
MTH 406 : Differential Geometry of Curves and Surfaces

Homework 2 9th February, 2024

Deadline of submission. 14th February, 2024 prior to the class time.

Question 1. Let α : I → R2 be a regular plane curve and let R be
a straight line in R2. If one can find a number t0 ∈ I such that the
distance from α(t) to R is greater than or equal to the distance from
α(t0) to R, for all t ∈ I, and such that α(t0) 6∈ R, then show that the
tangent line of α at t0 is parallel to R.

Question 2. Let α : I → R2 be a regular plane curve. Let [a, b] ⊂ I
be such that α(a) 6= α(b). Prove that there exists some t0 ∈ (a, b) such
that the tangent line of α at t0 is parallel to the segment of the straight
line joining α(a) with α(b). (This is a generalization of Rolle’s theorem
of elementary calculus.)

Question 3. Prove that a curve α : I → R2 p.b.a.l. is a segment of a
straight line if and only if all its tangent lines are concurrent.

Question 4. Prove that a curve α : I → R2 p.b.a.l. is an arc of a
circle if and only if all its normal lines pass through a given point.

Question 5. Prove that a curve α : I → R2 p.b.a.l. is a segment of a
straight line or an arc of a circle if and only if all its tangent lines are
equidistant from a given point.

Question 6. Given a curve α : I → R2 p.b.a.l., prove that all the
normal lines of α are equidistant from a point if and only if there are
a, b ∈ R such that

k(s) = ± 1√
as+ b

for each s ∈ I.
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Solutions.

Question 1. Let α : I → R2 be a regular plane curve and let R be
a straight line in R2. If one can find a number t0 ∈ I such that the
distance from α(t) to R is greater than or equal to the distance from
α(t0) to R, for all t ∈ I, and such that α(t0) 6∈ R, then show that the
tangent line of α at t0 is parallel to R.

Solution. Choose any point a from the straight line R and fix it. Let u
denote the unit normal vector to the straight line R. Define f : I → R
by

f(t) := 〈α(t)− a, u〉 (t ∈ I).

Then the function f determine the oriented distance from the α(t) to
the line R (see the figure below).

 

Figure 1

Since α is differentiable, so is f on I. Next, α(t0) 6∈ R, implies that
f(t0) 6= 0. Using continuity of f , there is an open neighbourhood J ⊆ I
of t0 such that f(t) 6= 0 for all t ∈ J . This means that either f(t) > 0
for all t ∈ J , or f(t) < 0 for all t ∈ J . Replacing f by −f if necessary
(which amounts to replace u by −u), we may assume that f(t) > 0 for
all t ∈ J , which means that the modified function f now measures the
distance of α(t) from R at each t ∈ J . From the given hypothesis, it
follows that f has a local minima at t0 and hence

〈α′(t0), u〉 = f ′(t0) = 0.
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Let Tt0 denote the (affine) tangent line of α at t0. Then Tt0 is parallel to
the line represented by the subspace Rα′(t0), and from above equation
it follows that Rα′(t0) is orthogonal to the normal direction u of R.
Hence Rα′(t0) (and hence Tt0) must be parallel to R.

Question 2. Let α : I → R2 be a regular plane curve. Let [a, b] ⊂ I
be such that α(a) 6= α(b). Prove that there exists some t0 ∈ (a, b) such
that the tangent line of α at t0 is parallel to the segment of the straight
line joining α(a) with α(b). (This is a generalization of Rolle’s theorem
of elementary calculus.)

Solution. The segment of the straight line joining α(a) with α(b) is
represented by the vector α(b)− α(a) (see the figure below).

 

Figure 2

This is parallel to the tangent line of α at t if and only if the vectors
α(b) − α(a) and α′(t) are scalar multiple of each other as a member
of the 2-dimensional R-linear space R2. Now we consider the map
f : [a, b]→ R defined by

f(t) := det
(
α(t), α(a)− α(b)

)
(a ≤ t ≤ b).



4

Since α is regular and α(a) 6= α(b), the function f is differentiable and
doesn’t vanish on the entire domain [a, b]. To apply Rolle’s theorem
here, we need to verify f(a) = f(b). We write

α(a) =

(
a1
a2

)
, α(b) =

(
a1
a2

)
, α(a)− α(b) =

(
x
y

)
,

and consequently, a1 − b1 = x, a2 − b2 = y. Then, we have

f(a) = det

(
a1 x
a2 y

)
= a1y − a2x = (b1 + x)y − (b2 + y)x = b1y − b2x

= det

(
b1 x
b2 y

)
= f(b).

which proves that f(a) = f(b). Now using Rolle’s theorem, we have

det
(
α′(t0), α(a)− α(b)

)
= f ′(t0) = 0

for some t0 ∈ (a, b). Since α(a)−α(b) is a non-zero vector, this implies
that α(a) − α(b) is a scalar multiple of α′(t0) (as elements of the 2-
dimensional R-linear space R2), and consequently, are parallel to each
other.

Question 3. Prove that a curve α : I → R2 p.b.a.l. is a segment of a
straight line if and only if all its tangent lines are concurrent.

Solution. If the α is a segment of a straight line, then all its tangent
lines are concurrent. So we assume that α′(t) (t ∈ I) are concurrent;
i.e., they all pass through a single point, say a ∈ R2.

Then for each t ∈ I, we have the vector α(t) − a is parallel to α′(t).
We define g : I → R to be a map so that

α(t) = g(t)α′(t) + a, (t ∈ I) (∗)
Since α is p.b.a.l., we have α′(t) 6= 0 for all t ∈ I, and consequently, g
is a differentiable map.

We claim that α′′(t) = 0 for all t ∈ I. From this claim, using primitive
function theorem of calculus applied to each component of α, it will
follow that α is a straight line.

Suppose α′′(t0) 6= 0 for some t0 ∈ I. Then the set {t ∈ I : α′′(t) 6= 0}
is an open subset of I, using the fact that α′′ is a differentiable (and
hence continuous) map. Then there exists an open interval J ⊆ I
containing t0 such that α′′(t) 6= 0 for all t ∈ J .

Now differentiating both sides of the equation in (∗) we have(
− 1 + g′(t)

)
α′(t) + g(t)α′′(t) = 0 (t ∈ J).
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For any t ∈ J , we have α′′(t) 6= 0, and hence α′′(t) is parallel to
the normal to α at t. This implies that {α′(t), α′′(t)} is a linearly
independent subset of R. From above equation, it follows that the
restriction g|J : J → R is the zero map, whereas g′(t) = 1 for all t ∈ J ,
which is absurd. This proves our claim.

Question 4. Prove that a curve α : I → R2 p.b.a.l. is an arc of a
circle if and only if all its normal lines pass through a given point.

Solution. If α is an arc of a circle, then all its normal lines are con-
current and pass through the center of the corresponding circle. So we
assume that all normal lines of α pass through a single point a ∈ R2.

Define the map f : I → R by

f(t) := 〈α(t)− a, α(t)− a〉, (t ∈ I).

Since α is regular, f is differentiable and

f ′(t) = 2〈α(t)− a, α′(t)〉 (t ∈ I).

As α is p.b.a.l., we have α′(t) is equal to the unit tangent to α at t, and
by hypothesis, α(t) − a is parallel to the normal line to α at t. This
implies that f ′(t) = 0 for all t ∈ I. This implies that f is constant, say
f(t) = r2 ≥ 0 for all t ∈ I. If r = 0, then α is identically equal to a on
I, contradicting that α′(t) 6= 0 for all t ∈ I (since α is p.b.a.l.) Hence
α represents an arc of the circle with radius r > 0 and center a.

Question 5. Prove that a curve α : I → R2 p.b.a.l. is a segment of a
straight line or an arc of a circle if and only if all its tangent lines are
equidistant from a given point.

Solution. ”⇐” In case α is a segment of a straight line, the tangents
at the points of α at various points coincide with the curve itself, and
hence for any given point a ∈ R2, the distance between α′(t) = Tα(t)
and a is constant. In case α is an arc of a circle, the same statement
hold by choosing a as the center of the corresponding circle.

”⇒” We assume that there exists a ∈ R2 such that dist(a, α′(t)) is
constant for all t ∈ I. This implies that

〈α(t)− a, N(t)〉 = ±c
for some fixed real number c ≥ 0. In case c > 0, using the fact that the
left side of the above equation represents a continuous function, there
exists an open subinterval of I, where the function doesn’t change its
sign. So, by replacing N(t) by −N(t) if necessary, we may assume that

〈α(t)− a, N(t)〉 = c
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for all t ∈ I. Differentiating this w.r.t. t we have

〈α′(t), N(t)〉+ 〈α(t)− a, N ′(t)〉 = 0.

Since T (t) = α′(t) (as α is p.b.a.l.) we have 〈α′(t), N(t)〉 = 0, and
hence using the second Frenet’s equation N ′(t) = −k(t)T (t), we have

−k(t)〈α(t)− a, T (t)〉 = 0 (t ∈ I).

Now if k(t) 6= 0, then 〈α(t)−a, T (t)〉 = 0. Differentiating this equation
(notice that k(s) 6= 0 on a neighbourhood of t) w.r.t. t we have

1 + 〈α(t)− a, T ′(t)〉 = 〈α′(t), T (t)〉+ 〈α(t)− a, T ′(t)〉 = 0.

Now using the first Frenet’s equation and our hypothesis, we have
1 + k(t)c = 0. This implies that for all t ∈ I, either k(t) = 0, or
else c > 0 and k(t) = −1/c. Since curvature is a continuous function,
we have either k ≡ 0 on I, or else k ≡ −1/c on I. Now using the
calculations made in Exercise 1.19 (not just the statement there), the
statement follows.

Question 6. Given a curve α : I → R2 p.b.a.l., prove that all the
normal lines of α are equidistant from a point if and only if there are
a, b ∈ R such that

k(s) = ± 1√
as+ b

for each s ∈ I.
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Solution. ”⇒” The normal line of α at t passes through α(t) and is
perpendicular to the unit tangent vector T (t) = α′(t). The distance
of the normal line of α at t from a point a ∈ R2 is the square root of
the absolute value of 〈α(t)− a, T (t)〉, which is the oriented distance of
N(t) to a (see the figure below).

 

Figure 3

Hence, there exists a constant c ∈ R such that

〈α(t)− a, T (t)〉 = c (t ∈ I) (∗)I .

Differentiating this w.r.t. t and using first Frenet’s equation (as in the
previous exercise) we have

1 + k(t)〈α(t)− a, N(t)〉 = 0 (t ∈ I) (∗)II .

Differentiating this again w.r.t. t we have

k′(t)〈α(t)−a, N(t)〉+k(t)
(
〈α′(t), N(t)〉+〈α(t)−a, N ′(t)〉

)
= 0 (t ∈ I).

The first term inside the bracket as above is zero, and using the other
Frenet’s equation we obtain

k′(t)〈α(t)− a, N(t)〉 − k(t)2〈α(t)− a, T (t)〉 = 0 (t ∈ I).
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Multiplying by k(t) to both sides and using the equations (∗)I , (∗)II ,
we have

k′(t) + ck(t)3 = 0 (t ∈ I).

From equation (∗)I , it follows that k(t) 6= 0 for all t ∈ I. Then a
straightforward calculation using the derivative formulas and the above
equation we obtain (1/k(t)2)′′ = 0, which means that 1/k(t)2 is the
equation of a straight line, and the assertion follows.

”⇒” Conversely, suppose there exists a, b ∈ R such that

k(t) = ± 1√
at+ b

(t ∈ I).

Then k(t) 6= 0 for any t ∈ I. Now,

a =
( 1

k(t)2

)′
= 2

( 1

k(t)

)( 1

k(t)

)′
(∗)III

Now define a function f : I → R2 by

f(t) := α(t) +
1

k(t)
N(t)− a

2
T (t) (t ∈ I).

Then we have

f ′(t) = α′(t) +
( 1

k(t)

)′
N(t) +

1

k(t)
N ′(t)− a

2
T ′(t)

= α′(t) +
a

2
k(t)N(t) +

1

k(t)
N ′(t)− a

2
k(t)N(t) ((∗)III and Frenet′s eqn)

= α′(t) +
1

k(t)
N ′(t)

= α′(t)− T (t) = 0 (Frenet′s eqn)

This implies that, there exists a ∈ R2 such that f(t) = a for all t ∈ I,
and hence

α(t)− a =
a

2
T (t)− 1

k(t)
N(t) (t ∈ I).

Then for any t ∈ I, we have 〈α(t) − a, T (t)〉 = a
2
, which proves our

assertion.


