MTH 406 : Differential Geometry of Curves and Surfaces Homework 2
 9th February, 2024

Deadline of submission. 14th February, 2024 prior to the class time.
Question 1. Let $\alpha: I \rightarrow \mathbb{R}^{2}$ be a regular plane curve and let R be a straight line in \mathbb{R}^{2}. If one can find a number $t_{0} \in I$ such that the distance from $\alpha(t)$ to R is greater than or equal to the distance from $\alpha\left(t_{0}\right)$ to R, for all $t \in I$, and such that $\alpha\left(t_{0}\right) \notin R$, then show that the tangent line of α at t_{0} is parallel to R.

Question 2. Let $\alpha: I \rightarrow \mathbb{R}^{2}$ be a regular plane curve. Let $[a, b] \subset I$ be such that $\alpha(a) \neq \alpha(b)$. Prove that there exists some $t_{0} \in(a, b)$ such that the tangent line of α at t_{0} is parallel to the segment of the straight line joining $\alpha(a)$ with $\alpha(b)$. (This is a generalization of Rolle's theorem of elementary calculus.)

Question 3. Prove that a curve $\alpha: I \rightarrow \mathbb{R}^{2}$ p.b.a.l. is a segment of a straight line if and only if all its tangent lines are concurrent.

Question 4. Prove that a curve $\alpha: I \rightarrow \mathbb{R}^{2}$ p.b.a.l. is an arc of a circle if and only if all its normal lines pass through a given point.

Question 5. Prove that a curve $\alpha: I \rightarrow \mathbb{R}^{2}$ p.b.a.l. is a segment of a straight line or an arc of a circle if and only if all its tangent lines are equidistant from a given point.

Question 6. Given a curve $\alpha: I \rightarrow \mathbb{R}^{2}$ p.b.a.l., prove that all the normal lines of α are equidistant from a point if and only if there are $a, b \in \mathbb{R}$ such that

$$
k(s)= \pm \frac{1}{\sqrt{a s+b}}
$$

for each $s \in I$.

Solutions.

Question 1. Let $\alpha: I \rightarrow \mathbb{R}^{2}$ be a regular plane curve and let R be a straight line in \mathbb{R}^{2}. If one can find a number $t_{0} \in I$ such that the distance from $\alpha(t)$ to R is greater than or equal to the distance from $\alpha\left(t_{0}\right)$ to R, for all $t \in I$, and such that $\alpha\left(t_{0}\right) \notin R$, then show that the tangent line of α at t_{0} is parallel to R.

Solution. Choose any point a from the straight line R and fix it. Let u denote the unit normal vector to the straight line R. Define $f: I \rightarrow \mathbb{R}$ by

$$
f(t):=\langle\alpha(t)-a, u\rangle \quad(t \in I) .
$$

Then the function f determine the oriented distance from the $\alpha(t)$ to the line R (see the figure below).

Figure 1
Since α is differentiable, so is f on I. Next, $\alpha\left(t_{0}\right) \notin R$, implies that $f\left(t_{0}\right) \neq 0$. Using continuity of f, there is an open neighbourhood $J \subseteq I$ of t_{0} such that $f(t) \neq 0$ for all $t \in J$. This means that either $f(t)>0$ for all $t \in J$, or $f(t)<0$ for all $t \in J$. Replacing f by $-f$ if necessary (which amounts to replace u by $-u$), we may assume that $f(t)>0$ for all $t \in J$, which means that the modified function f now measures the distance of $\alpha(t)$ from R at each $t \in J$. From the given hypothesis, it follows that f has a local minima at t_{0} and hence

$$
\left\langle\alpha^{\prime}\left(t_{0}\right), u\right\rangle=f^{\prime}\left(t_{0}\right)=0
$$

Let $T_{t_{0}}$ denote the (affine) tangent line of α at t_{0}. Then $T_{t_{0}}$ is parallel to the line represented by the subspace $\mathbb{R} \alpha^{\prime}\left(t_{0}\right)$, and from above equation it follows that $\mathbb{R} \alpha^{\prime}\left(t_{0}\right)$ is orthogonal to the normal direction u of R. Hence $\mathbb{R} \alpha^{\prime}\left(t_{0}\right)$ (and hence $T_{t_{0}}$) must be parallel to R.

Question 2. Let $\alpha: I \rightarrow \mathbb{R}^{2}$ be a regular plane curve. Let $[a, b] \subset I$ be such that $\alpha(a) \neq \alpha(b)$. Prove that there exists some $t_{0} \in(a, b)$ such that the tangent line of α at t_{0} is parallel to the segment of the straight line joining $\alpha(a)$ with $\alpha(b)$. (This is a generalization of Rolle's theorem of elementary calculus.)

Solution. The segment of the straight line joining $\alpha(a)$ with $\alpha(b)$ is represented by the vector $\alpha(b)-\alpha(a)$ (see the figure below).

Figure 2

This is parallel to the tangent line of α at t if and only if the vectors $\alpha(b)-\alpha(a)$ and $\alpha^{\prime}(t)$ are scalar multiple of each other as a member of the 2 -dimensional \mathbb{R}-linear space \mathbb{R}^{2}. Now we consider the map $f:[a, b] \rightarrow \mathbb{R}$ defined by

$$
f(t):=\operatorname{det}(\alpha(t), \alpha(a)-\alpha(b)) \quad(a \leq t \leq b)
$$

Since α is regular and $\alpha(a) \neq \alpha(b)$, the function f is differentiable and doesn't vanish on the entire domain $[a, b]$. To apply Rolle's theorem here, we need to verify $f(a)=f(b)$. We write

$$
\alpha(a)=\binom{a_{1}}{a_{2}}, \quad \alpha(b)=\binom{a_{1}}{a_{2}}, \quad \alpha(a)-\alpha(b)=\binom{x}{y}
$$

and consequently, $a_{1}-b_{1}=x, a_{2}-b_{2}=y$. Then, we have

$$
\begin{aligned}
f(a) & =\operatorname{det}\left(\begin{array}{ll}
a_{1} & x \\
a_{2} & y
\end{array}\right)=a_{1} y-a_{2} x=\left(b_{1}+x\right) y-\left(b_{2}+y\right) x=b_{1} y-b_{2} x \\
& =\operatorname{det}\left(\begin{array}{ll}
b_{1} & x \\
b_{2} & y
\end{array}\right)=f(b)
\end{aligned}
$$

which proves that $f(a)=f(b)$. Now using Rolle's theorem, we have

$$
\operatorname{det}\left(\alpha^{\prime}\left(t_{0}\right), \alpha(a)-\alpha(b)\right)=f^{\prime}\left(t_{0}\right)=0
$$

for some $t_{0} \in(a, b)$. Since $\alpha(a)-\alpha(b)$ is a non-zero vector, this implies that $\alpha(a)-\alpha(b)$ is a scalar multiple of $\alpha^{\prime}\left(t_{0}\right)$ (as elements of the 2dimensional \mathbb{R}-linear space \mathbb{R}^{2}), and consequently, are parallel to each other.

Question 3. Prove that a curve $\alpha: I \rightarrow \mathbb{R}^{2}$ p.b.a.l. is a segment of a straight line if and only if all its tangent lines are concurrent.

Solution. If the α is a segment of a straight line, then all its tangent lines are concurrent. So we assume that $\alpha^{\prime}(t)(t \in I)$ are concurrent; i.e., they all pass through a single point, say $\mathbf{a} \in \mathbb{R}^{2}$.

Then for each $t \in I$, we have the vector $\alpha(t)-\mathbf{a}$ is parallel to $\alpha^{\prime}(t)$. We define $g: I \rightarrow \mathbb{R}$ to be a map so that

$$
\begin{equation*}
\alpha(t)=g(t) \alpha^{\prime}(t)+\mathbf{a}, \quad(t \in I) \tag{*}
\end{equation*}
$$

Since α is p.b.a.l., we have $\alpha^{\prime}(t) \neq 0$ for all $t \in I$, and consequently, g is a differentiable map.
We claim that $\alpha^{\prime \prime}(t)=0$ for all $t \in I$. From this claim, using primitive function theorem of calculus applied to each component of α, it will follow that α is a straight line.
Suppose $\alpha^{\prime \prime}\left(t_{0}\right) \neq 0$ for some $t_{0} \in I$. Then the set $\left\{t \in I: \alpha^{\prime \prime}(t) \neq 0\right\}$ is an open subset of I, using the fact that $\alpha^{\prime \prime}$ is a differentiable (and hence continuous) map. Then there exists an open interval $J \subseteq I$ containing t_{0} such that $\alpha^{\prime \prime}(t) \neq 0$ for all $t \in J$.
Now differentiating both sides of the equation in $(*)$ we have

$$
\left(-1+g^{\prime}(t)\right) \alpha^{\prime}(t)+g(t) \alpha^{\prime \prime}(t)=0 \quad(t \in J)
$$

For any $t \in J$, we have $\alpha^{\prime \prime}(t) \neq 0$, and hence $\alpha^{\prime \prime}(t)$ is parallel to the normal to α at t. This implies that $\left\{\alpha^{\prime}(t), \alpha^{\prime \prime}(t)\right\}$ is a linearly independent subset of \mathbb{R}. From above equation, it follows that the restriction $\left.g\right|_{J}: J \rightarrow \mathbb{R}$ is the zero map, whereas $g^{\prime}(t)=1$ for all $t \in J$, which is absurd. This proves our claim.

Question 4. Prove that a curve $\alpha: I \rightarrow \mathbb{R}^{2}$ p.b.a.l. is an arc of a circle if and only if all its normal lines pass through a given point.

Solution. If α is an arc of a circle, then all its normal lines are concurrent and pass through the center of the corresponding circle. So we assume that all normal lines of α pass through a single point $\mathbf{a} \in \mathbb{R}^{2}$.
Define the map $f: I \rightarrow \mathbb{R}$ by

$$
f(t):=\langle\alpha(t)-\mathbf{a}, \alpha(t)-\mathbf{a}\rangle, \quad(t \in I) .
$$

Since α is regular, f is differentiable and

$$
f^{\prime}(t)=2\left\langle\alpha(t)-\mathbf{a}, \alpha^{\prime}(t)\right\rangle \quad(t \in I) .
$$

As α is p.b.a.l., we have $\alpha^{\prime}(t)$ is equal to the unit tangent to α at t, and by hypothesis, $\alpha(t)-\mathbf{a}$ is parallel to the normal line to α at t. This implies that $f^{\prime}(t)=0$ for all $t \in I$. This implies that f is constant, say $f(t)=r^{2} \geq 0$ for all $t \in I$. If $r=0$, then α is identically equal to a on I, contradicting that $\alpha^{\prime}(t) \neq 0$ for all $t \in I$ (since α is p.b.a.l.) Hence α represents an arc of the circle with radius $r>0$ and center a.

Question 5. Prove that a curve $\alpha: I \rightarrow \mathbb{R}^{2}$ p.b.a.l. is a segment of a straight line or an arc of a circle if and only if all its tangent lines are equidistant from a given point.

Solution. " \Leftarrow " In case α is a segment of a straight line, the tangents at the points of α at various points coincide with the curve itself, and hence for any given point $\mathbf{a} \in \mathbb{R}^{2}$, the distance between $\alpha^{\prime}(t)=T_{\alpha}(t)$ and \mathbf{a} is constant. In case α is an arc of a circle, the same statement hold by choosing a as the center of the corresponding circle.
$" \Rightarrow$ " We assume that there exists $\mathbf{a} \in \mathbb{R}^{2}$ such that $\operatorname{dist}\left(\mathbf{a}, \alpha^{\prime}(t)\right)$ is constant for all $t \in I$. This implies that

$$
\langle\alpha(t)-\mathbf{a}, N(t)\rangle= \pm c
$$

for some fixed real number $c \geq 0$. In case $c>0$, using the fact that the left side of the above equation represents a continuous function, there exists an open subinterval of I, where the function doesn't change its sign. So, by replacing $N(t)$ by $-N(t)$ if necessary, we may assume that

$$
\langle\alpha(t)-\mathbf{a}, N(t)\rangle=c
$$

for all $t \in I$. Differentiating this w.r.t. t we have

$$
\left\langle\alpha^{\prime}(t), N(t)\right\rangle+\left\langle\alpha(t)-\mathbf{a}, N^{\prime}(t)\right\rangle=0 .
$$

Since $T(t)=\alpha^{\prime}(t)$ (as α is p.b.a.l.) we have $\left\langle\alpha^{\prime}(t), N(t)\right\rangle=0$, and hence using the second Frenet's equation $N^{\prime}(t)=-k(t) T(t)$, we have

$$
-k(t)\langle\alpha(t)-\mathbf{a}, T(t)\rangle=0 \quad(t \in I)
$$

Now if $k(t) \neq 0$, then $\langle\alpha(t)-\mathbf{a}, T(t)\rangle=0$. Differentiating this equation (notice that $k(s) \neq 0$ on a neighbourhood of t) w.r.t. t we have

$$
1+\left\langle\alpha(t)-\mathbf{a}, T^{\prime}(t)\right\rangle=\left\langle\alpha^{\prime}(t), T(t)\right\rangle+\left\langle\alpha(t)-\mathbf{a}, T^{\prime}(t)\right\rangle=0 .
$$

Now using the first Frenet's equation and our hypothesis, we have $1+k(t) c=0$. This implies that for all $t \in I$, either $k(t)=0$, or else $c>0$ and $k(t)=-1 / c$. Since curvature is a continuous function, we have either $k \equiv 0$ on I, or else $k \equiv-1 / c$ on I. Now using the calculations made in Exercise 1.19 (not just the statement there), the statement follows.

Question 6. Given a curve $\alpha: I \rightarrow \mathbb{R}^{2}$ p.b.a.l., prove that all the normal lines of α are equidistant from a point if and only if there are $a, b \in \mathbb{R}$ such that

$$
k(s)= \pm \frac{1}{\sqrt{a s+b}}
$$

for each $s \in I$.

Solution. " \Rightarrow " The normal line of α at t passes through $\alpha(t)$ and is perpendicular to the unit tangent vector $T(t)=\alpha^{\prime}(t)$. The distance of the normal line of α at t from a point $\mathbf{a} \in \mathbb{R}^{2}$ is the square root of the absolute value of $\langle\alpha(t)-\mathbf{a}, T(t)\rangle$, which is the oriented distance of $N(t)$ to a (see the figure below).

Figure 3

Hence, there exists a constant $c \in \mathbb{R}$ such that

$$
\langle\alpha(t)-\mathbf{a}, T(t)\rangle=c \quad(t \in I) \quad(*)^{I}
$$

Differentiating this w.r.t. t and using first Frenet's equation (as in the previous exercise) we have

$$
1+k(t)\langle\alpha(t)-\mathbf{a}, N(t)\rangle=0 \quad(t \in I) \quad(*)^{I I} .
$$

Differentiating this again w.r.t. t we have
$k^{\prime}(t)\langle\alpha(t)-\mathbf{a}, N(t)\rangle+k(t)\left(\left\langle\alpha^{\prime}(t), N(t)\right\rangle+\left\langle\alpha(t)-\mathbf{a}, N^{\prime}(t)\right\rangle\right)=0 \quad(t \in I)$.
The first term inside the bracket as above is zero, and using the other Frenet's equation we obtain

$$
k^{\prime}(t)\langle\alpha(t)-\mathbf{a}, N(t)\rangle-k(t)^{2}\langle\alpha(t)-\mathbf{a}, T(t)\rangle=0 \quad(t \in I) .
$$

Multiplying by $k(t)$ to both sides and using the equations $(*)^{I},(*)^{I I}$, we have

$$
k^{\prime}(t)+c k(t)^{3}=0 \quad(t \in I)
$$

From equation $(*)^{I}$, it follows that $k(t) \neq 0$ for all $t \in I$. Then a straightforward calculation using the derivative formulas and the above equation we obtain $\left(1 / k(t)^{2}\right)^{\prime \prime}=0$, which means that $1 / k(t)^{2}$ is the equation of a straight line, and the assertion follows.
$" \Rightarrow "$ Conversely, suppose there exists $a, b \in \mathbb{R}$ such that

$$
k(t)= \pm \frac{1}{\sqrt{a t+b}} \quad(t \in I)
$$

Then $k(t) \neq 0$ for any $t \in I$. Now,

$$
a=\left(\frac{1}{k(t)^{2}}\right)^{\prime}=2\left(\frac{1}{k(t)}\right)\left(\frac{1}{k(t)}\right)^{\prime} \quad(*)^{I I I}
$$

Now define a function $f: I \rightarrow \mathbb{R}^{2}$ by

$$
f(t):=\alpha(t)+\frac{1}{k(t)} N(t)-\frac{a}{2} T(t) \quad(t \in I) .
$$

Then we have

$$
\begin{aligned}
f^{\prime}(t) & =\alpha^{\prime}(t)+\left(\frac{1}{k(t)}\right)^{\prime} N(t)+\frac{1}{k(t)} N^{\prime}(t)-\frac{a}{2} T^{\prime}(t) \\
& =\alpha^{\prime}(t)+\frac{a}{2} k(t) N(t)+\frac{1}{k(t)} N^{\prime}(t)-\frac{a}{2} k(t) N(t) \quad\left((*)^{I I I}\right. \text { and Frenet's eqn) } \\
& =\alpha^{\prime}(t)+\frac{1}{k(t)} N^{\prime}(t) \\
& =\alpha^{\prime}(t)-T(t)=0
\end{aligned}
$$

This implies that, there exists $\mathbf{a} \in \mathbb{R}^{2}$ such that $f(t)=\mathbf{a}$ for all $t \in I$, and hence

$$
\alpha(t)-\mathbf{a}=\frac{a}{2} T(t)-\frac{1}{k(t)} N(t) \quad(t \in I)
$$

Then for any $t \in I$, we have $\langle\alpha(t)-\mathbf{a}, T(t)\rangle=\frac{a}{2}$, which proves our assertion.

