
MTH 406 : Differential Geometry of Curves and Surfaces

Homework 1 25th January, 2024

In the following exercises I ⊂ R always denotes an open interval, which
could possibly be unbounded as well. All curves are assumed to be C∞

unless otherwise mentioned.

Deadline of submission. January 31st, 2024 prior to the class time.

Question 1. Let α : I → R3 be a curve and M : R3 → R3 be a rigid
motion. Prove that Lba(α) = Lba(M ◦ α) for any [a, b] ⊂ I; i.e., rigid
motions preserve the length of a curve.

Question 2. Let α : I → R3 be a curve. Show that

Lba(α) = sup
{
Lba(α, P ) : P is a partition of [a, b]

}
.

Question 3. Let φ : J → I be a diffeomorphism and let α : I → R3 be
a curve. Given [a, b] ⊂ J with φ([a, b]) = [c, d], prove that Lba(α ◦ φ) =
Ldc(α).

Question 4. Consider the logarithmic spiral α : R→ R2 given by

α(t) = (aebt cos t, aebt sin t) (t ∈ R)

with a > 0, b < 0. Compute the arc length function S : R → R for
t0 ∈ R. Reparametrize this curve by arc length and study its trace.

Question 5. (Curvature for non p.b.a.l. curves) Let α : I → R2

be a regular curve, not necessarily p.b.a.l. Recall that there exists an
interval J ⊂ R and a diffeomorphism f : J → I such that β := α ◦ f is
a curve p.b.a.l. having the same trace as α. We define the curvature
of α at time t ∈ I by

kα(t) := kβ(f−1(t)) (t ∈ I).

Prove that

kα(t) =
1

|α′(t)|3
det(α′(t), α′′(t)) = det(T (t), T ′(t)) (t ∈ I),

where T (t) = α′(t)/|α′(t)| is the unit vector tangent of α at time t.
(Note: This proves that the curvature of α does not depend on the
choice of the diffeomorphism).
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Question 6. Let α : I → R2 be a curve p.b.a.l. and let M : R2 → R2

be a rigid motion. Define β := M ◦ α and prove that

kβ(s) =

{
kα(s) for all s ∈ I, if M is direct,

−kα(s) for all s ∈ I, if M is inverse.

Question 7. Let α : I → R2 be a curve p.b.a.l. Prove that α is a
segment of a straight line or an arc of a circle if and only if the curvature
of α is constant.

Question 8. Let α : I → R2 be a curve p.b.a.l. If there is a differen-
tiable function θ : I → R such that θ(s) is the angle that the tangent
line of α at s makes with a fixed direction, show that θ′(s) = ±k(s).

Question 9. Let α, β : I → R2 be two curves p.b.a.l. such that
kα(s) = −kβ(s) for every s ∈ I. Show that there is an inverse rigid
motion M : R3 → R3 such that β = M ◦ α.

Question 10. If α : I → R2 is a curve p.b.a.l. with 0 ∈ I and
symmetric around 0, we define another curve β : I → R2 by β(s) :=
α(−s) for every s ∈ I. Prove that β is p.b.a.l. and that kβ(s) =
−kα(−s) for each s ∈ I.
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Solutions.

Question 1. Let α : I → R3 be a curve and M : R3 → R3 be a rigid
motion. Prove that Lba(α) = Lba(M ◦ α) for any [a, b] ⊂ I; i.e., rigid
motions preserve the length of a curve.

Solution. There exists an A ∈ O(3) and b ∈ R3 such that

M(x) = Ax + b (x ∈ R3).

Since A is a linear map, we have M ′(x) : R3 → R3 a linear map given
by

M ′(x)(v) = Av (v ∈ R3)

for any x ∈ R3 (In other words, M ′(x) = A). Now using chain rule, we
have

(M ◦ α)′(t) = M ′(α(t))
(
α′(t)

)
= Aα′(t)

for every t ∈ I. Since A ∈ SO(n), we have |Av| = |v| for all v ∈ R3.
Now using the definition, we have

Lba(M ◦α) =

∫ b

a

|(M ◦α)′(t)|dt =

∫ b

a

|Aα′(t)|dt =

∫ b

a

|α′(t)|dt = Lba(α).

Question 2. Let α : I → R3 be a curve. Show that

Lba(α) = sup
{
Lba(α, P ) : P is a partition of [a, b]

}
.

Solution. Let [u, v] ⊆ I be a closed interval. Then, from Schwarz
inequality (for integrals) and fundamental theorem of integrals we have

|α(v)− α(u)| =
∣∣ ∫ v

u

α′(t)dt
∣∣ ≤ ∫ v

u

|α′(t)|dt = Lvu(α).

Now, let P = {a = t0 < t1 < . . . tn−1 < tn = b} be any partition of
[a, b]. Then, by definition and using above argument we have,

Lba(α, P ) =
n∑
i=1

|α(ti)−α(ti−1)| ≤
n∑
i=1

∫ ti

ti−1

|α′(t)|dt =

∫ b

a

|α′(t)|dt = Lba(α).

This proves that

sup
{
Lba(α, P ) : P is a partition of [a, b]

}
≤ Lba(α).

To prove the equality, we take any arbitrary ε > 0. From Proposition
1.6, there exists δ > 0 such that

|P | < δ ⇒
∣∣Lba(α, P )− Lba(α)

∣∣ < ε (∗)
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Now let N ∈ N such that d := b−a
N

< δ (such an N exists since

limn→∞
b−a
n

= 0), and consider the partition

P0 := {a = t0 < t1 < . . . tN−1 < tN = b}
where ti := a+ di (0 ≤ i ≤ N). Then |P | = d < δ and hence from (∗)
we have Lba(α)− ε < Lba(α, P0). Using the definition of supremum, this
proves the desired equality.

Question 3. Let φ : J → I be a diffeomorphism and let α : I → R3 be
a curve. Given [a, b] ⊂ J with φ([a, b]) = [c, d], prove that Lba(α ◦ φ) =
Ldc(α).

Solution. We first claim that, either φ′(t) > 0 or φ′(t) < 0 for every
t ∈ [a, b]. Suppose t0 ∈ [a, b] such that φ′(t0) = 0. In case t0 = a or
t0 = b, we may extend the end points to make sure t0 is an interior
point of [a, b]. Now using chain rule we have

1 = (φ−1 ◦ φ)′(t0) = (φ−1)′(φ(t0)) · φ′(t0) = 0,

a contradiction. This proves our claim.

Now since φ is a homeomorphism, it maps boundary points to boundary
points. Hence either φ(a) = c, φ(b) = d or φ(a) = d, φ(b) = c.

First suppose φ′(t) > 0 for every t ∈ [a, b]. Then φ : [a, b] → [c, d] is
increasing, and hence φ(a) = c, φ(b) = d. Then

Lba(α◦φ) =

∫ b

a

(α◦φ)′(t)dt =

∫ b

a

∣∣α′(φ(t))φ′(t)
∣∣dt =

∫ b

a

∣∣α′(φ(t))
∣∣φ′(t)dt.

Now we use the change of variables by setting w := φ(t). Then the
above integral is equal to∫ d

c

|α′(w)|dw = Ldc(α).

Next assume φ′(t) < 0 for every t ∈ [a, b]. Then φ : [a, b] → [c, d] is
decreasing, and φ(a) = d, φ(b) = c. Now, using the same change of
variable as above we obtain

Lba(α◦φ) = −
∫ b

a

∣∣α′(φ(t))
∣∣φ′(t)dt = −

∫ c

d

|α′(w)|dw =

∫ d

c

|α′(w)|dw = Ldc(α).

Question 4. Consider the logarithmic spiral α : R→ R2 given by

α(t) = (aebt cos t, aebt sin t) (t ∈ R)

with a > 0, b < 0. Compute the arc length function S : R → R for
t0 ∈ R. Reparametrize this curve by arc length and study its trace.
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Solution. Here we have

α′(t) =
(
aebt(b cos t− sin t), aebt(b sin t+ cos t)

)
and hence |α′(t)| = a

√
b2 + 1ebt for all t ∈ R. The arc length function

S : R→ R from t0 ∈ R is given by

S(t) =

∫ t

t0

|α′(u)|du =
a
√
b2 + 1

b

(
ebt − ebt0

)
(t ∈ R).

To reparametrize the curve by arc length, we need to find a diffeo-
morphism φ : J → R with the necessary condition, where J = S(R).

Notice that, since a
√
b2+1
b

ebt < 0 for all t ∈ R, we have J = S(I) =

(−∞, a
√
b2+1
−b ebt0). Now the expression of φ(s) can be found from the

equation

s =
a
√
b2 + 1

b

(
ebt − ebt0

)
as t = φ(s). Solving this, we obtain φ : J → R given by

φ(s) =
1

b
ln
( b

a
√
b2 + 1

s+ ebt0
)
.

The reparametrization β : (−∞, a
√
b2+1
−b ebt0) → R, given by β = α ◦ φ

is given by

β(s) =
(
aebφ(s) cos(φ(s)), aebφ(s) sin(φ(s))

)
=

(
λ0(s) cos

{1

b
ln
( b

a
√
b2 + 1

s+ ebt0
)}
, λ0(s) sin

{1

b
ln
( b

a
√
b2 + 1

s+ ebt0
)})

where λ0(s) = aebt0 + bs√
b2+1

.

Question 5. (Curvature for non p.b.a.l. curves) Let α : I → R2

be a regular curve, not necessarily p.b.a.l. Recall that there exists an
interval J ⊂ R and a diffeomorphism f : J → I such that β := α ◦ f is
a curve p.b.a.l. having the same trace as α. We define the curvature
of α at time t ∈ I by

kα(t) := kβ(f−1(t)) (t ∈ I).

Prove that

kα(t) =
1

|α′(t)|3
det(α′(t), α′′(t)) = det(T (t), T ′(t)) (t ∈ I),

where T (t) = α′(t)/|α′(t)| is the unit vector tangent of α at time t.
(Note: This proves that the curvature of α does not depend on the
choice of the diffeomorphism).
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Solution. We set s := f−1(t) and we write α(t) = (x(t), y(t))T , where
()T denotes the transpose of a row vector. Then, we have

α′(t) = (x′(t), y′(t))T , α′′(t) = (x′′(t), y′′(t))T (t ∈ I).

Now we have

det(α′(t), α′′(t)) =

∣∣∣∣x′(t) x′′(t)
y′(t) y′′(t)

∣∣∣∣ = x′(t)y′′(t)− x′′(t)y′(t) (t ∈ I).

and

|α′(t)| =
√
x′(t)2 + y′(t)2 (t ∈ I).

As discussed in section 1.3 (Montiel, Ros. Page 8), we can assume
that f is non-decreasing. Using chain rule, we have 1 = (α ◦ f)′(s) =
α′(f(s)) · f ′(s) and hence

1

|α′(f(s))|
= f ′(s) > 0 (s ∈ J) (∗∗)

Now,

Tβ(s) = β′(s) = (α ◦ f)′(s) =

(
f ′(s)x′(f(s))
f ′(s)y′(f(s))

)
Nβ(s) =

(
0 −1
1 0

)
Tβ(s) =

(
−f ′(s)y′(f(s))
f ′(s)x′(f(s))

)
T ′β(s) = β′′(s) =

(
f ′′(s)x′(f(s)) + f ′(s)2x′′(f(s))

f ′′(s)y′(f(s)) + f ′(s)2y′′(f(s))

)
Then kβ(s) ∈ R satisfies T ′β(s) = kβ(s)Nβ(s), which give the two equa-
tions given by

−kβ(s)f ′(s)y′(f(s)) = f ′′(s)x′(f(s)) + f ′(s)
2
x′′(f(s))

kβ(s)f ′(s)x′(f(s)) = f ′′(s)y′(f(s)) + f ′(s)
2
y′′(f(s))

Multiplying the first equation by −y′(f(s)), the second equation by
x′(f(s)) and adding them we obtain

kβ(s)f ′(s)
(
y′(f(s))

2
+x′(f(s))

2
)

= f ′(s)
2
(
y′′(f(s))x′(f(s))−x′′(f(s))y′(f(s))

)
which implies that

kβ(s)f ′(s)|α′(f(s))|2 = f ′(s)
2
det(α′(f(s)), α′′(f(s)))

Using (∗∗) in above equation, we have

kα(t) = kβ(s) =
1

|α′(f(s))|3
det(α′(f(s)), α′′(f(s))) =

1

|α′(t)|3
det(α′(t), α′′(t)).

To obtain the second expression we set T (t) := α′(t)
|α′(t)| and then we try

to express T (t) (resp. T ′(t)) in terms of α′(t) (resp. α′′(t)). From (∗∗)
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we have T (t) = α′(t)f ′(s). Differentiating this with respect to t, we
have

T ′(t) = f ′(s)
∂

∂t
α′(t) + α′(t)

∂

∂t
f ′(s) = α′′(t)f ′(s) + α′(t)f ′′(s)

∂s

∂t
= α′′(t)f ′(s) + α′(t)f ′′(s)(f−1)′(t)

= α′′(t)f ′(s) + α′(t)f ′′(s)
1

f ′(s)

In the last expression, we notice that the second part of T ′(t) is a scalar
multiple of the vector α′(t). Hence

det
(
T (t), T ′(t)

)
= det

(
α′(t)f ′(s), α′′(t)f ′(s) + α′(t)f ′′(s)

1

f ′(s)

)
= det

(
α′(t)f ′(s), α′′(t)f ′(s)

)
= (f ′(s))2det

(
α′(t), α′′(t)

)
= |α′(t)|kα(t).

Question 6. Let α : I → R2 be a curve p.b.a.l. and let M : R2 → R2

be a rigid motion. Define β := M ◦ α and prove that

kβ(s) =

{
kα(s) for all s ∈ I, if M is direct,

−kα(s) for all s ∈ I, if M is inverse.

Solution. First suppose M is a direct rigid motion. Then there exists
A ∈ SO(2,R),b ∈ R2, such that M(v) = Av + b (v ∈ R2). Now we
have

α′(s) = Tα(s), α′′(s) = T ′α(s) = kα(s)Nα(s) = kα(s)JTα(s).

Since a rigid motion preserve the length, β is also p.b.a.l. and hence

Tβ(s) = β′(s) = (M ◦ α)′(s) = Aα′(s).

Now notice that J is a rotation matrix, and hence J ∈ SO(2,R), which
is an abelian group. Using this we get, Nβ(s) = JTβ(s) = JAα′(s) =
AJα′(s). Now,

T ′β(s) = Aα′′(s) = A
(
kα(s)JTα(s)

)
= kα(s)AJα′(s) = kα(s)Nβ(s),

which implies that kβ(s) = kα(s).

Next, suppose M be a inverse rigid motion and set

Q :=

(
1 0
0 −1

)
.
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Recall that O(2,R) = SO(2,R)∪Q SO(2,R), as an union of two cosets.
Hence there exists A ∈ SO(2,R),b ∈ R2, such that

M(v) = QAv + b (v ∈ R2).

Then we compute

Tβ(s) = β′(s) = (M ◦ α)′(s) = QAα′(s)

Nβ(s) = JTβ(s) = JQAα′(s)

T ′β(s) = QAα′′(s) = QA
(
kα(s)JTα(s)

)
= kα(s)QAJα′(s)

= kα(s)QJAα′(s) = kα(s)(QJQ−1)QAα′(s) = kα(s)(−J)QAα′(s)

= −kα(s)Nβ(s)

Since QJQ−1 = −J . This proves the second statement.

Question 7. Let α : I → R2 be a curve p.b.a.l. Prove that α is a
segment of a straight line or an arc of a circle if and only if the curvature
of α is constant.

Solution. The ”only if” part follows from the Examples 1.16 and 1.17
(Page 11, Montiel and Ros). We will prove the ”if” part here. We write
α(s) = (x(s), y(s)) (s ∈ I). Since α is p.b.a.l., we have α′(s) ∈ S1 ⊆ R2.
Then we can write

T (s) = α′(s) = (cos θ(s), sin θ(s)) (s ∈ I) (∗)I

for some function θ : I → R. Since the map t 7→ (cos t, sin t) from
R → S1 is locally diffeomorphic, applying a local inverse of this to α,
it follows that θ is differentiable. Now we have

N(s) = Jα′(s) = (− sin θ(s), cos θ(s))

T ′(s) = α′′(s) = (− sin θ(s)θ′(s), cos θ(s)θ′(s))

Now, let k ∈ R denotes the constant curvature of α. Then using the
first Frenet equation T ′(s) = kN(s) (s ∈ I), we have θ′(s) = k for
every s ∈ I. This implies that θ(s) = ks+ d (s ∈ I) for some constant
d ∈ R. We now consider the following two cases:

Case I. k = 0.

From equation (∗)I , we have α′(s) = (cos d, sin d) (s ∈ I). Fix a point
s0 ∈ I, and then using the fundamental theorem for integrals we have

α(s) =
(∫ s

s0

cos d du,

∫ s

s0

sin d du
)

=
(

(s− s0) cos d, (s− s0) sin d
)

= (cos d, sin d)s+ (−s0 cos d,−s0 sin d) (s ∈ I)

which is the equation for a segment of a straight line.



9

Case II. k 6= 0.

Again fixing an s0 ∈ I, we have

α(s) =
(∫ s

s0

cos(ku+ d) du,

∫ s

s0

sin(ku+ d) du
)

=
(1

k

∫ ks+d

ks0+d

cosw dw,
1

k

∫ ks+d

ks0+d

sinw dw
)

=
(1

k

{
sin(ks+ d)− sin(ks0 + d)

}
,

1

k

{
− cos(ks+ d) + cos(ks0 + d)

})
Then the coordinates of α(s) = (x(s), y(s)) (s ∈ I) satisfies the equa-
tion (

x(s) +
1

k
sin(ks0 + d)

)2
+
(
y(s)− 1

k
cos(ks0 + d)

)2
=

1

k2

which is the equation for a segment of a circle.

Question 8. Let α : I → R2 be a curve p.b.a.l. If there is a differen-
tiable function θ : I → R such that θ(s) is the angle that the tangent
line of α at s makes with a fixed direction, show that θ′(s) = ±k(s).

Solution. Let a ∈ R represents a vector so that θ(s) is the angle that
the tangent line of α at s makes with a. Then

cos θ(s) = 〈T (s), a〉 (s ∈ I).

Differentiating this with respect to s and using definitions, we obtain

− sin θ(s) θ′(s) = 〈T ′(s), a〉 = 〈k(s)N(s), a〉 = k(s)〈N(s), a〉.
Now since N(s) is orthogonal to T (s), we have

〈N(s), a〉 = cos(±π
2

+ θ(s)) = ∓ sin θ(s)

Comparing these two equations above, we get θ′(s) = ±k(s) for every
s ∈ I.

Question 9. Let α, β : I → R2 be two curves p.b.a.l. such that
kα(s) = −kβ(s) for every s ∈ I. Show that there is an inverse rigid
motion M : R2 → R2 such that β = M ◦ α.

Solution. We write α(s) = (x(s), y(s)) (s ∈ I) and define α̃ : I → R2

defined by
α̃(s) := (x(s),−y(s)) (s ∈ I).

Then α̃ is a C∞-curve since its components are infinitely differentiable.
Moreover

|α̃′(s)| =
√
x(s)2 + (−y(s))2 = |α′(s)| = 1
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for every s ∈ I. Hence α̃ is p.b.a.l. as well. Now we compute the
curvature function of α̃:

Tα̃(s) = α̃′(s) = (x′(s),−y′(s))
Nα̃(s) = JTα̃(s) = (y′(s), x′(s))

T ′α̃(s) = α̃′′(s) = (x′′(s),−y′′(s))
Now using the first Frenet equation corresponding to α

(x′′(s), y′′(s)) = T ′α(s) = kα(s)Nα(s) = kα(s)(−y′(s), x′(s))
we have

x′′(s) = −kα(s)y′(s), y′′(s) = kα(s)x′(s).

Using these equations to the expression of T ′α̃(s) we have

T ′α̃(s) = (−kα(s)y′(s),−kα(s)x′(s)) = −kα(s)Nα̃(s)

for every s ∈ I. This shows that kβ = −kα : I → R is the curvature
function for α̃. From Theorem 1.21 (Page 11, Montiel and Ros) it
follows that there exists a direct rigid motion M : R2 → R2 such that
β = M ◦ α̃.

From the definition of α̃, we have Qα = α̃, where Q is the matrix
defined in Exercise 6. Then

β = M ◦ α̃ = MQ ◦ α = Q(Q−1MQ) ◦ α.
Since SO(2,R) is a normal subgroup of O(2,R), we have Q−1MQ is a
direct rigid motion, and hence M1 := Q(Q−1MQ) is an inverse rigid
motion.

Question 10. If α : I → R2 is a curve p.b.a.l. with 0 ∈ I and
symmetric around 0, we define another curve β : I → R2 by β(s) :=
α(−s) for every s ∈ I. Prove that β is p.b.a.l. and that kβ(s) =
−kα(−s) for each s ∈ I.

Solution. Setting α(s) = (x(s), y(s)) (s ∈ I) as in the previous exer-
cise, we have the following equations

x′′(s) = −kα(s)y′(s), y′′(s) = kα(s)x′(s) (∗)II

Then we have

β(s) =
(
x(−s), y(−s)

)
,

β′(s) =
(
− x′(−s),−y′(−s)

)
and hence |β′(s)| =

√
x′(−s)2 + y′(−s)2 = 1. This proves that β is

p.b.a.l. As a consequence we have Tβ(s) = β′(s) =
(
−x′(−s),−y′(−s)

)
(s ∈

I).
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Now we compute

Nβ(s) = JTβ(s) =
(
y′(−s),−x′(−s)

)
T ′β(s) =

(
x′′(−s), y′′(−s)

)
Now using the Frenet equation T ′β(s) = kβ(s)Nβ(s) we get the equations

x′′(−s) = kβ(s)y′(−s), y′′(−s) = −kβ(s)x′(−s).
Now comparing the above equation with (∗)II as above, the statement
follows.


