then kα(0) ≥ kβ(0).

(ii) If kα(0) > kβ(0), then α is over β at p.
Points. 6+6

Question 3. Let O1, O2 ⊆ R3 be Euclidean open sets and let φ :
O1 → O2 be a diffeomorphism. If S ⊆ O1 is a surface, show that
φ(S) is a surface. Prove that the restriction map φ : S → φ(S) is a
diffeomorphism.

Points. 6+6

Question 4. Let S be the right cylinder of radius r > 0, whose axis
is the line passing through the origin with direction a (with |a| = 1),
given by

S :=
{
p ∈ R3 : |p|2 − 〈p, a〉2 = r2

}
.

Prove that

TpS =
{
v ∈ R3 : 〈p, v〉 − 〈p, a〉〈a, v〉 = 0

}
.

Conclude that all the normal lines of S cut the axis perpendicularly.

Points. 7+7

1



2

Solution.

Question 1. Let α : R→ R2 a plane curve p.b.a.l. (i.e. |α′(s)| = 1 for
all s ∈ R) such that α(R) is included in a closed disc of radius r > 0
and center a, that satisfies |k(s)| ≤ 1/r for every s ∈ R. Prove that:

(i) The function f(s) := |α(s)−a|2 (s ∈ R) is bounded from above and
satisfies f ′′(s) ≥ 0 for all s ∈ R.

(ii) Any differentiable function g : R→ R that is bounded and satisfies
g′′ ≥ 0 is necessarily a constant function.

Using (i) and (ii) deduce that α is a circle centred at a with radius
r > 0.

Solution. (i) We write α(s) = (x(s), y(s)) (s ∈ R) and a = (a1, a2).

Since α(R) is included in a closed disc of radius r > 0 and center a, we
have

|α(s)− a| ≤ r (s ∈ R) (∗).
This shows that 0 ≤ f(s) ≤ r2 for all s ∈ R. Next,

f(s) = (x(a)− a1)2 + (y(s)− a2)2 (s ∈ R).

Then, for every s ∈ R we have

f ′(s) = 2
(
x(s)− a1

)
x′(s) + 2

(
y(s)− a2

)
y′(s) = 2

(
α(s)− a

)
·α′(s),

f ′′(s) = 2
(
x(s)− a1

)
x′′(s) + 2x′(s)2 + 2

(
y(s)− a2

)
y′′(s) + 2y′(s)2

= 2
(
α(s)− a

)
·α′′(s) + 2

since α is p.b.a.l.

Now from Frenet’s first equation T ′(s) = k(s)N(S), we have

x′′(s) = −k(s)y′(s), y′′(s) = k(s)x′(s)

and hence

x′′(s)2 + y′′(s)2 = k(s)2 ≤ 1

r2
(s ∈ R) (∗∗).

Next, using the dot product inequality we have∣∣(α(s)− a
)
·α′′(s)

∣∣ ≤ |α(s)− a| · |α′′(s)| ≤ r · 1

r
= 1

using (∗) and (∗∗). This implies that,

0 ≤
(
α(s)− a

)
·α′′(s) + 1 ≤ 2

and hence f ′′(s) ≥ 0 for all s ∈ R.
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(ii) For any x, y ∈ R, using Taylor’s theorem with second order approx-
imation we have

g(x) = g(y) + g′(y)(x− y) +
1

2!
g′′(c)(x− y)2

for some c in between x and y, where c depends on x and y. Using our
hypothesis, we have

g(x) ≥ g(y) + g′(y)(x− y).

for any x, y ∈ R.

Now suppose, g is not constant. Then there exists y ∈ R such that
g′(y) > 0 or g′(y) < 0. In the first case, keeping y fixed, we have
g(x)→ +∞ as x→ +∞. In the second case, keeping y fixed, we have
g(x)→ −∞ as x→ +∞. In either case, it contradicts the fact that g
is bounded. Hence g must be a constant map.

(iii) The function f in (i) satisfies the property stated in (ii), and hence
is a constant function. Using (∗) we have

|α(s)− a| = λ (s ∈ R) (∗ ∗ ∗)

for some constant 0 ≤ λ ≤ r. If λ = 0, then α itself is a constant
map, which contradicts |α′(s)| = 1 for all s ∈ R. This implies that
0 < λ ≤ r.

Now assume that λ < r. Then we can write

α(s) = (x(s), y(s)) =
(
a1 + λ cos θ(s), a2 + λ sin θ(s)

)
(s ∈ R),

for some θ : R → R. Now notice that α is not even locally constant,
since |α′(s)| = 1 for all s ∈ R. This implies that, except possibly for
the points where either the cosine or the sine functions vanish, θ is
differentiable. For any such point s ∈ R, we have

α′(s) =
(
− λ sin θ(s)θ′(s), λ cos θ(s)θ′(s)

)
.

Now since |α′(s)| = 1, we have |θ′(s)| = 1/λ, and hence θ′(s) = ±1/λ.
From this we have

α′(s) =
(
∓ sin θ(s),± cos θ(s)

)
,

α′′(s) =
(
∓ cos θ(s)θ′(s),∓ sin θ(s)θ′(s)

)
=
(
− 1

λ
cos θ(s),−1

λ
sin θ(s)

)
Now using the Frenet’s equations we have |k(s)| = 1/λ. However, using
equation (∗∗), we have 1/λ2 ≤ 1/r2, which contradict λ < r. Denoting
by C[a; r], the set of points on the circle with center a and radius r,
we have α(s) ∈ C[a; r] for every s ∈ R, where θ(s) is differentiable.
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Now if θ is differentiable at s, we have θ(s) = ±1
r
s+µ, for some constant

µ ∈ R, where the sign would depend on the point s. This implies that

α(s) =
(
a1 + r cos

(
(±1/r)s+ µ

)
, a2 + r sin

(
(±1/r)s+ µ

))
.

Finally, since α is continuous, we have the above equation hold for
every s ∈ R, where the sign is either + or − for all s ∈ R.

Question 2. Let α and β be two regular plane curves defined, respec-
tively, on two open intervals of R containing the origin. Suppose that
α(0) = β(0) = p and that α′(0) = β′(0).

We say that α is over β at p if there is a neighbourhood of 0 in R
where 〈α− α(0), Nα(0)〉 ≥ 〈β − β(0), Nβ(0)〉. Prove that:

(i) If α is over β at p, then kα(0) ≥ kβ(0).

(ii) If kα(0) > kβ(0), then α is over β at p.

Solution. Let α and β be defined on the open intervals I1 and I2 and
we consider the open intervals I := I1 ∩ I2. By hypothesis, we have

Tα(0) =
α′(0)

|α′(0)|
=

β′(0)

|β′(0)|
= Tβ(0)

and consequently,

Nα(0) = JTα(0) = JTβ(0) = Nβ(0).

We denote this common normal at 0 by u (and we have |u| = 1). Now
define f, g : I → R by

f(s) := 〈α(s)− p, u〉, g(s) := 〈β(s)− p, u〉 (s ∈ I).

(i) By hypothesis, there exists an open interval I0 ⊆ I containing 0
such that f(s) ≥ g(s) for all s ∈ I0. Define ϕ : I → R by

ϕ(s) := f(s)− g(s) (s ∈ I).

Since α, β are C∞-functions, so is ϕ. Now, f(0) = g(0) and hence ϕ
has a local minima at s = 0 (within I0). Now if ϕ is locally constant
at 0, say within a neighbourhood 0 ∈ I ′0 ⊆ I0, then ϕ(s) = 0 for all
s ∈ I ′0. In that case,

〈α(s)− β(s), u〉 = 0

for all s ∈ I ′0 and consequently, α = β on I ′0. In this case kα(0) = kβ(0).

So assume that ϕ is not locally constant at 0. Then ϕ′(0) = 0 and
ϕ′′(0) > 0. Note that

ϕ′′(0) = f ′′(0)− g′′(0) = 〈α′′(0)− β′′(0), u〉 > 0.
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Step 1. We deduce

d

ds

∣∣∣
s=0
|α′(s)| =

1

|α′(0)|
〈α′′(0), α′(0)〉.

If we write α(s) = (xα(s), yα(s)). Then |α′(s)|2 = x′α(s)2 + y′α(s)2.
Differentiating this with respect to s we have

2|α′(s)| d

ds
|α′(s)| = 2

(
x′α(s)x′′α(s) + y′α(s)y′′α(s)

)
= 2〈α′′(s), α′(s)〉,

which implies that

d

ds
|α′(s)| = 1

|α′(s)|
〈α′′(s), α′(s)〉,

and then the expression follows by setting s = 0 to both sides of the
equation.

Step 2. Now we deduce

T ′α(0) =
α′′(0)

|α′(0)|
− 〈α

′′(0), α′(0)〉
|α′(0)|3

α′(0).

Differentiating Tα(s) = α′(s)/|α′(s)|, we have

T ′α(s) =
α′′(s)|α′(s)| − α′(s) d

ds
|α′(s)|

|α′(s)|2
=

α′′(s)

|α′(s)|
− α′(s)

|α′(s)|2
d

ds
|α′(s)|.

Now setting s = 0 in above equation and using Step 1, we obtain

T ′α(0) =
α′′(0)

|α′(0)|
− α′(0)

|α′(0)|2
d

ds

∣∣∣
s=0
|α′(s)| = α′′(0)

|α′(0)|
− α′(0)

|α′(0)|3
〈α′′(0), α′(0)〉

Step 3. We deduce

kα(0) =
1

|α′(0)|
〈α′′(0), u〉, kβ(0) =

1

|β′(0)|
〈β′′(0), u〉

From definition of curvature and using u = Nα(0), we have

kα(0) = 〈T ′α(0), u〉 =
1

|α′(0)|
〈α′′(0), u〉 − 〈α

′′(0), α′(0)〉
|α′(0)|3

〈α′(0), u〉.

Now since α′(0) is orthogonal to u, the first statement follows. The
second statement can be similarly obtained by replacing α by β in the
Steps 1, 2 and as arguing as above.

Final Step.

Using the fact α′(0) = β′(0) and Step 3, we have

kα(0)− kβ(0) =
1

|α′(0)|
〈α′′(0)− β′′(0), u〉 =

1

|α′(0)|
ϕ′′(0) > 0.
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(ii) In the above steps, we have not used the definition of α is over β at p.
So, repeating these arguments it follows that, if kα(0)−kβ(0) > 0, then
ϕ′′ > 0. Now from hypothesis, we have ϕ′(0) = 〈α′(0) − β′(0), u〉 = 0.
Hence ϕ has a local minima at s = 0. The statement is now immediate
from this.

Question 3. Let O1, O2 ⊆ R3 be Euclidean open sets and let φ :
O1 → O2 be a diffeomorphism. If S ⊆ O1 is a surface, show that
φ(S) is a surface. Prove that the restriction map φ : S → φ(S) is a
diffeomorphism.

Solution. Let q ∈ φ(S) be any arbitrary point. Let p ∈ S such that
φ(p) = q. Since S is a surface, there exists an open set U ⊆ R2, an
open neighbourhood V of p in S, and a differentiable map X : U → R3

such that:

(i) X(U) = V ,
(ii) X : U → V is a homeomorphism,
(iii) (dX)u : R2 → R3 is injective for all u ∈ U .

Since a diffeomorphism is a homeomorphism, we have φ(V ) is an open
neighbourhood of q = φ(p) in φ(S), and φ ◦ X : U → φ(V ) is a
homeomorphism. Next, using chain rule, we have for any u ∈ U ,

d(φ ◦X)u = dφX(u) ◦ (dX)u,

where dφX(u) : R3 → R3 is a linear isomorphism. This implies that
d(φ ◦X)u : R2 → R3 is injective for all u ∈ U . This proves that φ(S)
is a surface.

We use the notation ψ : S → φ(S) to denote this restriction map.
If i : φ(S) → R3 denote the inclusion map, then i ◦ ψ = φ. Now
let X : U → R3 be an arbitrary parametrization of S (and we can
assume the properties (i)-(iii) listed as above for this X). Since φ :
O1 → R3 is differentiable, we have φ ◦ X : U → R3 is differentiable,
and hence (i ◦ ψ) ◦X = φ ◦X is differentiable function. Hence, from
definition, we have ψ is a differentiable map in sense of definition 2.27
A. (Page 40, Montiel & Ros). Reversing the roles of O1 and O2, we
can similarly show that ψ−1 : φ(S)→ S is also differentiable. Hence ψ
is a diffeomorphism.

Question 4. Let S be the right cylinder of radius r > 0, whose axis
is the line passing through the origin with direction a (with |a| = 1),
given by

S :=
{
p ∈ R3 : |p|2 − 〈p, a〉2 = r2

}
.
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Prove that

TpS =
{
v ∈ R3 : 〈p, v〉 − 〈p, a〉〈a, v〉 = 0

}
.

Conclude that all the normal lines of S cut the axis perpendicularly.

Solution. Let f : R3 → R denote the function defined by

f(p) := 〈p, p〉 − 〈p, a〉2 (p ∈ R3).

Denoting a = (a1, a2, a3), we have a21 + a22 + a23 = 1 and we can write
this function explicitly as

f(x, y, z) = (x2 + y2 + z2)− (a1x+ a2y + a3z)2
(

(x, y, z) ∈ R3
)
.

If M(x,y,z) denote the matrix of the linear map (df)(x,y,z) with respect
to the canonical basis of R3, then

M(x,y,z) =
(

2x−2(a1x+a2y+a3z)a1, 2y−(a1x+a2y+a3z)a2, 2z−2(a1x+a2y+a3z)a3

)
Now, if (df)(x,y,z) = (0, 0, 0), then (x, y, z) ∈ R3 satisfies the equations:

x = a1(a1x+ a2y + a3z),

y = a2(a1x+ a2y + a3z),

z = a3(a1x+ a2y + a3z).

Now if f(x, y, z) = r2, then

r2 =
(
a1(a1x+ a2y + a3z)

)2
+
(
a2(a1x+ a2y + a3z)

)2
+
(
a3(a1x+ a2y + a3z)

)2
−(a1x+ a2y + a3z)2 = 0

since a21 + a22 + a23 = 1. This is absurd, since r > 0. This shows that
r2 is a regular value of the function f and the cylinder S is given as
S = f−1({r2}).
Recall from Example 2.51, we have T(x,y,z)S = ker

(
(df)(x,y,z) : R3 → R

)
.

The linear map (df)(x,y,z) is given by

(df)(x,y,z)

v1v2
v3

 = M(x,y,z)

v1v2
v3


=

(
2x− 2(a1x+ a2y + a3z)a1

)
v1 +

(
2y − (a1x+ a2y + a3z)a2

)
v2

+
(

2z − 2(a1x+ a2y + a3z)a3

)
v3
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Now setting p = (x, y, z) and v = (v1, v2, v3) we have

(df)p(v) = 2〈p, v〉 − 2〈p, a〉〈a, v〉 (v ∈ R3).

Then the required description of TpS follows immediately.

Next, modifying the description of TpS, we can write

TpS =
{
v ∈ R3 : 〈v, p〉 − 〈p, a〉〈v, a〉 = 0

}
=

{
v ∈ R3 : 〈v, p− 〈p, a〉a〉 = 0

}
which is the equation of the plane that passes through origin and is
normal to the vector p− 〈p, a〉a. Now, for any p ∈ S, we have

〈p− 〈p, a〉a, a〉 = 〈p, a〉 − 〈p, a〉〈a, a〉 = 0,

since 〈a, a〉 = |a|2 = 1. This proves that for every p ∈ S, the normal
line R(p− 〈p, a〉a) at p is orthogonal to the axis Ra of S.


