MTH 406 : Differential Geometry of Curves and Surfaces

Homework 1

25th January, 2024

In the following exercises $I \subset \mathbb{R}$ always denotes an open interval, which could possibly be unbounded as well. All curves are assumed to be C^{∞} unless otherwise mentioned.
Deadline of submission. January 31st, 2024 prior to the class time.
Question 1. Let $\alpha: I \rightarrow \mathbb{R}^{3}$ be a curve and $M: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a rigid motion. Prove that $L_{a}^{b}(\alpha)=L_{a}^{b}(M \circ \alpha)$ for any $[a, b] \subset I$; i.e., rigid motions preserve the length of a curve.

Question 2. Let $\alpha: I \rightarrow \mathbb{R}^{3}$ be a curve. Show that

$$
L_{a}^{b}(\alpha)=\sup \left\{L_{a}^{b}(\alpha, P): P \text { is a partition of }[a, b]\right\} .
$$

Question 3. Let $\phi: J \rightarrow I$ be a diffeomorphism and let $\alpha: I \rightarrow \mathbb{R}^{3}$ be a curve. Given $[a, b] \subset J$ with $\phi([a, b])=[c, d]$, prove that $L_{a}^{b}(\alpha \circ \phi)=$ $L_{c}^{d}(\alpha)$.

Question 4. Consider the logarithmic spiral $\alpha: \mathbb{R} \rightarrow \mathbb{R}^{2}$ given by

$$
\alpha(t)=\left(a e^{b t} \cos t, a e^{b t} \sin t\right) \quad(t \in \mathbb{R})
$$

with $a>0, b<0$. Compute the arc length function $S: \mathbb{R} \rightarrow \mathbb{R}$ for $t_{0} \in \mathbb{R}$. Reparametrize this curve by arc length and study its trace.

Question 5. (Curvature for non p.b.a.l. curves) Let $\alpha: I \rightarrow \mathbb{R}^{2}$ be a regular curve, not necessarily p.b.a.l. Recall that there exists an interval $J \subset \mathbb{R}$ and a diffeomorphism $f: J \rightarrow I$ such that $\beta:=\alpha \circ f$ is a curve p.b.a.l. having the same trace as α. We define the curvature of α at time $t \in I$ by

$$
k_{\alpha}(t):=k_{\beta}\left(f^{-1}(t)\right) \quad(t \in I) .
$$

Prove that

$$
k_{\alpha}(t)=\frac{1}{\left|\alpha^{\prime}(t)\right|^{3}} \operatorname{det}\left(\alpha^{\prime}(t), \alpha^{\prime \prime}(t)\right)=\operatorname{det}\left(T(t), T^{\prime}(t)\right) \quad(t \in I),
$$

where $T(t)=\alpha^{\prime}(t) /\left|\alpha^{\prime}(t)\right|$ is the unit vector tangent of α at time t. (Note: This proves that the curvature of α does not depend on the choice of the diffeomorphism).

Question 6. Let $\alpha: I \rightarrow \mathbb{R}^{2}$ be a curve p.b.a.l. and let $M: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a rigid motion. Define $\beta:=M \circ \alpha$ and prove that

$$
k_{\beta}(s)= \begin{cases}k_{\alpha}(s) & \text { for all } s \in I, \text { if } M \text { is direct } \\ -k_{\alpha}(s) & \text { for all } s \in I, \text { if } M \text { is inverse }\end{cases}
$$

Question 7. Let $\alpha: I \rightarrow \mathbb{R}^{2}$ be a curve p.b.a.l. Prove that α is a segment of a straight line or an arc of a circle if and only if the curvature of α is constant.

Question 8. Let $\alpha: I \rightarrow \mathbb{R}^{2}$ be a curve p.b.a.l. If there is a differentiable function $\theta: I \rightarrow \mathbb{R}$ such that $\theta(s)$ is the angle that the tangent line of α at s makes with a fixed direction, show that $\theta^{\prime}(s)= \pm k(s)$.

Question 9. Let $\alpha, \beta: I \rightarrow \mathbb{R}^{2}$ be two curves p.b.a.l. such that $k_{\alpha}(s)=-k_{\beta}(s)$ for every $s \in I$. Show that there is an inverse rigid motion $M: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ such that $\beta=M \circ \alpha$.

Question 10. If $\alpha: I \rightarrow \mathbb{R}^{2}$ is a curve p.b.a.l. with $0 \in I$ and symmetric around 0 , we define another curve $\beta: I \rightarrow \mathbb{R}^{2}$ by $\beta(s):=$ $\alpha(-s)$ for every $s \in I$. Prove that β is p.b.a.l. and that $k_{\beta}(s)=$ $-k_{\alpha}(-s)$ for each $s \in I$.

Solutions.

Question 1. Let $\alpha: I \rightarrow \mathbb{R}^{3}$ be a curve and $M: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a rigid motion. Prove that $L_{a}^{b}(\alpha)=L_{a}^{b}(M \circ \alpha)$ for any $[a, b] \subset I$; i.e., rigid motions preserve the length of a curve.

Solution. There exists an $A \in \mathrm{O}(3)$ and $\mathbf{b} \in \mathbb{R}^{3}$ such that

$$
M(\mathbf{x})=A \mathbf{x}+\mathbf{b} \quad\left(\mathbf{x} \in \mathbb{R}^{3}\right)
$$

Since A is a linear map, we have $M^{\prime}(\mathbf{x}): \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ a linear map given by

$$
M^{\prime}(\mathbf{x})(v)=A v \quad\left(v \in \mathbb{R}^{3}\right)
$$

for any $\mathbf{x} \in \mathbb{R}^{3}$ (In other words, $M^{\prime}(\mathbf{x})=A$). Now using chain rule, we have

$$
(M \circ \alpha)^{\prime}(t)=M^{\prime}(\alpha(t))\left(\alpha^{\prime}(t)\right)=A \alpha^{\prime}(t)
$$

for every $t \in I$. Since $A \in \operatorname{SO}(n)$, we have $|A v|=|v|$ for all $v \in \mathbb{R}^{3}$. Now using the definition, we have
$L_{a}^{b}(M \circ \alpha)=\int_{a}^{b}\left|(M \circ \alpha)^{\prime}(t)\right| d t=\int_{a}^{b}\left|A \alpha^{\prime}(t)\right| d t=\int_{a}^{b}\left|\alpha^{\prime}(t)\right| d t=L_{a}^{b}(\alpha)$.
Question 2. Let $\alpha: I \rightarrow \mathbb{R}^{3}$ be a curve. Show that

$$
L_{a}^{b}(\alpha)=\sup \left\{L_{a}^{b}(\alpha, P): P \text { is a partition of }[a, b]\right\} .
$$

Solution. Let $[u, v] \subseteq I$ be a closed interval. Then, from Schwarz inequality (for integrals) and fundamental theorem of integrals we have

$$
|\alpha(v)-\alpha(u)|=\left|\int_{u}^{v} \alpha^{\prime}(t) d t\right| \leq \int_{u}^{v}\left|\alpha^{\prime}(t)\right| d t=L_{u}^{v}(\alpha) .
$$

Now, let $P=\left\{a=t_{0}<t_{1}<\ldots t_{n-1}<t_{n}=b\right\}$ be any partition of $[a, b]$. Then, by definition and using above argument we have,
$L_{a}^{b}(\alpha, P)=\sum_{i=1}^{n}\left|\alpha\left(t_{i}\right)-\alpha\left(t_{i-1}\right)\right| \leq \sum_{i=1}^{n} \int_{t_{i-1}}^{t_{i}}\left|\alpha^{\prime}(t)\right| d t=\int_{a}^{b}\left|\alpha^{\prime}(t)\right| d t=L_{a}^{b}(\alpha)$.
This proves that

$$
\sup \left\{L_{a}^{b}(\alpha, P): P \text { is a partition of }[a, b]\right\} \leq L_{a}^{b}(\alpha)
$$

To prove the equality, we take any arbitrary $\epsilon>0$. From Proposition 1.6 , there exists $\delta>0$ such that

$$
\begin{equation*}
|P|<\delta \Rightarrow\left|L_{a}^{b}(\alpha, P)-L_{a}^{b}(\alpha)\right|<\epsilon \tag{*}
\end{equation*}
$$

Now let $N \in \mathbb{N}$ such that $d:=\frac{b-a}{N}<\delta$ (such an N exists since $\lim _{n \rightarrow \infty} \frac{b-a}{n}=0$), and consider the partition

$$
P_{0}:=\left\{a=t_{0}<t_{1}<\ldots t_{N-1}<t_{N}=b\right\}
$$

where $t_{i}:=a+d i(0 \leq i \leq N)$. Then $|P|=d<\delta$ and hence from (*) we have $L_{a}^{b}(\alpha)-\epsilon<L_{a}^{b}\left(\alpha, P_{0}\right)$. Using the definition of supremum, this proves the desired equality.

Question 3. Let $\phi: J \rightarrow I$ be a diffeomorphism and let $\alpha: I \rightarrow \mathbb{R}^{3}$ be a curve. Given $[a, b] \subset J$ with $\phi([a, b])=[c, d]$, prove that $L_{a}^{b}(\alpha \circ \phi)=$ $L_{c}^{d}(\alpha)$.

Solution. We first claim that, either $\phi^{\prime}(t)>0$ or $\phi^{\prime}(t)<0$ for every $t \in[a, b]$. Suppose $t_{0} \in[a, b]$ such that $\phi^{\prime}\left(t_{0}\right)=0$. In case $t_{0}=a$ or $t_{0}=b$, we may extend the end points to make sure t_{0} is an interior point of $[a, b]$. Now using chain rule we have

$$
1=\left(\phi^{-1} \circ \phi\right)^{\prime}\left(t_{0}\right)=\left(\phi^{-1}\right)^{\prime}\left(\phi\left(t_{0}\right)\right) \cdot \phi^{\prime}\left(t_{0}\right)=0
$$

a contradiction. This proves our claim.
Now since ϕ is a homeomorphism, it maps boundary points to boundary points. Hence either $\phi(a)=c, \phi(b)=d$ or $\phi(a)=d, \phi(b)=c$.
First suppose $\phi^{\prime}(t)>0$ for every $t \in[a, b]$. Then $\phi:[a, b] \rightarrow[c, d]$ is increasing, and hence $\phi(a)=c, \phi(b)=d$. Then
$L_{a}^{b}(\alpha \circ \phi)=\int_{a}^{b}(\alpha \circ \phi)^{\prime}(t) d t=\int_{a}^{b}\left|\alpha^{\prime}(\phi(t)) \phi^{\prime}(t)\right| d t=\int_{a}^{b}\left|\alpha^{\prime}(\phi(t))\right| \phi^{\prime}(t) d t$.
Now we use the change of variables by setting $w:=\phi(t)$. Then the above integral is equal to

$$
\int_{c}^{d}\left|\alpha^{\prime}(w)\right| d w=L_{c}^{d}(\alpha) .
$$

Next assume $\phi^{\prime}(t)<0$ for every $t \in[a, b]$. Then $\phi:[a, b] \rightarrow[c, d]$ is decreasing, and $\phi(a)=d, \phi(b)=c$. Now, using the same change of variable as above we obtain

$$
L_{a}^{b}(\alpha \circ \phi)=-\int_{a}^{b}\left|\alpha^{\prime}(\phi(t))\right| \phi^{\prime}(t) d t=-\int_{d}^{c}\left|\alpha^{\prime}(w)\right| d w=\int_{c}^{d}\left|\alpha^{\prime}(w)\right| d w=L_{c}^{d}(\alpha) .
$$

Question 4. Consider the logarithmic spiral $\alpha: \mathbb{R} \rightarrow \mathbb{R}^{2}$ given by

$$
\alpha(t)=\left(a e^{b t} \cos t, a e^{b t} \sin t\right) \quad(t \in \mathbb{R})
$$

with $a>0, b<0$. Compute the arc length function $S: \mathbb{R} \rightarrow \mathbb{R}$ for $t_{0} \in \mathbb{R}$. Reparametrize this curve by arc length and study its trace.

Solution. Here we have

$$
\alpha^{\prime}(t)=\left(a e^{b t}(b \cos t-\sin t), a e^{b t}(b \sin t+\cos t)\right)
$$

and hence $\left|\alpha^{\prime}(t)\right|=a \sqrt{b^{2}+1} e^{b t}$ for all $t \in \mathbb{R}$. The arc length function $S: \mathbb{R} \rightarrow \mathbb{R}$ from $t_{0} \in \mathbb{R}$ is given by

$$
S(t)=\int_{t_{0}}^{t}\left|\alpha^{\prime}(u)\right| d u=\frac{a \sqrt{b^{2}+1}}{b}\left(e^{b t}-e^{b t_{0}}\right) \quad(t \in \mathbb{R}) .
$$

To reparametrize the curve by arc length, we need to find a diffeomorphism $\phi: J \rightarrow \mathbb{R}$ with the necessary condition, where $J=S(\mathbb{R})$. Notice that, since $\frac{a \sqrt{b^{2}+1}}{b} e^{b t}<0$ for all $t \in \mathbb{R}$, we have $J=S(I)=$ $\left(-\infty, \frac{a \sqrt{b^{2}+1}}{-b} e^{b t_{0}}\right)$. Now the expression of $\phi(s)$ can be found from the equation

$$
s=\frac{a \sqrt{b^{2}+1}}{b}\left(e^{b t}-e^{b t_{0}}\right)
$$

as $t=\phi(s)$. Solving this, we obtain $\phi: J \rightarrow \mathbb{R}$ given by

$$
\phi(s)=\frac{1}{b} \ln \left(\frac{b}{a \sqrt{b^{2}+1}} s+e^{b t_{0}}\right) .
$$

The reparametrization $\beta:\left(-\infty, \frac{a \sqrt{b^{2}+1}}{-b} e^{b t_{0}}\right) \rightarrow \mathbb{R}$, given by $\beta=\alpha \circ \phi$ is given by

$$
\begin{aligned}
\beta(s) & =\left(a e^{b \phi(s)} \cos (\phi(s)), a e^{b \phi(s)} \sin (\phi(s))\right) \\
& =\left(\lambda_{0}(s) \cos \left\{\frac{1}{b} \ln \left(\frac{b}{a \sqrt{b^{2}+1}} s+e^{b t_{0}}\right)\right\}, \lambda_{0}(s) \sin \left\{\frac{1}{b} \ln \left(\frac{b}{a \sqrt{b^{2}+1}} s+e^{b t_{0}}\right)\right\}\right)
\end{aligned}
$$

where $\lambda_{0}(s)=a e^{b t_{0}}+\frac{b s}{\sqrt{b^{2}+1}}$.
Question 5. (Curvature for non p.b.a.l. curves) Let $\alpha: I \rightarrow \mathbb{R}^{2}$ be a regular curve, not necessarily p.b.a.l. Recall that there exists an interval $J \subset \mathbb{R}$ and a diffeomorphism $f: J \rightarrow I$ such that $\beta:=\alpha \circ f$ is a curve p.b.a.l. having the same trace as α. We define the curvature of α at time $t \in I$ by

$$
k_{\alpha}(t):=k_{\beta}\left(f^{-1}(t)\right) \quad(t \in I) .
$$

Prove that

$$
k_{\alpha}(t)=\frac{1}{\left|\alpha^{\prime}(t)\right|^{3}} \operatorname{det}\left(\alpha^{\prime}(t), \alpha^{\prime \prime}(t)\right)=\operatorname{det}\left(T(t), T^{\prime}(t)\right) \quad(t \in I),
$$

where $T(t)=\alpha^{\prime}(t) /\left|\alpha^{\prime}(t)\right|$ is the unit vector tangent of α at time t. (Note: This proves that the curvature of α does not depend on the choice of the diffeomorphism).

Solution. We set $s:=f^{-1}(t)$ and we write $\alpha(t)=(x(t), y(t))^{T}$, where ()T denotes the transpose of a row vector. Then, we have

$$
\alpha^{\prime}(t)=\left(x^{\prime}(t), y^{\prime}(t)\right)^{T}, \quad \alpha^{\prime \prime}(t)=\left(x^{\prime \prime}(t), y^{\prime \prime}(t)\right)^{T} \quad(t \in I) .
$$

Now we have

$$
\operatorname{det}\left(\alpha^{\prime}(t), \alpha^{\prime \prime}(t)\right)=\left|\begin{array}{ll}
x^{\prime}(t) & x^{\prime \prime}(t) \\
y^{\prime}(t) & y^{\prime \prime}(t)
\end{array}\right|=x^{\prime}(t) y^{\prime \prime}(t)-x^{\prime \prime}(t) y^{\prime}(t) \quad(t \in I)
$$

and

$$
\left|\alpha^{\prime}(t)\right|=\sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}} \quad(t \in I)
$$

As discussed in section 1.3 (Montiel, Ros. Page 8), we can assume that f is non-decreasing. Using chain rule, we have $1=(\alpha \circ f)^{\prime}(s)=$ $\alpha^{\prime}(f(s)) \cdot f^{\prime}(s)$ and hence

$$
\begin{equation*}
\frac{1}{\left|\alpha^{\prime}(f(s))\right|}=f^{\prime}(s)>0 \quad(s \in J) \tag{**}
\end{equation*}
$$

Now,

$$
\begin{aligned}
T_{\beta}(s)=\beta^{\prime}(s)=(\alpha \circ f)^{\prime}(s) & =\binom{f^{\prime}(s) x^{\prime}(f(s))}{f^{\prime}(s) y^{\prime}(f(s))} \\
N_{\beta}(s) & =\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) T_{\beta}(s)=\binom{-f^{\prime}(s) y^{\prime}(f(s))}{f^{\prime}(s) x^{\prime}(f(s))} \\
T_{\beta}^{\prime}(s)=\beta^{\prime \prime}(s) & =\binom{f^{\prime \prime}(s) x^{\prime}(f(s))+f^{\prime}(s)^{2} x^{\prime \prime}(f(s))}{f^{\prime \prime}(s) y^{\prime}(f(s))+f^{\prime}(s)^{2} y^{\prime \prime}(f(s))}
\end{aligned}
$$

Then $k_{\beta}(s) \in \mathbb{R}$ satisfies $T_{\beta}^{\prime}(s)=k_{\beta}(s) N_{\beta}(s)$, which give the two equations given by

$$
\begin{aligned}
-k_{\beta}(s) f^{\prime}(s) y^{\prime}(f(s)) & =f^{\prime \prime}(s) x^{\prime}(f(s))+f^{\prime}(s)^{2} x^{\prime \prime}(f(s)) \\
k_{\beta}(s) f^{\prime}(s) x^{\prime}(f(s)) & =f^{\prime \prime}(s) y^{\prime}(f(s))+f^{\prime}(s)^{2} y^{\prime \prime}(f(s))
\end{aligned}
$$

Multiplying the first equation by $-y^{\prime}(f(s))$, the second equation by $x^{\prime}(f(s))$ and adding them we obtain
$k_{\beta}(s) f^{\prime}(s)\left(y^{\prime}(f(s))^{2}+x^{\prime}(f(s))^{2}\right)=f^{\prime}(s)^{2}\left(y^{\prime \prime}(f(s)) x^{\prime}(f(s))-x^{\prime \prime}(f(s)) y^{\prime}(f(s))\right)$
which implies that

$$
k_{\beta}(s) f^{\prime}(s)\left|\alpha^{\prime}(f(s))\right|^{2}=f^{\prime}(s)^{2} \operatorname{det}\left(\alpha^{\prime}(f(s)), \alpha^{\prime \prime}(f(s))\right)
$$

Using ($* *$) in above equation, we have
$k_{\alpha}(t)=k_{\beta}(s)=\frac{1}{\left|\alpha^{\prime}(f(s))\right|^{3}} \operatorname{det}\left(\alpha^{\prime}(f(s)), \alpha^{\prime \prime}(f(s))\right)=\frac{1}{\left|\alpha^{\prime}(t)\right|^{3}} \operatorname{det}\left(\alpha^{\prime}(t), \alpha^{\prime \prime}(t)\right)$.
To obtain the second expression we set $T(t):=\frac{\alpha^{\prime}(t)}{\left|\alpha^{\prime}(t)\right|}$ and then we try to express $T(t)$ (resp. $\left.T^{\prime}(t)\right)$ in terms of $\alpha^{\prime}(t)$ (resp. $\left.\alpha^{\prime \prime}(t)\right)$. From $(* *)$
we have $T(t)=\alpha^{\prime}(t) f^{\prime}(s)$. Differentiating this with respect to t, we have

$$
\begin{aligned}
T^{\prime}(t) & =f^{\prime}(s) \frac{\partial}{\partial t} \alpha^{\prime}(t)+\alpha^{\prime}(t) \frac{\partial}{\partial t} f^{\prime}(s)=\alpha^{\prime \prime}(t) f^{\prime}(s)+\alpha^{\prime}(t) f^{\prime \prime}(s) \frac{\partial s}{\partial t} \\
& =\alpha^{\prime \prime}(t) f^{\prime}(s)+\alpha^{\prime}(t) f^{\prime \prime}(s)\left(f^{-1}\right)^{\prime}(t) \\
& =\alpha^{\prime \prime}(t) f^{\prime}(s)+\alpha^{\prime}(t) f^{\prime \prime}(s) \frac{1}{f^{\prime}(s)}
\end{aligned}
$$

In the last expression, we notice that the second part of $T^{\prime}(t)$ is a scalar multiple of the vector $\alpha^{\prime}(t)$. Hence

$$
\begin{aligned}
\operatorname{det}\left(T(t), T^{\prime}(t)\right) & =\operatorname{det}\left(\alpha^{\prime}(t) f^{\prime}(s), \alpha^{\prime \prime}(t) f^{\prime}(s)+\alpha^{\prime}(t) f^{\prime \prime}(s) \frac{1}{f^{\prime}(s)}\right) \\
& =\operatorname{det}\left(\alpha^{\prime}(t) f^{\prime}(s), \alpha^{\prime \prime}(t) f^{\prime}(s)\right) \\
& =\left(f^{\prime}(s)\right)^{2} \operatorname{det}\left(\alpha^{\prime}(t), \alpha^{\prime \prime}(t)\right)=\left|\alpha^{\prime}(t)\right| k_{\alpha}(t)
\end{aligned}
$$

Question 6. Let $\alpha: I \rightarrow \mathbb{R}^{2}$ be a curve p.b.a.l. and let $M: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a rigid motion. Define $\beta:=M \circ \alpha$ and prove that

$$
k_{\beta}(s)= \begin{cases}k_{\alpha}(s) & \text { for all } s \in I, \text { if } M \text { is direct } \\ -k_{\alpha}(s) & \text { for all } s \in I, \text { if } M \text { is inverse }\end{cases}
$$

Solution. First suppose M is a direct rigid motion. Then there exists $A \in \operatorname{SO}(2, \mathbb{R}), \mathbf{b} \in \mathbb{R}^{2}$, such that $M(v)=A v+\mathbf{b}\left(v \in \mathbb{R}^{2}\right)$. Now we have

$$
\alpha^{\prime}(s)=T_{\alpha}(s), \quad \alpha^{\prime \prime}(s)=T_{\alpha}^{\prime}(s)=k_{\alpha}(s) N_{\alpha}(s)=k_{\alpha}(s) J T_{\alpha}(s)
$$

Since a rigid motion preserve the length, β is also p.b.a.l. and hence

$$
T_{\beta}(s)=\beta^{\prime}(s)=(M \circ \alpha)^{\prime}(s)=A \alpha^{\prime}(s) .
$$

Now notice that J is a rotation matrix, and hence $J \in \mathrm{SO}(2, \mathbb{R})$, which is an abelian group. Using this we get, $N_{\beta}(s)=J T_{\beta}(s)=J A \alpha^{\prime}(s)=$ $A J \alpha^{\prime}(s)$. Now,

$$
T_{\beta}^{\prime}(s)=A \alpha^{\prime \prime}(s)=A\left(k_{\alpha}(s) J T_{\alpha}(s)\right)=k_{\alpha}(s) A J \alpha^{\prime}(s)=k_{\alpha}(s) N_{\beta}(s),
$$

which implies that $k_{\beta}(s)=k_{\alpha}(s)$.
Next, suppose M be a inverse rigid motion and set

$$
Q:=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

Recall that $\mathrm{O}(2, \mathbb{R})=\mathrm{SO}(2, \mathbb{R}) \cup Q \mathrm{SO}(2, \mathbb{R})$, as an union of two cosets. Hence there exists $A \in \operatorname{SO}(2, \mathbb{R}), \mathbf{b} \in \mathbb{R}^{2}$, such that

$$
M(v)=Q A v+\mathbf{b}\left(v \in \mathbb{R}^{2}\right)
$$

Then we compute

$$
\begin{aligned}
T_{\beta}(s) & =\beta^{\prime}(s)=(M \circ \alpha)^{\prime}(s)=Q A \alpha^{\prime}(s) \\
N_{\beta}(s) & =J T_{\beta}(s)=J Q A \alpha^{\prime}(s) \\
T_{\beta}^{\prime}(s) & =Q A \alpha^{\prime \prime}(s)=Q A\left(k_{\alpha}(s) J T_{\alpha}(s)\right)=k_{\alpha}(s) Q A J \alpha^{\prime}(s) \\
& =k_{\alpha}(s) Q J A \alpha^{\prime}(s)=k_{\alpha}(s)\left(Q J Q^{-1}\right) Q A \alpha^{\prime}(s)=k_{\alpha}(s)(-J) Q A \alpha^{\prime}(s) \\
& =-k_{\alpha}(s) N_{\beta}(s)
\end{aligned}
$$

Since $Q J Q^{-1}=-J$. This proves the second statement.
Question 7. Let $\alpha: I \rightarrow \mathbb{R}^{2}$ be a curve p.b.a.l. Prove that α is a segment of a straight line or an arc of a circle if and only if the curvature of α is constant.

Solution. The "only if" part follows from the Examples 1.16 and 1.17 (Page 11, Montiel and Ros). We will prove the "if" part here. We write $\alpha(s)=(x(s), y(s))(s \in I)$. Since α is p.b.a.l., we have $\alpha^{\prime}(s) \in S^{1} \subseteq \mathbb{R}^{2}$. Then we can write

$$
T(s)=\alpha^{\prime}(s)=(\cos \theta(s), \sin \theta(s)) \quad(s \in I) \quad(*)^{I}
$$

for some function $\theta: I \rightarrow \mathbb{R}$. Since the map $t \mapsto(\cos t, \sin t)$ from $\mathbb{R} \rightarrow S^{1}$ is locally diffeomorphic, applying a local inverse of this to α, it follows that θ is differentiable. Now we have

$$
\begin{aligned}
N(s) & =J \alpha^{\prime}(s)=(-\sin \theta(s), \cos \theta(s)) \\
T^{\prime}(s)=\alpha^{\prime \prime}(s) & =\left(-\sin \theta(s) \theta^{\prime}(s), \cos \theta(s) \theta^{\prime}(s)\right)
\end{aligned}
$$

Now, let $k \in \mathbb{R}$ denotes the constant curvature of α. Then using the first Frenet equation $T^{\prime}(s)=k N(s)(s \in I)$, we have $\theta^{\prime}(s)=k$ for every $s \in I$. This implies that $\theta(s)=k s+d(s \in I)$ for some constant $d \in \mathbb{R}$. We now consider the following two cases:
Case I. $k=0$.
From equation $(*)^{I}$, we have $\alpha^{\prime}(s)=(\cos d, \sin d)(s \in I)$. Fix a point $s_{0} \in I$, and then using the fundamental theorem for integrals we have

$$
\begin{aligned}
\alpha(s) & =\left(\int_{s_{0}}^{s} \cos d d u, \int_{s_{0}}^{s} \sin d d u\right)=\left(\left(s-s_{0}\right) \cos d,\left(s-s_{0}\right) \sin d\right) \\
& =(\cos d, \sin d) s+\left(-s_{0} \cos d,-s_{0} \sin d\right) \quad(s \in I)
\end{aligned}
$$

which is the equation for a segment of a straight line.

Case II. $k \neq 0$.
Again fixing an $s_{0} \in I$, we have

$$
\begin{aligned}
\alpha(s) & =\left(\int_{s_{0}}^{s} \cos (k u+d) d u, \int_{s_{0}}^{s} \sin (k u+d) d u\right) \\
& =\left(\frac{1}{k} \int_{k s_{0}+d}^{k s+d} \cos w d w, \frac{1}{k} \int_{k s_{0}+d}^{k s+d} \sin w d w\right) \\
& =\left(\frac{1}{k}\left\{\sin (k s+d)-\sin \left(k s_{0}+d\right)\right\}, \frac{1}{k}\left\{-\cos (k s+d)+\cos \left(k s_{0}+d\right)\right\}\right)
\end{aligned}
$$

Then the coordinates of $\alpha(s)=(x(s), y(s))(s \in I)$ satisfies the equation

$$
\left(x(s)+\frac{1}{k} \sin \left(k s_{0}+d\right)\right)^{2}+\left(y(s)-\frac{1}{k} \cos \left(k s_{0}+d\right)\right)^{2}=\frac{1}{k^{2}}
$$

which is the equation for a segment of a circle.
Question 8. Let $\alpha: I \rightarrow \mathbb{R}^{2}$ be a curve p.b.a.l. If there is a differentiable function $\theta: I \rightarrow \mathbb{R}$ such that $\theta(s)$ is the angle that the tangent line of α at s makes with a fixed direction, show that $\theta^{\prime}(s)= \pm k(s)$.

Solution. Let $a \in \mathbb{R}$ represents a vector so that $\theta(s)$ is the angle that the tangent line of α at s makes with a. Then

$$
\cos \theta(s)=\langle T(s), a\rangle \quad(s \in I) .
$$

Differentiating this with respect to s and using definitions, we obtain

$$
-\sin \theta(s) \theta^{\prime}(s)=\left\langle T^{\prime}(s), a\right\rangle=\langle k(s) N(s), a\rangle=k(s)\langle N(s), a\rangle .
$$

Now since $N(s)$ is orthogonal to $T(s)$, we have

$$
\langle N(s), a\rangle=\cos \left(\pm \frac{\pi}{2}+\theta(s)\right)=\mp \sin \theta(s)
$$

Comparing these two equations above, we get $\theta^{\prime}(s)= \pm k(s)$ for every $s \in I$.

Question 9. Let $\alpha, \beta: I \rightarrow \mathbb{R}^{2}$ be two curves p.b.a.l. such that $k_{\alpha}(s)=-k_{\beta}(s)$ for every $s \in I$. Show that there is an inverse rigid motion $M: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ such that $\beta=M \circ \alpha$.

Solution. We write $\alpha(s)=(x(s), y(s))(s \in I)$ and define $\widetilde{\alpha}: I \rightarrow \mathbb{R}^{2}$ defined by

$$
\widetilde{\alpha}(s):=(x(s),-y(s)) \quad(s \in I) .
$$

Then $\widetilde{\alpha}$ is a C^{∞}-curve since its components are infinitely differentiable. Moreover

$$
\left|\widetilde{\alpha}^{\prime}(s)\right|=\sqrt{x(s)^{2}+(-y(s))^{2}}=\left|\alpha^{\prime}(s)\right|=1
$$

for every $s \in I$. Hence $\widetilde{\alpha}$ is p.b.a.l. as well. Now we compute the curvature function of $\widetilde{\alpha}$:

$$
\begin{aligned}
T_{\widetilde{\alpha}}(s) & =\widetilde{\alpha}^{\prime}(s)=\left(x^{\prime}(s),-y^{\prime}(s)\right) \\
N_{\widetilde{\alpha}}(s) & =J T_{\widetilde{\alpha}}(s)=\left(y^{\prime}(s), x^{\prime}(s)\right) \\
T_{\widetilde{\alpha}}^{\prime}(s) & =\widetilde{\alpha}^{\prime \prime}(s)=\left(x^{\prime \prime}(s),-y^{\prime \prime}(s)\right)
\end{aligned}
$$

Now using the first Frenet equation corresponding to α

$$
\left(x^{\prime \prime}(s), y^{\prime \prime}(s)\right)=T_{\alpha}^{\prime}(s)=k_{\alpha}(s) N_{\alpha}(s)=k_{\alpha}(s)\left(-y^{\prime}(s), x^{\prime}(s)\right)
$$

we have

$$
x^{\prime \prime}(s)=-k_{\alpha}(s) y^{\prime}(s), \quad y^{\prime \prime}(s)=k_{\alpha}(s) x^{\prime}(s) .
$$

Using these equations to the expression of $T_{\widetilde{\alpha}}^{\prime}(s)$ we have

$$
T_{\tilde{\alpha}}^{\prime}(s)=\left(-k_{\alpha}(s) y^{\prime}(s),-k_{\alpha}(s) x^{\prime}(s)\right)=-k_{\alpha}(s) N_{\tilde{\alpha}}(s)
$$

for every $s \in I$. This shows that $k_{\beta}=-k_{\alpha}: I \rightarrow \mathbb{R}$ is the curvature function for $\widetilde{\alpha}$. From Theorem 1.21 (Page 11, Montiel and Ros) it follows that there exists a direct rigid motion $M: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ such that $\beta=M \circ \widetilde{\alpha}$.
From the definition of $\widetilde{\alpha}$, we have $Q \alpha=\widetilde{\alpha}$, where Q is the matrix defined in Exercise 6. Then

$$
\beta=M \circ \widetilde{\alpha}=M Q \circ \alpha=Q\left(Q^{-1} M Q\right) \circ \alpha .
$$

Since $\mathrm{SO}(2, \mathbb{R})$ is a normal subgroup of $\mathrm{O}(2, \mathbb{R})$, we have $Q^{-1} M Q$ is a direct rigid motion, and hence $M_{1}:=Q\left(Q^{-1} M Q\right)$ is an inverse rigid motion.

Question 10. If $\alpha: I \rightarrow \mathbb{R}^{2}$ is a curve p.b.a.l. with $0 \in I$ and symmetric around 0 , we define another curve $\beta: I \rightarrow \mathbb{R}^{2}$ by $\beta(s):=$ $\alpha(-s)$ for every $s \in I$. Prove that β is p.b.a.l. and that $k_{\beta}(s)=$ $-k_{\alpha}(-s)$ for each $s \in I$.

Solution. Setting $\alpha(s)=(x(s), y(s))(s \in I)$ as in the previous exercise, we have the following equations

$$
x^{\prime \prime}(s)=-k_{\alpha}(s) y^{\prime}(s), \quad y^{\prime \prime}(s)=k_{\alpha}(s) x^{\prime}(s) \quad(*)^{I I}
$$

Then we have

$$
\begin{aligned}
\beta(s) & =(x(-s), y(-s)) \\
\beta^{\prime}(s) & =\left(-x^{\prime}(-s),-y^{\prime}(-s)\right)
\end{aligned}
$$

and hence $\left|\beta^{\prime}(s)\right|=\sqrt{x^{\prime}(-s)^{2}+y^{\prime}(-s)^{2}}=1$. This proves that β is p.b.a.l. As a consequence we have $T_{\beta}(s)=\beta^{\prime}(s)=\left(-x^{\prime}(-s),-y^{\prime}(-s)\right)(s \in$ $I)$.

Now we compute

$$
\begin{aligned}
N_{\beta}(s) & =J T_{\beta}(s)=\left(y^{\prime}(-s),-x^{\prime}(-s)\right) \\
T_{\beta}^{\prime}(s) & =\left(x^{\prime \prime}(-s), y^{\prime \prime}(-s)\right)
\end{aligned}
$$

Now using the Frenet equation $T_{\beta}^{\prime}(s)=k_{\beta}(s) N_{\beta}(s)$ we get the equations

$$
x^{\prime \prime}(-s)=k_{\beta}(s) y^{\prime}(-s), \quad y^{\prime \prime}(-s)=-k_{\beta}(s) x^{\prime}(-s) .
$$

Now comparing the above equation with $(*)^{I I}$ as above, the statement follows.

