MTH 406 : Differential Geometry of Curves and Surfaces

Homework 2 9th February, 2024

Deadline of submission. 14th February, 2024 prior to the class time.

Question 1. Let $\alpha : I \to \mathbb{R}^2$ be a regular plane curve and let R be a straight line in \mathbb{R}^2 . If one can find a number $t_0 \in I$ such that the distance from $\alpha(t)$ to R is greater than or equal to the distance from $\alpha(t_0)$ to R, for all $t \in I$, and such that $\alpha(t_0) \notin R$, then show that the tangent line of α at t_0 is parallel to R.

Question 2. Let $\alpha : I \to \mathbb{R}^2$ be a regular plane curve. Let $[a, b] \subset I$ be such that $\alpha(a) \neq \alpha(b)$. Prove that there exists some $t_0 \in (a, b)$ such that the tangent line of α at t_0 is parallel to the segment of the straight line joining $\alpha(a)$ with $\alpha(b)$. (This is a generalization of Rolle's theorem of elementary calculus.)

Question 3. Prove that a curve $\alpha : I \to \mathbb{R}^2$ p.b.a.l. is a segment of a straight line if and only if all its tangent lines are concurrent.

Question 4. Prove that a curve $\alpha : I \to \mathbb{R}^2$ p.b.a.l. is an arc of a circle if and only if all its normal lines pass through a given point.

Question 5. Prove that a curve $\alpha : I \to \mathbb{R}^2$ p.b.a.l. is a segment of a straight line or an arc of a circle if and only if all its tangent lines are equidistant from a given point.

Question 6. Given a curve $\alpha : I \to \mathbb{R}^2$ p.b.a.l., prove that all the normal lines of α are equidistant from a point if and only if there are $a, b \in \mathbb{R}$ such that

$$k(s) = \pm \frac{1}{\sqrt{as+b}}$$

for each $s \in I$.

Solutions.

Question 1. Let $\alpha : I \to \mathbb{R}^2$ be a regular plane curve and let R be a straight line in \mathbb{R}^2 . If one can find a number $t_0 \in I$ such that the distance from $\alpha(t)$ to R is greater than or equal to the distance from $\alpha(t_0)$ to R, for all $t \in I$, and such that $\alpha(t_0) \notin R$, then show that the tangent line of α at t_0 is parallel to R.

Solution. Choose any point *a* from the straight line *R* and fix it. Let *u* denote the unit normal vector to the straight line *R*. Define $f: I \to \mathbb{R}$ by

$$f(t) := \langle \alpha(t) - a, u \rangle \quad (t \in I)$$

Then the function f determine the oriented distance from the $\alpha(t)$ to the line R (see the figure below).

Since α is differentiable, so is f on I. Next, $\alpha(t_0) \notin R$, implies that $f(t_0) \neq 0$. Using continuity of f, there is an open neighbourhood $J \subseteq I$ of t_0 such that $f(t) \neq 0$ for all $t \in J$. This means that either f(t) > 0 for all $t \in J$, or f(t) < 0 for all $t \in J$. Replacing f by -f if necessary (which amounts to replace u by -u), we may assume that f(t) > 0 for all $t \in J$, which means that the modified function f now measures the distance of $\alpha(t)$ from R at each $t \in J$. From the given hypothesis, it follows that f has a local minima at t_0 and hence

$$\langle \alpha'(t_0), u \rangle = f'(t_0) = 0.$$

Let T_{t_0} denote the (affine) tangent line of α at t_0 . Then T_{t_0} is parallel to the line represented by the subspace $\mathbb{R}\alpha'(t_0)$, and from above equation it follows that $\mathbb{R}\alpha'(t_0)$ is orthogonal to the normal direction u of R. Hence $\mathbb{R}\alpha'(t_0)$ (and hence T_{t_0}) must be parallel to R.

Question 2. Let $\alpha : I \to \mathbb{R}^2$ be a regular plane curve. Let $[a, b] \subset I$ be such that $\alpha(a) \neq \alpha(b)$. Prove that there exists some $t_0 \in (a, b)$ such that the tangent line of α at t_0 is parallel to the segment of the straight line joining $\alpha(a)$ with $\alpha(b)$. (This is a generalization of Rolle's theorem of elementary calculus.)

Solution. The segment of the straight line joining $\alpha(a)$ with $\alpha(b)$ is represented by the vector $\alpha(b) - \alpha(a)$ (see the figure below).

FIGURE 2

This is parallel to the tangent line of α at t if and only if the vectors $\alpha(b) - \alpha(a)$ and $\alpha'(t)$ are scalar multiple of each other as a member of the 2-dimensional \mathbb{R} -linear space \mathbb{R}^2 . Now we consider the map $f: [a, b] \to \mathbb{R}$ defined by

$$f(t) := \det(\alpha(t), \alpha(a) - \alpha(b)) \quad (a \le t \le b).$$

Since α is regular and $\alpha(a) \neq \alpha(b)$, the function f is differentiable and doesn't vanish on the entire domain [a, b]. To apply Rolle's theorem here, we need to verify f(a) = f(b). We write

$$\alpha(a) = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}, \quad \alpha(b) = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}, \quad \alpha(a) - \alpha(b) = \begin{pmatrix} x \\ y \end{pmatrix},$$

and consequently, $a_1 - b_1 = x$, $a_2 - b_2 = y$. Then, we have

$$f(a) = \det \begin{pmatrix} a_1 & x \\ a_2 & y \end{pmatrix} = a_1 y - a_2 x = (b_1 + x)y - (b_2 + y)x = b_1 y - b_2 x$$
$$= \det \begin{pmatrix} b_1 & x \\ b_2 & y \end{pmatrix} = f(b).$$

which proves that f(a) = f(b). Now using Rolle's theorem, we have

$$\det(\alpha'(t_0), \alpha(a) - \alpha(b)) = f'(t_0) = 0$$

for some $t_0 \in (a, b)$. Since $\alpha(a) - \alpha(b)$ is a non-zero vector, this implies that $\alpha(a) - \alpha(b)$ is a scalar multiple of $\alpha'(t_0)$ (as elements of the 2dimensional \mathbb{R} -linear space \mathbb{R}^2), and consequently, are parallel to each other.

Question 3. Prove that a curve $\alpha : I \to \mathbb{R}^2$ p.b.a.l. is a segment of a straight line if and only if all its tangent lines are concurrent.

Solution. If the α is a segment of a straight line, then all its tangent lines are concurrent. So we assume that $\alpha'(t)$ $(t \in I)$ are concurrent; i.e., they all pass through a single point, say $\mathbf{a} \in \mathbb{R}^2$.

Then for each $t \in I$, we have the vector $\alpha(t) - \mathbf{a}$ is parallel to $\alpha'(t)$. We define $g: I \to \mathbb{R}$ to be a map so that

$$\alpha(t) = g(t)\alpha'(t) + \mathbf{a}, \qquad (t \in I) \tag{(*)}$$

Since α is p.b.a.l., we have $\alpha'(t) \neq 0$ for all $t \in I$, and consequently, g is a differentiable map.

We claim that $\alpha''(t) = 0$ for all $t \in I$. From this claim, using primitive function theorem of calculus applied to each component of α , it will follow that α is a straight line.

Suppose $\alpha''(t_0) \neq 0$ for some $t_0 \in I$. Then the set $\{t \in I : \alpha''(t) \neq 0\}$ is an open subset of I, using the fact that α'' is a differentiable (and hence continuous) map. Then there exists an open interval $J \subseteq I$ containing t_0 such that $\alpha''(t) \neq 0$ for all $t \in J$.

Now differentiating both sides of the equation in (*) we have

$$\left(-1+g'(t)\right)\alpha'(t)+g(t)\alpha''(t)=0\qquad(t\in J)$$

For any $t \in J$, we have $\alpha''(t) \neq 0$, and hence $\alpha''(t)$ is parallel to the normal to α at t. This implies that $\{\alpha'(t), \alpha''(t)\}$ is a linearly independent subset of \mathbb{R} . From above equation, it follows that the restriction $g|_J: J \to \mathbb{R}$ is the zero map, whereas g'(t) = 1 for all $t \in J$, which is absurd. This proves our claim.

Question 4. Prove that a curve $\alpha : I \to \mathbb{R}^2$ p.b.a.l. is an arc of a circle if and only if all its normal lines pass through a given point.

Solution. If α is an arc of a circle, then all its normal lines are concurrent and pass through the center of the corresponding circle. So we assume that all normal lines of α pass through a single point $\mathbf{a} \in \mathbb{R}^2$. Define the map $f: I \to \mathbb{R}$ by

$$f(t) := \langle \alpha(t) - \mathbf{a}, \alpha(t) - \mathbf{a} \rangle, \quad (t \in I).$$

Since α is regular, f is differentiable and

$$f'(t) = 2\langle \alpha(t) - \mathbf{a}, \alpha'(t) \rangle$$
 $(t \in I).$

As α is p.b.a.l., we have $\alpha'(t)$ is equal to the unit tangent to α at t, and by hypothesis, $\alpha(t) - \mathbf{a}$ is parallel to the normal line to α at t. This implies that f'(t) = 0 for all $t \in I$. This implies that f is constant, say $f(t) = r^2 \ge 0$ for all $t \in I$. If r = 0, then α is identically equal to \mathbf{a} on I, contradicting that $\alpha'(t) \ne 0$ for all $t \in I$ (since α is p.b.a.l.) Hence α represents an arc of the circle with radius r > 0 and center \mathbf{a} .

Question 5. Prove that a curve $\alpha : I \to \mathbb{R}^2$ p.b.a.l. is a segment of a straight line or an arc of a circle if and only if all its tangent lines are equidistant from a given point.

Solution. " \Leftarrow " In case α is a segment of a straight line, the tangents at the points of α at various points coincide with the curve itself, and hence for any given point $\mathbf{a} \in \mathbb{R}^2$, the distance between $\alpha'(t) = T_{\alpha}(t)$ and \mathbf{a} is constant. In case α is an arc of a circle, the same statement hold by choosing \mathbf{a} as the center of the corresponding circle.

" \Rightarrow " We assume that there exists $\mathbf{a} \in \mathbb{R}^2$ such that $\operatorname{dist}(\mathbf{a}, \alpha'(t))$ is constant for all $t \in I$. This implies that

$$\langle \alpha(t) - \mathbf{a}, N(t) \rangle = \pm c$$

for some fixed real number $c \ge 0$. In case c > 0, using the fact that the left side of the above equation represents a continuous function, there exists an open subinterval of I, where the function doesn't change its sign. So, by replacing N(t) by -N(t) if necessary, we may assume that

$$\langle \alpha(t) - \mathbf{a}, N(t) \rangle = c$$

for all $t \in I$. Differentiating this w.r.t. t we have

$$\langle \alpha'(t), N(t) \rangle + \langle \alpha(t) - \mathbf{a}, N'(t) \rangle = 0.$$

Since $T(t) = \alpha'(t)$ (as α is p.b.a.l.) we have $\langle \alpha'(t), N(t) \rangle = 0$, and hence using the second Frenet's equation N'(t) = -k(t)T(t), we have

$$-k(t)\langle \alpha(t) - \mathbf{a}, T(t) \rangle = 0 \qquad (t \in I).$$

Now if $k(t) \neq 0$, then $\langle \alpha(t) - \mathbf{a}, T(t) \rangle = 0$. Differentiating this equation (notice that $k(s) \neq 0$ on a neighbourhood of t) w.r.t. t we have

$$1 + \langle \alpha(t) - \mathbf{a}, T'(t) \rangle = \langle \alpha'(t), T(t) \rangle + \langle \alpha(t) - \mathbf{a}, T'(t) \rangle = 0.$$

Now using the first Frenet's equation and our hypothesis, we have 1 + k(t)c = 0. This implies that for all $t \in I$, either k(t) = 0, or else c > 0 and k(t) = -1/c. Since curvature is a continuous function, we have either $k \equiv 0$ on I, or else $k \equiv -1/c$ on I. Now using the calculations made in Exercise 1.19 (not just the statement there), the statement follows.

Question 6. Given a curve $\alpha : I \to \mathbb{R}^2$ p.b.a.l., prove that all the normal lines of α are equidistant from a point if and only if there are $a, b \in \mathbb{R}$ such that

$$k(s) = \pm \frac{1}{\sqrt{as+b}}$$

for each $s \in I$.

Solution. " \Rightarrow " The normal line of α at t passes through $\alpha(t)$ and is perpendicular to the unit tangent vector $T(t) = \alpha'(t)$. The distance of the normal line of α at t from a point $\mathbf{a} \in \mathbb{R}^2$ is the square root of the absolute value of $\langle \alpha(t) - \mathbf{a}, T(t) \rangle$, which is the oriented distance of N(t) to \mathbf{a} (see the figure below).

Figure 3

Hence, there exists a constant $c \in \mathbb{R}$ such that

$$\langle \alpha(t) - \mathbf{a}, T(t) \rangle = c \qquad (t \in I) \qquad (*)^{I}$$

Differentiating this w.r.t. t and using first Frenet's equation (as in the previous exercise) we have

$$1 + k(t)\langle \alpha(t) - \mathbf{a}, N(t) \rangle = 0 \qquad (t \in I) \qquad (*)^{II}.$$

Differentiating this again w.r.t. t we have

$$k'(t)\langle \alpha(t)-\mathbf{a}, N(t)\rangle + k(t)\Big(\langle \alpha'(t), N(t)\rangle + \langle \alpha(t)-\mathbf{a}, N'(t)\rangle\Big) = 0 \quad (t \in I).$$

The first term inside the bracket as above is zero, and using the other Frenet's equation we obtain

$$k'(t)\langle \alpha(t) - \mathbf{a}, N(t)\rangle - k(t)^2 \langle \alpha(t) - \mathbf{a}, T(t)\rangle = 0 \quad (t \in I).$$

Multiplying by k(t) to both sides and using the equations $(*)^{I}$, $(*)^{II}$, we have

$$k'(t) + ck(t)^3 = 0$$
 $(t \in I).$

From equation $(*)^{I}$, it follows that $k(t) \neq 0$ for all $t \in I$. Then a straightforward calculation using the derivative formulas and the above equation we obtain $(1/k(t)^{2})'' = 0$, which means that $1/k(t)^{2}$ is the equation of a straight line, and the assertion follows.

" \Rightarrow " Conversely, suppose there exists $a, b \in \mathbb{R}$ such that

$$k(t) = \pm \frac{1}{\sqrt{at+b}} \qquad (t \in I).$$

Then $k(t) \neq 0$ for any $t \in I$. Now,

$$a = \left(\frac{1}{k(t)^2}\right)' = 2\left(\frac{1}{k(t)}\right) \left(\frac{1}{k(t)}\right)' \quad (*)^{III}$$

Now define a function $f: I \to \mathbb{R}^2$ by

$$f(t) := \alpha(t) + \frac{1}{k(t)}N(t) - \frac{a}{2}T(t) \qquad (t \in I).$$

Then we have

$$f'(t) = \alpha'(t) + \left(\frac{1}{k(t)}\right)' N(t) + \frac{1}{k(t)} N'(t) - \frac{a}{2} T'(t)$$

= $\alpha'(t) + \frac{a}{2} k(t) N(t) + \frac{1}{k(t)} N'(t) - \frac{a}{2} k(t) N(t)$ ((*)^{III} and Frenet's eqn)
= $\alpha'(t) + \frac{1}{k(t)} N'(t)$
= $\alpha'(t) - T(t) = 0$ (Frenet's eqn)

This implies that, there exists $\mathbf{a} \in \mathbb{R}^2$ such that $f(t) = \mathbf{a}$ for all $t \in I$, and hence

$$\alpha(t) - \mathbf{a} = \frac{a}{2}T(t) - \frac{1}{k(t)}N(t) \qquad (t \in I)$$

Then for any $t \in I$, we have $\langle \alpha(t) - \mathbf{a}, T(t) \rangle = \frac{a}{2}$, which proves our assertion.