MTH 406 : Differential Geometry of Curves and Surfaces

Homework 1 25th January, 2024

In the following exercises I C R always denotes an open interval, which
could possibly be unbounded as well. All curves are assumed to be C'*°
unless otherwise mentioned.

Deadline of submission. January 31st, 2024 prior to the class time.

Question 1. Let o : I — R? be a curve and M : R?* — R3 be a rigid
motion. Prove that Lb(a) = LY(M o a) for any [a,b] C I; i.e., rigid
motions preserve the length of a curve.

Question 2. Let a: I — R? be a curve. Show that

Lb(a) =sup {L:(a,P) : P is a partition of [a,b]}.

Question 3. Let ¢ : J — I be a diffeomorphism and let o : I — R? be
a curve. Given [a,b] C J with ¢([a,b]) = [c,d], prove that L2 (a o ¢) =
Li(a).

Question 4. Consider the logarithmic spiral o : R — R? given by
aft) = (ae” cost,ae sint) (t € R)

with @ > 0,b < 0. Compute the arc length function S : R — R for
to € R. Reparametrize this curve by arc length and study its trace.

Question 5. (Curvature for non p.b.a.l. curves) Let a : I — R?
be a regular curve, not necessarily p.b.a.l. Recall that there exists an
interval J C R and a diffeomorphism f : J — I such that f:=«ao f is
a curve p.b.a.l. having the same trace as a. We define the curvature
of a at time t € I by

ka(t) = ks(f'(1)) (te€ ).
Prove that
1
ka(t) = Wdet(a/(f); a'(t)) = det(T(t), T'(t)) (t€ ),
where T'(t) = &/(t)/|a/(t)] is the unit vector tangent of « at time t.
(Note: This proves that the curvature of o does not depend on the

choice of the diffeomorphism).
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Question 6. Let o : I — R? be a curve p.b.a.l. and let M : R? — R?
be a rigid motion. Define 8 := M o « and prove that

kip(s) = ko(s)  forall s € I,if M is direct,
o —ko(s) for all s € I,if M is inverse.

Question 7. Let o : I — R? be a curve p.b.a.l. Prove that a is a
segment of a straight line or an arc of a circle if and only if the curvature
of a is constant.

Question 8. Let a : I — R? be a curve p.b.a.l. If there is a differen-
tiable function 6 : I — R such that 0(s) is the angle that the tangent
line of « at s makes with a fixed direction, show that '(s) = +k(s).

Question 9. Let a,3 : I — R? be two curves p.b.a.l. such that
ko(s) = —kg(s) for every s € I. Show that there is an inverse rigid
motion M : R® — R3 such that 8 = M o a.

Question 10. If o : I — R? is a curve p.b.al. with 0 € I and
symmetric around 0, we define another curve 8 : I — R? by ((s) :=
a(—s) for every s € I. Prove that § is p.b.al. and that kg(s) =
—kq(—s) for each s € I.



Solutions.

Question 1. Let o : I — R? be a curve and M : R?* — R3 be a rigid

motion. Prove that L%(a) = L%(M o a) for any [a,b] C I; i.e., rigid

motions preserve the length of a curve.

Solution. There exists an A € O(3) and b € R? such that
M(x)=Ax+b (xeR%.

Since A is a linear map, we have M’'(x) : R® — R? a linear map given
by
M (x)(v) = Av (v € R?)

for any x € R? (In other words, M’(x) = A). Now using chain rule, we

have
(Moa)(t)=M(at))(d(t) = Ad(t)

for every t € I. Since A € SO(n), we have |Av| = |v] for all v € R3.
Now using the definition, we have

b b b
Lg(Moa):/ |(Moa)’(t)|dt:/ |Aa’(t)|dt:/ o/ (t)|dt = L¥(a).

Question 2. Let o : I — R? be a curve. Show that
Lb(a) =sup {L’(a,P) : P is a partition of [a,b]}.

Solution. Let [u,v] C I be a closed interval. Then, from Schwarz
inequality (for integrals) and fundamental theorem of integrals we have

() ~a(w] = | [ a'@at| < [ o0l = Lifa).

Now, let P ={a =1ty <t; < ...t,—1 < t, = b} be any partition of
la,b]. Then, by definition and using above argument we have,

n t; b
I(a, P) Z|a alti )| < Z/ |o/(t)]dt—/ o/ (0)dt = L (a).
i=1 7 ti—1 a

This proves that
sup { L (a, P) : P is a partition of [a,b]} < L%(«).

To prove the equality, we take any arbitrary ¢ > 0. From Proposition
1.6, there exists 0 > 0 such that

|P|<d = }Lz(a,P) - Lg(a)| <e€ (%)
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Now let N € N such that d := ”_Ta < 0 (such an N exists since

lim,, o0 b_T“ = 0), and consider the partition
B ::{a:t0<t1 < ...tny_q <tN:b}

where t; ;== a+di (0 <i < N). Then |P| =d < ¢ and hence from (x)
we have L2 (a) —e < L%(a, Py). Using the definition of supremum, this
proves the desired equality.

Question 3. Let ¢ : J — I be a diffeomorphism and let a : I — R? be
a curve. Given [a,b] C J with ¢([a,b]) = [c,d], prove that L’ (a o ¢) =
Li(a).

Solution. We first claim that, either ¢'(¢) > 0 or ¢'(¢) < 0 for every

€ [a,b]. Suppose ty € [a,b] such that ¢'(ty) = 0. In case ty = a or
to = b, we may extend the end points to make sure ¢y is an interior
point of [a, b]. Now using chain rule we have

L= (¢ 09) (to) = (¢~ ((t0)) - ¢'(t0) = 0,
a contradiction. This proves our claim.
Now since ¢ is a homeomorphism, it maps boundary points to boundary
points. Hence either ¢(a) = ¢, ¢(b) = d or ¢(a) = d, $(b) =
First suppose ¢/(t) > 0 for every ¢t € [a,b]. Then ¢ : [a,b] — [c,d] is
increasing, and hence ¢(a) = ¢, ¢p(b) = d. Then

Lg(ao¢):/ab(aoqs)'(t)dt:/bya'( (t)]dt = / o' (¢ )dt.

Now we use the change of variables by setting w := ¢(t). Then the
above integral is equal to

[ etwan = v

Next assume ¢'(t) < 0 for every t € [a,b]. Then ¢ : [a,b] — [c,d] is
decreasing, and ¢(a) = d,¢(b) = c¢. Now, using the same change of
variable as above we obtain

oot =~ [ ool 0a = - [ twiw = [ )i =

Question 4. Consider the logarithmic spiral a : R — R? given by
aft) = (ae” cost,ae’ sint) (t € R)

with a > 0,b < 0. Compute the arc length function S : R — R for
to € R. Reparametrize this curve by arc length and study its trace.



Solution. Here we have
o/ (t) = (ae™(beost —sint), ae” (bsint + cost))

and hence |o/(t)| = av/b? + 1e” for all t € R. The arc length function
S :R — R from ¢, € R is given by

S e

To reparametrize the curve by arc length, we need to find a diffeo-
morphism ¢ : J — R with the necessary condition, where J = S(R).

Notice that, since “—”f“ebt < 0 for all t € R, we have J = S(I) =

(t € R).

(—o0, “—szlflebto). Now the expression of ¢(s) can be found from the
equation
¢ — a_vaH(ebt o)
as t = ¢(s). Solving this, we obtain ¢ : J — R given by
1

b
¢(S) = Eln <a\/m

The reparametrization 3 : (—oo, a—vflflebto) — R, given by 8 = ao ¢
is given by

B(s) = <aeb¢(s) cos(¢(s)), ae?®) sin(¢(s))>
= </\0(5) cos {% In <a\/b+?8 + ebto) }, Ao(s) sin {% In (#s + ebt°> })

where \g(s) = aeb® + \/bbjﬁ

s+ ebt‘)).

Question 5. (Curvature for non p.b.a.l. curves) Let o : I — R?
be a regular curve, not necessarily p.b.a.l. Recall that there exists an
interval J C R and a diffeomorphism f : J — I such that g :=ao f is
a curve p.b.a.l. having the same trace as . We define the curvature
of a at time t € I by

kalt) =ks(f7'(t)) (t€).
Prove that
1
kalt) = 1o det(a/().0/(1) = det(T(1). T'(1))  (t€ 1),
where T'(t) = &/(t)/|a/(t)] is the unit vector tangent of « at time t.
(Note: This proves that the curvature of o does not depend on the
choice of the diffeomorphism).
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Solution. We set s := f~1(t) and we write a(t) = (z(t), y(t))T, where
()T denotes the transpose of a row vector. Then, we have

o(t) = ('(t),y ()", a"(t) = ("), y" ()" (tel).
Now we have

det(/(t),a"(t)) =

and

Z% ij’%ﬁi\ =2'()y"(t) — 2"y (1) (LeT).

&/ (6)] = /() +y ()" (el

As discussed in section 1.3 (Montiel, Ros. Page 8), we can assume
that f is non-decreasing. Using chain rule, we have 1 = (a o f)'(s) =

o/ (f(s)) - f'(s) and hence

1 / $ok
ey 70 e "
Now
Ts(s) = B'(s) = (a0 f)(s) = (f@%zgggg;;)
0 -1 (f(s
Ny(s) = <1 0 ) Ts(s) = ( (();)p (S‘(Fs §>>
/ ey — f”(5>$,(f s _'_f/ 2 //( 8))
Th(s) = 5°(s) (f”(s)y’(f )+ f(s 2 y'(f( s>>)

Then kg(s) € R satisfies Tj(s) = kg(s)Ng(s), which give the two equa
tions given by

—ks(s) ' () (F()) = f"()2'(f(5)) + ()2 (f(s))
ka(s)f ()2 (f(s)) = f"()y'(F()) + F'(s)°y" (f(s))

Multiplying the first equation by —¢/(f(s)), the second equation by
2'(f(s)) and adding them we obtain

Ba() /() (y ()42 (F(3))°) = /()7 (0 (P (S () =" (F () (f(5)))
which implies that

ka(s) [ ()] (F(9))]” = f'(s) det(a’(f(5)), a" (f(5)))

Using (*+) in above equation, we have

1
ka(t) = ks(s) = mdet(a'(f(S)),a"(f(S))) woptet@ o/(t), a”(t)).
To obtain the second expression we set T'(t) := ‘Z/Et)‘ and then we try

to express T'(t) (resp. T'(t)) in terms of o/(t) (resp. o’(t)). From (xx)
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we have T'(t) = o/(t)f'(s). Differentiating this with respect to ¢, we
have
/ / a / " ! / " 83
'(t) = f(S) L () + o (8) 5 f1(s) = a"(0) ] (s) + (D) f"(s) 5
Oé"(t) ( )+ () f(s)(f ) (

/" " 1

(0F(5) + 00" (5) 7

In the last expression, we notice that the second part of 77(t) is a scalar
multiple of the vector o/(t). Hence

aet(TO.70) = det () (5). " OF () +0/ 01" (0) 75
= det(@/(0)f/(s), " (1)f'(5))
= (f/(9)det(a'().a"(1)) = [/ (O] a(t)

= o

Question 6. Let o : I — R? be a curve p.b.a.l. and let M : R? — R?
be a rigid motion. Define g := M o « and prove that

ko (5) ko(s)  forall s € I,if M is direct,
S) =
’ —ko(s) forall s € I,if M is inverse.

Solution. First suppose M is a direct rigid motion. Then there exists
A € SO(2,R),b € R?, such that M(v) = Av + b (v € R?). Now we
have

A (s) =Tu(s), a"(s) =T.(s) = ka(s)Na(8) = ka(s)JT0(s).
Since a rigid motion preserve the length, § is also p.b.a.l. and hence
Ts(s) = B'(s) = (M o a)'(s) = Ad/(s).

Now notice that J is a rotation matrix, and hence J € SO(2,R), which
is an abelian group. Using this we get, Ng(s) = JT3(s) = JAd/(s) =
AJd(s). Now,

Th(s) = Ad"(s) = A(ka(s)JTa(s)) = ka(s)AJ/(s) = ka(s)Ns(s),
which implies that kg(s) = ka(s).

Next, suppose M be a inverse rigid motion and set

o=(g ).
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Recall that O(2,R) = SO(2,R)UQ SO(2,R), as an union of two cosets.
Hence there exists A € SO(2,R),b € R?, such that
M(v) = QAv+b (v € R?).
Then we compute
T = 5= > 5) = QAd/(5)
Npg(s) = JTs(s) = JQAA (s)
Ti(s) = QAd"(s ): A(ka(s)JTa(s)) = ka(s)QATA/(s)

= ka(s)QJAA (s) = ka(s)(QJQ_l)QAO/(S) = ka(s)(=J)QAd(s)

= —ka(s)Ng(s)
Since QJQ~! = —J. This proves the second statement.

Question 7. Let a : I — R? be a curve p.b.a.l. Prove that « is a
segment of a straight line or an arc of a circle if and only if the curvature
of «v is constant.

Solution. The "only if” part follows from the Examples 1.16 and 1.17
(Page 11, Montiel and Ros). We will prove the ”if” part here. We write
a(s) = (z(s),y(s)) (s € I). Since a is p.b.a.l., we have o/(s) € ST C R%
Then we can write

T(s) = d/(s) = (cosO(s),sinf(s)) (s€l) (%)

for some function 6 : I — R. Since the map t — (cost,sint) from
R — St is locally diffeomorphic, applying a local inverse of this to a,
it follows that 6 is differentiable. Now we have

N(s) = Jd'(s) = (—sinf(s),cosb(s))

T'(s) =a"(s) = (—sinf(s)d'(s),cosb(s)8(s))
Now, let £ € R denotes the constant curvature of a. Then using the
first Frenet equation 77(s) = kN(s) (s € I), we have 0'(s) = k for

every s € I. This implies that 0(s) = ks +d (s € I) for some constant
d € R. We now consider the following two cases:

CaseI. k=0.

From equation (x)!, we have o/(s) = (cosd,sind) (s € I). Fix a point
sg € I, and then using the fundamental theorem for integrals we have

a(s) = </s cosd du, /S sind du) = ((s — sp) cosd, (s — sp) sind>

S0 S0

= (cosd,sind)s + (—sgcosd, —sgsind) (s € 1)

which is the equation for a segment of a straight line.



Case II. k£ # 0.
Again fixing an sg € I, we have

ofs) = ( / cos(ku + d) du, / sin(ku + d) du)

S0 S0

1 ks+d 1 k8+d
= (—/ cos w dw,—/ sin w dw)
k Jy k J

so+d so+d

= (%{ sin(ks + d) — sin(kso + d) }, %{ — cos(ks + d) + cos(ksg + d)}>

Then the coordinates of a(s) = (x(s),y(s)) (s € I) satisfies the equa-
tion
1 . 2 1 2 1
(x(s) +o sin(ksg + d)> + (y(s) 7 cos(ksg + d)) =
which is the equation for a segment of a circle.

Question 8. Let o : I — R? be a curve p.b.a.l. If there is a differen-
tiable function 6 : I — R such that 0(s) is the angle that the tangent
line of « at s makes with a fixed direction, show that ¢'(s) = +k(s).

Solution. Let a € R represents a vector so that (s) is the angle that
the tangent line of o at s makes with a. Then

cosf(s) = (T(s),a) (se€l).
Differentiating this with respect to s and using definitions, we obtain
—sinf(s) 0'(s) = (T"(s),a) = (k(s)N(s),a) = k(s)(N(s),a).
Now since N(s) is orthogonal to T'(s), we have

(N(s),a) = cos(j:g +0(s)) = Fsin6(s)

Comparing these two equations above, we get 6'(s) = +k(s) for every
sel.

Question 9. Let o, 3 : I — R? be two curves p.b.a.l. such that
ko(s) = —ks(s) for every s € I. Show that there is an inverse rigid
motion M : R? — R? such that 3 = M o .

Solution. We write a(s) = (z(s),y(s)) (s € I) and define & : I — R?

defined by
a(s) == (z(s), —y(s)) (s €l).
Then « is a C'*°-curve since its components are infinitely differentiable.

Moreover
0 (s)] = V/x(s)2 + (—y(s))? = |/ (s)] = 1
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for every s € I. Hence a is p.b.a.l. as well. Now we compute the
curvature function of a:

Ta(s) = d'(s) = ('(s), =y ()
Na(s) = JTa(s) = (4 (s),7'(s))
Ti(s) = a’(s) = («"(s), —¢"(s))

Now using the first Frenet equation corresponding to «

(#"(5), 4" (5)) = To(s) = ka(s)Na(s) = ka(s)(=y'(s), 2'(s))

we have

7"(s) = —ka(s)y'(5),  ¥'(s) = ka(s)7'(s).
Using these equations to the expression of 7%(s) we have

T5(s) = (=ka(s)y/ (s), =ka(5)2'(5)) = —ka(s) Na(s)

for every s € I. This shows that kg = —k, : I — R is the curvature
function for &. From Theorem 1.21 (Page 11, Montiel and Ros) it
follows that there exists a direct rigid motion M : R? — R? such that
b8 =DMoa.
From the definition of &, we have Qo = «a, where () is the matrix
defined in Exercise 6. Then

B=Mod=MQoa=Q(Q ' MQ)oa.

Since SO(2,R) is a normal subgroup of O(2,R), we have Q"*MQ is a
direct rigid motion, and hence M; := Q(Q'MQ) is an inverse rigid
motion.

Question 10. If o : I — R? is a curve p.b.al. with 0 € I and
symmetric around 0, we define another curve 3 : I — R? by 3(s) :=
a(—s) for every s € I. Prove that § is p.b.al. and that kg(s) =
—kq(—s) for each s € 1.

Solution. Setting a(s) = (z(s),y(s)) (s € I) as in the previous exer-
cise, we have the following equations

7"(s) = —ka(s)y'(s),  y"(s) = ka(s)2'(s) ()"

Then we have

Bs) = (2(=9).y(=s)),

Bs) = ( o'(=s),~y/(=9))
and hence |3'(s)| = v/#'(—s)?2 +y/(—s)2 = 1. This proves that f is
p.b.al. As aconsequence we have Ts(s) = f'(s) = (—a'(=s),—y/(—s)) (s €

D).
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Now we compute
Np(s) = JTp(s )— (y'(—S) —a'(—s))
Ta(s) = (2"(=9)¢"(=9))
Now using the Frenet equation Tﬂ( ) = kg(s)Ng(s) we get the equations
2'(=s) = ka(s)y'(=5),  y'(—5) = —ka(s)z'(—s).

Now comparing the above equation with ()7 as above, the statement
follows.



